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Alegre, RS 91500, Brazil (baravi@mat.ufrgs.br)
2
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Abstract In this paper, we address the issue of synchronization of coupled systems, introducing concepts
of local and global synchronization for a class of systems that extend the model of coupled map lattices.
A criterion for local synchronization is given; numerical experiments are exhibited to illustrate the criteria
and also to raise some questions in the end of the text.
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1. Introduction

Coupled map lattices were introduced many years ago as a model of identical (nonlinear)
dynamical systems interacting by means of some coupling (see, e.g., [3, 10, 11] and ref-
erences therein). Many copies of the same dynamical system f : X → X are distributed
over the points of some lattice Σ (that can be finite or infinite), and an interaction is used
to couple the maps on different points. Among some phenomena that can be studied in
this context, we have the propagation of some signals through the lattice, solitons, certain
kinds of phase transitions when invariant measures are considered (see [12]), the entropy
of the map and its dependence on the coupling (see [4]), and the so-called synchroniza-
tion where the orbits of distinct points of the lattice have the same asymptotic behavior
(see, e.g., [9]; for an approach using the ideas of extreme value theory, see [7]).
The purpose of this work is to find some general conditions for ensuring synchronization

when the usual linear coupling is replaced by a general Markov kernel, extending part
of what appears in [9] to less symmetrical situations and also to understand what may
happen when those conditions are relaxed. The dynamics on the base is assumed to be
C1−smooth, allowing also the use of the concept of Lyapunov exponent. Some numerical

© The Author(s), 2023. Published by Cambridge University Press on Behalf
of The Edinburgh Mathematical Society.

143

https://doi.org/10.1017/S0013091523000081 Published online by Cambridge University Press

mailto:baravi@mat.ufrgs.br
mailto:pmduarte@fc.ul.pt
mailto:jtorres@math.uminho.pt
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0013091523000081&domain=pdf
https://doi.org/10.1017/S0013091523000081


144 A. Baraviera, P. Duarte and M. J. Torres

experiments suggest that part of the results about synchronization can remain valid for
a Lipschitz map, but the infinitesimal argument used in the C1−smooth context cannot
be reproduced in this more general case.
We also relax some conditions on the lattice Σ, replacing this by a more general set

that is assumed to be a Polish space in what we call a coupled map system; a similar
idea appeared in [13], where the lattice is replaced by a Cantor set, and a possible time
discretization of the Amari neural field equation (see [1, 2]) used in biomathematics leads
to a case where the lattice is replaced by the real line. It is also interesting to notice
that some classical analytical objects, like the Hardy–Littlewood operator acting on real
functions, can be seen as limits of the action of a certain coupled map system where the
lattice is replaced, again, by the real line. In these new situations, it is also possible to
adapt some of the arguments used to get synchronization.
This paper is organized as follows: in § 2, we fix the notation and the main definitions.

In § 3, we have the results about synchronization of C1−smooth transformations for
coupled map lattices and coupled map systems. In § 4, we present the proofs. In § 5, we
introduce several classes of coupled map lattices and systems to which our results apply.
In § 6, we provide some counter-examples which illustrate the need for the hypothesis of
the theorems as well as the limitations in their conclusions. Some problems and future
directions, part of them based on numerical experiments, are discussed in § 7.

2. Definitions

A topological space Σ is called a Polish space if it is separable, and there exists a metric
d on Σ which defines the topology of Σ such that (Σ, d) is complete. Every Polish space
is a Radon space. In particular, every Borel measure on Σ is regular (see [15]). From now
on Σ will denote a Polish space and F will be the Borel σ-algebra on Σ.
A stochastic kernel on Σ is any function K : Σ× F → [0, 1] such that

(1) the function B 7→ K(x,B), from F to [0, 1], is a probability measure for any x ∈ Σ;
(2) the function x 7→ K(x,B), from Σ to [0, 1], is F -measurable for any B ∈ F .

The convolution of two kernels K 1 and K 2 on Σ is

(K2 ×K1)(x,B) =

∫
Σ

K1(x,dy)K2(y,B), x ∈ Σ, B ∈ F .

The space of kernels on Σ is a convolution semigroup with identity, where the identity
is the kernel K(x, .) = δx, and δx stands for the Dirac measure supported on x. The
iterated kernels are defined recursively, setting K1 = K, and for n ≥ 1,

Kn+1(x,B) =

∫
Σ

K(x,dy)Kn(y,B).

A probability measure µ on (Σ,F ) is called K-stationary if for all B ∈ F ,

µ(B) =

∫
K(x,B)µ(dx).
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A set B ∈ F is said to be K-invariant when K(x,B) = 1 for all x ∈ B and K(x,B) = 0
for all x ∈ X\B. A K -stationary measure µ is called ergodic when there is no K -invariant
set B ∈ F such that 0 < µ(B) < 1. As usual, ergodic measures are the extremal points
in the convex set of K -stationary measures.
We say that a stochastic kernel K is strongly mixing if it admits a unique stationary

probability measure µ with supp(µ) = Σ and there are constants C > 0 and 0 < ρ < 1
such that for every ψ ∈ L∞(Σ), all x ∈ Σ and n ∈ N,∣∣∣∣∫

Σ

ψ(y)Kn(x, dy)−
∫
Σ

ψ(y)µ(dy)

∣∣∣∣ ≤ Cρn ‖ψ‖∞ .

We say that K satisfies the Doeblin condition if there is a positive finite measure ρ on
(Σ,F ) and some ε> 0 such that for all x ∈ Σ and B ∈ F ,

K(x,B) ≥ 1− ε ⇒ ρ(B) ≥ ε.

Theorem 2.1 Let K be a stochastic kernel on (Σ,F ). If K satisfies the Doeblin con-
dition, then there are sets Σ1, . . . ,Σm in F and probability measures ν1, . . . , νm on Σ
such that for all i, j = 1, . . . ,m,

(1) Σi ∩ Σj = ∅ when i 6= j,
(2) Σi is K-forward invariant, that is, K(x,Σi) = 1 for x ∈ Σi,
(3) νi is K-stationary and ergodic with νi(Σj) = δij,
(4) limn→+∞Kn(x,Σ1 ∪ · · · ∪ Σm) = 1, with geometric uniform speed of convergence,

for all x ∈ Σ,
(5) ν(Σ1 ∪ · · · ∪ Σm) = 1, for every K-stationary probability ν.

Moreover, for every 1 ≤ i ≤ m, there is an integer pi ∈ N and measurable sets
Σi,1, . . . ,Σi,pi ∈ F such that

(1) {Σi,1, . . . ,Σi,pi} is a partition of Σi,
(2) K(x,Σi,j+1) = 1 for x ∈ Σi,j and 1 ≤ j ≤ pi, with Σi,pi+1 = Σi,1,
(3) the stochastic kernel Kpi on Σi,j is strongly mixing for all 1 ≤ j ≤ pi.

Proof. See [5, section V-5]. �

In the context of Doeblin condition, we call the sets Σi, 1 ≤ i ≤ m, the ergodic
components of K and the integers pi their periods. We call the sets Σi,j , 1 ≤ j ≤ pi,
the mixing subcomponents of the ergodic component Σi. We shall say that an ergodic
component is aperiodic when its period is equal to 1.
A stochastic kernel K determines an operator K : L∞(Σ) → L∞(Σ) defined by

(Kψ)(x) :=

∫
Σ

ψ(y)K(x,dy). (1)

This operator satisfies the following.
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Proposition 2.2. For any ψ ∈ L∞(Σ),

(a) K1 = 1, where 1 denotes the constant function 1.
(b)

∫
Σ
Kψ dµ =

∫
Σ
ψ dµ,

(c) ‖Kψ‖∞ ≤ ‖ψ‖∞.

In particular, if H0 = {ψ ∈ L∞(Σ):
∫
Σ
ψ dµ = 0}, then L∞(Σ) = R1 ⊕ H0 is a

K-invariant decomposition and ρ(K|H0
) ≤ 1.

Proof. Since
∫
Σ
K(x, dy) = 1, items (a) and (c) follow. Item (b) is a consequence of

µ being a K -stationary probability measure. �

If the kernel K on Σ is strongly mixing, we define its mixing rate to be the spectral
radius of the restriction of K to the invariant subspace H 0 in Proposition 2.2, that is,

τ∗(K) := ρ(K|H0
).

In general, if K satisfies the Doeblin condition, using the notation of Theorem 2.1, we
define its escape rate β∗(K) to be the spectral radius of the operator rΛ ◦K|L∞(Λ), where
Λ = Σ \ (Σ1 ∪ · · · ∪ Σm) and rΛ : L∞(Σ) → L∞(Λ) is the restriction operator. Notice
that the operator KΛ : L∞(Λ) → L∞(Λ), KΛ = rΛ ◦ K|L∞(Λ) is sub-stochastic and
hence has spectral radius less than 1. We also define the mixing rate of the component
Σi as τ

∗(K,Σi) :=
pi
√
τ∗(Kpi ,Σi,j), where τ

∗(Kpi ,Σi,j) denotes the mixing rate of the
strongly mixing stochastic kernel obtained by restriction of the kernel Kpi to any of the
mixing subcomponents Σi,j , 1 ≤ j ≤ pi.
Let Σ be a discrete space, that we call a lattice. Consider a convex and compact

set X ⊂ Rd, a map f : X → X, the base dynamical system and a probability kernel
K : Σ × Σ → [0, 1]. If Σ is finite with k elements, then the stochastic kernel K can be
identified with a k × k stochastic matrix. We recall that a (row) stochastic matrix on a
finite set Σ is any square matrix A = [aij ] ∈ Rk×k such that aij ≥ 0 for all i, j ∈ Σ and∑
j∈Σ aij = 1 for all i ∈ Σ. A stochastic matrix A is called primitive if there exists n ≥ 1

for which the power matrix An = [anij ] has all entries strictly positive, that is, anij > 0 for
i, j ∈ Σ. Notice that if A is primitive, then the kernel K on Σ determined by A is strongly
mixing. In particular, Σ is an aperiodic ergodic component. We define the mixing rate of
a primitive matrix A, denoted by τ∗(A), as the mixing rate of the strongly mixing kernel
defined by A on Σ.
The coupled map lattice is the dynamical system F : XΣ → XΣ defined by

F (ϕ) := K(f ◦ ϕ),

where XΣ denotes the space of all functions from Σ to X. Since K is a probability kernel,
we get that for the constant function ϕ = c, the image K(f ◦ϕ) = Kf(c) = f(c). Hence,
the set of constant functions is invariant under the dynamics defined by F.
More generally, given a Polish space Σ, consider the space L∞(Σ, X) of all measur-

able functions ϕ : Σ → X. Notice that since X is compact, all functions in L∞(Σ, X)
are bounded. We endow this space with the uniform convergence topology, which is
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determined by the uniform distance

d∞(ϕ,ψ) := ‖ϕ− ψ‖∞ .

As before, we can define a transformation F : L∞(Σ, X) → L∞(Σ, X) by

F (ϕ) := K(f ◦ ϕ),

which we will refer to as a coupled map system.
We say that the coupled map system F : L∞(Σ, X) → L∞(Σ, X) has global synchro-

nization over a subset Λ ⊂ Σ if for every δ > 0, there exists n0 ∈ N such that for n ≥ n0
and for every ϕ ∈ L∞(Σ, X) and all x, y ∈ Λ, one has

‖Fn(ϕ)(x)− Fn(ϕ)(y)‖ < δ.

When Λ = Σ, we simply talk about global synchronization of F. Let ∆ ⊂ L∞(Σ, X)
denote the compact and convex subset of all constant functions. Notice that F has global
synchronization if and only if ∆ is a global attractor of F on L∞(Σ, X).
We say that F has local synchronization over a subset Λ ⊂ Σ if there exists a neigh-

bourhood U of ∆ in L∞(Σ, X) such that for every δ > 0, there exists n0 ∈ N such that
for n ≥ n0 and for every ϕ ∈ U and all x, y ∈ Λ, one has

‖Fn(ϕ)(x)− Fn(ϕ)(y)‖ < δ.

The map F has local synchronization (over Σ) if and only if ∆ is a local attractor of F
on L∞(Σ, X).
Clearly, global synchronization implies local synchronization, but the converse is not

true.

3. Main results

Throughout this section, we assume that X ⊂ Rd is a compact convex set and f : X → X
is a C 1-smooth map whose Lipschitz constant is denoted by Lip(f).
We define

`(f) := lim
n→∞

1

n
log Lip(fn).

This limit exists by Fekete’s Lemma. As usual, the derivative of the map f at a point
x ∈ X is denoted by Dfx : Rd → Rd. The top Lyapunov exponent of a periodic point
x = fn(x) with period n is defined to be

λ(f, x) :=
1

n
log ‖Dfnx ‖ .
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By the mean value theorem, ‖Dfx‖ ≤ Lip(f). Hence, for all periodic points x ∈ X of
f, one has

λ(f, x) ≤ `(f).

We define the oscillation semi-norm ‖.‖o of a function ϕ ∈ L∞(Σ,Rd) by

‖ϕ‖o := sup
x,y∈Σ

‖ϕ(x)− ϕ(y)‖ .

Proposition 3.1. The oscillation semi-norm satisfies

(1) ‖g ◦ ϕ‖o ≤ Lip(g) ‖ϕ‖o for any Lipschitz function g : Rd → Rd, and
(2) ‖ϕ‖o = 0 ⇔ ϕ is constant.

Proof. Given any Lipschitz function g : Rd → Rd,

‖g ◦ ϕ‖o = supx,y∈Σ ‖g(ϕ(x))− g(ϕ(y))‖

≤ supx,y∈Σ Lip(g) ‖ϕ(x)− ϕ(y)‖

≤ Lip(g) ‖ϕ‖o ,

and, clearly, ‖ϕ‖o = 0 if and only if ϕ is constant. �

We define the norm of a stochastic kernel K, regarded as an operator, by

|||K|||o := sup
‖ϕ‖o 6=0

‖Kϕ‖o
‖ϕ‖o

.

Theorem 3.2 If |||K|||o Lip(f) < 1, then F has global synchronization.

Proof. Given ϕ ∈ L∞(Σ, X),

‖F (ϕ)‖o = ‖K(f ◦ ϕ)‖o ≤ |||K|||o ‖f ◦ ϕ‖o
≤ |||K|||o Lip(f) ‖ϕ‖o .

Hence,

‖Fn(ϕ)‖o ≤ [|||K|||o Lip(f)]n ‖ϕ‖o

converges to 0 as n→ +∞. This proves that F has global synchronization. �

Theorem 3.3 Given a finite set Σ and a stochastic primitive matrix A on Σ, if there
exists a periodic orbit x ∈ X with Lyapunov exponent λ = λ(f, x) such that

τ∗(A) eλ > 1,

then F does not have local synchronization over Σ.
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Theorem 3.4 Given a Polish space Σ and a stochastic kernel K on Σ satisfying the
Doeblin condition with a unique aperiodic ergodic component Σ0, if

max{β∗(K), τ∗(K,Σ0)} e`(f) < 1,

then F has local synchronization over Σ.

The next theorem provides a sufficient condition for local synchronization over the
mixing subcomponents of an ergodic component.

Theorem 3.5 Given a Polish space Σ and a stochastic kernel K on Σ satisfying the
Doeblin condition with an ergodic component

Σi = Σi,1 ∪ · · · ∪ Σi,p,

where the sets Σi,j stand for the mixing subcomponents of Σi, if

τ∗(K,Σi) e
`(f) < 1,

then F has local synchronization over all mixing subcomponents Σi,j of Σi.

4. Proofs

Proof of Theorem 3.3. Let ∆ = {u ∈ XΣ : ui = uj ∀ i, j ∈ Σ}. The transformation
F has local synchronization over Σ iff ∆ is a local attractor whose basin of attraction is
a neighbourhood of ∆. To see that F does not have local synchronization over Σ, it is
enough to find the F -periodic point u ∈ ∆ with period p such that the derivative DF pu
has an eigenvalue α ∈ C with |α| > 1 associated to some (complex) eigenvector, which
does not lie in the complexification of the tangent space Tu∆.
Consider the periodic point x = fp(x) whose existence is hypothesized in this theorem,

and let u = (x, x, . . . , x) ∈ XΣ. Then u ∈ ∆ is a periodic point of F with the same period
p. Let w ∈ CΣ be an eigenvector of A such that

∑
i∈Σ wi = 0 and Aw = βw, where

|β| = τ∗(A). Writing A = [aij ] ∈ RΣ×Σ, let Â ∈ (Rd×d)Σ×Σ be the matrix with entries
âij := aijId, where I d is the identity matrix in Rd×d. Let Mj = Dffj(x) and denote by

DMj
the block diagonal matrix

DMj
=


Mj 0 · · · 0

0 Mj · · · 0
...

...
. . .

...

0 0 · · · Mj

 .

Finally, let v ∈ Cd be a non-zero vector such that Dfpx v =Mp−1 · · ·M1M0 v = α v with
α ∈ C and 1

p log |α| = λ(x, f). The Jacobian matrix of F at each point F j(u) is the
matrix
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DFFj(u) = ÂDMj
.

Since the matrices Â and DMj
commute, we have

DF pu = ÂpDM ,

where M = Mp−1 · · ·M1M0 = Dfpx . Now the complex vector V = (wiv)i∈Σ ∈ (Cd)Σ
satisfies

DF puV = ÂpDMV = βpαV.

Since the vector V does not lie in the complexification, ∆C = {(w,w, . . . , w) : w ∈ C} of
the tangent space Tu∆ and

|βpα| = τ∗p epλ = (τ∗ eλ)p > 1,

the F -invariant set ∆ cannot be a local attractor. �

Proof of Theorem 3.4. Assume first that the stochastic kernel K is strongly mixing,
and consider the space

H0 := {ϕ ∈ L∞(Σ,Rd) : ∫
Σ
ϕ dµ = 0}

introduced in Proposition 2.2. Let τ∗ = τ∗(K) < 1 be the spectral radius of K|H0
.

In the end, we explain how to proceed in the general case. Taking κ> 0 with
τ∗(K) e`(f) < κ < 1, there exists an integer m ∈ N such that |||Km|||o Lip(fm) < κm.
Because f is C1−smooth, then so is F. On the diagonal ∆, the derivatives of the linear

action of K and f commute. Consequently, for all ϕ ∈ ∆∥∥DFnϕ∥∥ ≤ τ∗n en` < κn,

with 0 < κ < 1. Hence, there is a neighbourhood U of ∆ where Fn is a contraction. This
implies that for all ϕ ∈ U ,

lim
k→+∞

∥∥F knϕ∥∥
o
= 0.

Thus, for all 0 ≤ j < n,

lim
k→+∞

∥∥F kn+jϕ∥∥
o
= 0,

and therefore

lim
k→+∞

∥∥F kϕ∥∥
o
= 0.
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The case where K is not strongly mixing but there is only one ergodic acyclic compo-
nent Σ0 is the same as the previous one because the operator K|H0

has spectral radius
equal to max{β∗(K), τ∗(K,Σ0)}. �

Proof of Theorem 3.5. Same argument as before working in the mixing
subcomponent. �

5. Coupled map classes

In this section, we introduce several classes of coupled map systems and lattices to which
our results apply. In all examples below, X ⊂ Rd is any compact convex set and f : X →
X is a C1−smooth function.

Finite coupled map lattices

Consider a finite set Σ = {1, . . . , k} and a stochastic k × k matrix A = [aij ]. The
associated coupled map lattice is the transformation F : Xk → Xk with components

Fi(x) =
k∑
j=1

aijf(xj), where x = (x1, . . . , xk).

In this setting, Theorem 2.1 is a simple consequence of classical Markov Chain’s Theory.
Let Σ1, . . . ,Σm be the ergodic components of the stochastic kernel K defined by A on Σ,
and let Λ = Σ \ (Σ1 ∪ . . . ∪ Σm). The escape rate β∗(K) and the mixing rate τ∗(K,Σi)
can be estimated as described below. See [5, section V-2] and also [6, section 5]*. Recall
that τ∗(K,Σi) := pi

√
τ∗(Kpi ,Σi,j), where τ

∗(Kpi ,Σi,j) denotes the mixing rate of the
strongly mixing stochastic kernel obtained by restriction of the kernel Kpi to any of the
subcomponents Σi,j . Let A

pi = [a
pi
ij ]. We have that

β∗(K) = inf
n≥1

[β(Kn)]1/n, (2)

where

β(K) = 1−min
`∈Σ

∑
k∈Σ1∪···∪Σm

a`k = max
`∈Σ

∑
k∈Λ

a`k

and

τ∗(Kpi ,Σi,j) = inf
n≥1

[τ(Knpi ,Σi,j)]
1/n, (3)

* We notice that all results in § 5 of this reference are abstract and hence hold for general measure
spaces (X,m). This includes the case where X is finite.
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where

τ(Kpi ,Σi,j) =
1

2
max

`,`′∈Σi,j

∑
k∈Σi,j

∣∣api`k − a
pi
`′k

∣∣ = 1− min
`,`′∈Σi,j

∑
k∈Σi,j

a
pi
`k ∧ a

pi
`′k.

This class contains, for example, coupled map lattices with translation-invariant cou-
pling and arbitrary Lipschitz continuous individual map on the periodic lattice ZL :=
{s ∈ ZmodL} (L > 1).

Infinite coupled map lattices

Assume now that Σ is an infinite (countable) lattice, say Σ = N = {0, 1, . . .}. Consider
an infinite (row) stochastic matrix A = [aij ] such that for some α> 0, we have ai0 ≥ α
for all i ∈ N. This assumptions ensure that the stochastic kernel defined by A satisfies
the Doeblin condition.
The associated coupled map lattice is the transformation F : XN → XN with

components

Fi(x) =
∑
j∈N

aijf(xj) where x = (xj)j∈N.

The previous finite state formulas also hold in this countable case.

Coupled map systems

Assume that Σ is a compact metric space, say Σ = [0, 1], and consider a bounded
measurable function k : [0, 1]× [0, 1] → [0,+∞) such that∫ 1

0

k(x, y) dy = 1 for all x ∈ [0, 1].

This function determines a kernel K on [0, 1] defined by

K(x,B) =

∫
B

k(x, y) dy for all B ⊂ [0, 1].

In this setting, the stochastic kernel K satisfies the Doeblin condition.
The associated coupled map system is the transformation F : L∞([0, 1], X) →

L∞([0, 1], X)

F (ϕ)(x) =

∫ 1

0

k(x, y)f(ϕ(y)) dy where ϕ ∈ L∞([0, 1], X).

Remark 5.1. It is interesting to mention that the uncoupled map, say, the case where
F (ϕ)(x) = f(ϕ(x)), corresponds to a dynamical system already considered in [8].
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Remark 5.2. We note that the class of coupled map systems may contain the mean
field limit of all-to-all coupled finite systems. In [16], the authors study models of this
type, with very similar dynamics to our current setup of coupled map systems.

The previous given formulas for the escape rate and the mixing rate of the ergodic
components Σi, 1 ≤ i ≤ m, extend to stochastic kernels satisfying the Doeblin condition
(see [5, section V-5] and also [6, section 5])*. We have that

β∗(K) = inf
n≥1

[β(Kn)]1/n,

where

β(K) = 1− inf
x∈Σ

∫
Σ1∪···∪Σm

k(x, y) dy = sup
x∈Σ

∫
Λ

k(x, y) dy,

and

τ∗(Kpi ,Σi,j) = inf
n≥1

[τ(Knpi ,Σi,j)]
1/n,

where

τ(Kpi ,Σi,j) = 1
2 supx,z∈Σi,j

∫
Σi,j

|kpi(x, y)− kpi(z, y)| dy

= 1− inf
x,z∈Σi,j

∫
Σi,j

kpi(x, y) ∧ kpi(z, y) dy.

Example 5.3. The Amari neural field equation used in biomathematics is the integro-
differential equation

∂tu(t, x) = −u(t, x) +
∫
R
K(x− y)S(u(t, y)) dy t > 0, x ∈ R,

where u represents the average neural activity, K is the connectivity kernel (modelling
the interaction between neurons at distinct places) and S is the firing rate function.
A first-order time discretization, considering a time step of size 1, consists in replacing
the partial derivative by the difference u(t+ 1, x)− u(t, x); we then get the map

u(t+ 1, x) = F (u(t, x)) =

∫
R
K(x− y)S(u(t, y)) dy

which is an example of a coupled map system where Σ is the real line (for another
approximation of the Amari’s model, the reader can see [14]).

* All results in § 5 of this reference are abstract and apply to the current setting.
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Example 5.4. Consider an integrable function ϕ : R → R. The Hardy–Littlewood
maximal operator maps ϕ to the function that is defined for any x ∈ R as

Mϕ(x) = sup
r>0

Fr(ϕ)(x),

where, for any given r > 0, F r is given by

Fr(ϕ)(x) :=
1

|B(x, r)|

∫
B(x,r)

|ϕ(y)|dy;

in this expression, dy is the Lebesgue measure on R, B(x, r) is the open interval
(x− r, x+ r) and |B| denotes its Lebesgue measure. Notice that F r corresponds to the
coupled map system, whereX = Σ = R, f(·) = |·| and k(x, y) = dy

|B(x,r)| is the normalized

Lebesgue measure restricted to the ball B(x, r).

6. Counter-examples

In this section, we provide two counter-examples which illustrate the need for the
hypothesis of the theorems as well as the limitations in their conclusions.
In the first example, the hypothesis of Theorem 3.4 is satisfied but the coupled lattice

map has no global synchronization.

Example 6.1. Let X = [0, 3] and f : X → X be a C1−smooth map such that
f(1) = 2/3, f(8/5) = 2, f(2) = 16/9 and

3

2
= |f ′(2)| < Lip(f) =

20

9
= Lip

(
f |{1, 85}

)
.

An example (see Figure 1) is given by

f(t) :=



8 t3

9 − 2 t2

9 for 0 ≤ t < 1
20(t−1)

9 + 2
3 for 1 ≤ t < 8

5

275 t3

24 − 2395 t2

36 + 1144 t
9 − 78 for 8

5 ≤ t < 2

t3

18 + t2

3 − 7 t
2 + 7 for 2 ≤ t ≤ 3

.

Indeed, given (t0, x0, v0), (t1, x1, v1) ∈ R3 with t0 < t1, there exists a unique cubic
polynomial p(t) that interpolates these tuples in the sense that

p(t0) = x0, p
′(t0) = v0, p(t1) = x1 and p′(t1) = v1.

The above function is the unique piecewise cubic polynomial of class C 1 that interpolates
the sequence of tuples

(0, 0, 0),

(
1,

2

3
,
20

9

)
,

(
8

5
, 2,

20

9

)
,

(
2,

16

9
,−3

2

)
, (3, 1, 0).
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Figure 1. The map f of Example 6.1.

One can easily check that, in each branch, the maximum absolute value of f ′(t) is less
than or equal to 20/9.
Consider the stochastic matrix

A =


7
10

3
10 0

0 7
10

3
10

1 0 0


and the coupled lattice map F : [0, 3]3 → [0, 3]3 defined by

F (x, y, z) =

(
7

10
f(x) +

3

10
f(y),

7

10
f(y) +

3

10
f(z), f(x)

)
.

The point p = (8/5, 1, 2) is a fixed point of F. Because this fixed point is off the diagonal
∆ = {(x, x, x) : x ∈ [0, 3]}, the map F cannot have global synchronization.
The matrix A has eigenvalues 1 and 1

10 (2 ±
√
5 i) (with absolute value 3/10). The

stochastic kernel K determined by A has a unique aperiodic ergodic component Σ0 = Σ.
Hence, τ∗(K,Σ) = 3/10 and β∗(K) = 0. Consequently,

max{β∗(K), τ∗(K,Σ)}Lip(f) ≤ 3

10
· 20
9

=
2

3
< 1.

The second example illustrates a transition from local synchronization over Σ to local
synchronization over an ergodic component.
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Example 6.2. Consider the following family of stochastic matrices

At :=

1−t
2 + 4t

9
1−t
2 + 5t

9 0
1−t
2 + t

6
1−t
2 + 5t

6 0

0 7(1−t)
18 + 17t

18
11(1−t)

18 + t
18


with 0 ≤ t ≤ 1, whose associated family of kernels K t has a unique aperiodic ergodic
component Σ0 = {1, 2}. Applying the formulas (2)–(3), we get β∗(Kt) = 11−10 t

18 and
τ∗(Kt,Σ0) =

5t
18 .

Let f : [0, 1] → [0, 1] be the map f(x) := 4x(1 − x), which has Lipschitz constant
Lip(f) = 4. We have e`(f) = 4 because 0 is a fixed point with derivative f ′(0) = 4.

In this example, the threshold conditions of Theorems 3.4 and 3.5 are, respectively,

(R1) max{β∗(Kt), τ
∗(Kt,Σ0)} e`(f) < 1 ⇔ 0.65 < t < 0.9;

(R2) τ∗(Kt,Σ0) e
`(f) < 1 ⇔ t < 0.9.

An analog of the threshold condition in Theorem 3.3 with Lyapunov exponent λ(f) =
log 2 w.r.t. Lebesgue measure is

(R3) max{β∗(Kt), τ
∗(Kt,Σ0)} eλ(f) < 1 ⇔ 0.2 < t.

See Figure 2.
Using Theorems 3.4 and 3.5,

(1) in region (R1), (local) synchronization over Σ occurs;
(2) in region (R2), (local) synchronization over Σ0 occurs.

For t < 0.65 = 13/20, an easy calculation shows that pt = (0, 0, 20t−13
20t−22 ) is a fixed point

of the coupled map F t off the diagonal. This shows that there is no global synchronization
for F t on this range.
We run several numerical experiments, randomly choosing an initial condition in [0, 1]3,

computing n =200 iterates and then plotting the last 100 iterates. These experiments
indicate that (see Figures 3 and 4):

(3) in region (R1), global synchronization over Σ occurs;
(4) in region (R3), local synchronization over Σ occurs;
(5) outside region (R3), synchronization over Σ never occurs.
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Figure 2. Threshold lines.

Figure 3. In Example 6.2, synchronization occurs, only over Σ0, for the values 0 ≤ t < 0.2. The
right plot represents the projection of the left one onto the plane RΣ0 , where Σ0 = {1, 2}.

7. Conclusions

All examples that we have analyzed indicate that Theorems 3.4 and 3.5 should hold for
any Lipschitz map f : X → X. We note that the infinitesimal argument used in the
C1−smooth context cannot be reproduced in the Lipschitz case.
This motivates the following problem:
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Figure 4. In Example 6.2, synchronization over Σ occurs for the values 0.2 < t ≤ 1.

Problem 1. Prove Theorems 3.4 and 3.5 for Lipschitz maps f : X → X, or at least
for piecewise smooth maps.

The two (Lipschitz) examples below provide numerical evidence that there is no local
synchronization whenever the main hypothesis of Theorems 3.4 and 3.5 fail.

Example 7.1. Consider the following family of stochastic matrices

At :=

 1−t
2 + 4t

5
1−t
2 + t

5 0
1−t
2 + t

5
1−t
2 + 4t

5 0

0 1−t
4 + 2t

3
3(1−t)

4 + t
3


with 0 ≤ t ≤ 1, whose associated family of kernels K t has a unique aperiodic ergodic
component Σ0 = {1, 2}. Applying the formulas (2)–(3), we have that β∗(Kt) =

9−5t
12 and

τ∗(Kt,Σ0) =
3t
5 .

Let f : [0, 1] → [0, 1] be the piecewise linear map

f(x) :=

{
2x if 0 ≤ x ≤ 1

2

2− 2x if 1
2 < x ≤ 1

which has Lipschitz constant Lip(f) = 2. A simple calculation shows that e`(f) = 2.

In this example, the threshold condition

max{β∗(Kt), τ
∗(Kt,Σ0)} <

1

2

of Theorem 3.4 is equivalent to 0.6 = 3
5 < t < 5

6 ∼ 0.833 (see Figure 5). Experiments
we run indicate that in this example, local synchronization never occurs whenever the
threshold condition fails, that is, t < 3

5 or t > 5
6 (see Figure 6).

In the simulations, we randomly chose initial conditions near the diagonal ∆ in [0, 1]3

and computed n =200 iterates, plotting the last 100 iterates.
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Figure 5. Threshold condition: max{β∗(Kt), τ
∗(Kt,Σ0)} < 1

2
.

Figure 6. In Example 7.1 local synchronization only occurs for the values 0.6 = 3
5
< t < 5

6
∼

0.833.
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Example 7.2. Consider the following family of stochastic matrices

At :=


0 0 1−t

2 + 7t
8

1−t
2 + t

8

0 0 1−t
2 + t

4
1−t
2 + 3t

4
1−t
2 + 3t

4
1−t
2 + t

4 0 0
1−t
2 + t

8
1−t
2 + 7t

8 0 0


with 0 ≤ t ≤ 1. Each associated kernel K t has a unique ergodic component Σ1 = Σ =
{1, 2, 3, 4} with period 2. The mixing subcomponents are Σ1,1 = {1, 2} and Σ1,2 = {3, 4}.
Since the eigenvalues of At are 1, −1, 5 t

8 and −5 t
8 , we have that τ∗(Kt,Σ1) =

5 t
8 .

Let f : [0, 1] → [0, 1] be the piecewise linear map

f(x) :=

{
2x if 0 ≤ x ≤ 1

2

2− 2x if 1
2 < x ≤ 1

,

which has Lipschitz constant Lip(f) = 2. A simple calculation shows that e`(f) = 2.

In this example, the threshold condition

τ∗(Kt,Σ1) <
1

2

of Theorem 3.5 is equivalent to t < 0.8. Experiments we run have shown that in this
example, local synchronization over the mixing subcomponents never occurs whenever
the threshold condition fails, that is, t > 0.8.
In the simulations, we randomly chose initial conditions near the diagonal ∆ in [0, 1]4

and computed n =200 iterates, plotting the last 100 iterates. Figures 7 and 8 illustrate
the projections of these orbits in [0, 1]4 to all six coordinate 2-planes.
Example 6.2 (in the smooth setting) and Examples 7.1 and 7.2 (in the Lipschitz case)

suggest a weaker concept of synchronization.
Let f : X → X be a piecewise C 1-diffeomorphism preserving a probability measure µ

on the Borel σ-algebra of X. Consider on L∞(Σ, X) ⊂ XΣ the product measure µΣ. We
say that a coupled map system has almost sure global synchronization over Λ ⊂ Σ if for
µΣ almost every ϕ ∈ L∞(Σ, X), given δ > 0, there exists n0 ∈ N such that for n ≥ n0
and all x, y ∈ Λ, one has

‖Fn(ϕ)(x)− Fn(ϕ)(y)‖ < δ.

In Example 6.2, the simulations indicate that almost sure global synchronization over
Σ = {1, 2, 3} occurs for t > 0.2, in spite of the fact that the existence of a fixed point off
the diagonal implies no global synchronization for t < 0.65.
This motivates the following problems:
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Figure 7. In Example 7.2, local synchronization occurs over the mixing subcomponents for
t = 0.78.

Figure 8. In Example 7.2, local synchronization does not occur over the mixing subcomponents
for t = 0.82.

Problem 2. Under the assumptions of Theorem 3.4, denoting by λ(f) = λ(f, µ) the
top Lyapunov exponent of f w.r.t. µ, if

max{β∗(K), τ∗(K,Σ0)} eλ(f) < 1,
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can one prove that almost sure global synchronization (over Σ) occurs?

Problem 3. Under the assumptions of Theorem 3.5, denoting by λ(f) = λ(f, µ) the
top Lyapunov exponent of f w.r.t. µ, if

τ∗(K,Σi) e
`(f) < 1,

can one prove that almost sure global synchronization over all mixing subcomponents
occur?

In other words, we wonder if almost sure global synchronization occurs when we replace,
in the threshold conditions of Theorems 3.4 and 3.5, the Lipschitz term `(f) by the
Lyapunov exponent λ(f).
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