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Abstract
We prove that for every tree T of radius h, there is an integer c such that every T-minor-free graph is
contained in H �Kc for some graph H with pathwidth at most 2h− 1. This is a qualitative strengthening
of the Excluded Tree Minor Theorem of Robertson and Seymour (GM I). We show that radius is the right
parameter to consider in this setting, and 2h− 1 is the best possible bound.
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1. Introduction
Robertson and Seymour [8] proved that for every tree T, there is an integer c such that every T-
minor-free graph has pathwidth at most c. Bienstock, Robertson, Seymour, and Thomas [1] and
Diestel [3] showed the same result with c= |V(T)| − 2, which is best possible, since the complete
graph on |V(T)| − 1 vertices is T-minor-free and has pathwidth |V(T)| − 2. Graph product struc-
ture theory describes graphs in complicated classes as subgraphs of products of simpler graphs
[2, 5, 6]. Inspired by this viewpoint, we prove the following result, where H �Kc is the graph
obtained from H by replacing each vertex of H by a copy of Kc and replacing each edge of H by
the join between the corresponding copies of Kc.

Theorem 1. For every tree T of radius h, there exists c ∈N such that every T-minor-free graph G is
contained in H �Kc for some graph H with pathwidth at most 2h− 1.

Theorem 1 is a qualitative strengthening of the above-mentioned result of Robertson and
Seymour [8] since pw(G)� pw(H �Kc)� c(pw(H)+ 1)− 1� 2ch− 1. Note that the proof of
Theorem 1 depends on the above-mentioned result of Robertson and Seymour [8]. The point
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of Theorem 1 is that pw(H) only depends on the radius of T, not on |V(T)| which may be much
greater than the radius. Moreover, radius is the right parameter of T to consider here, as we now
show.

For a tree T, let g(T) be the minimum k ∈N such that for some c ∈N every T-minor-free
graph G is contained in H �Kc where pw(H)� k. Theorem 1 shows that if T has radius h, then
g(T)� 2h− 1. Now we show a lower bound. The following lemma by Campbell, Clinch, Distel,
Gollin, Hendrey, Hickingbotham, Huynh, Illingworth, Tamitegama, Tan, and Wood [2] is useful,
where Th,d is the complete d-ary tree of radius h.

Lemma 2 ([2, v1, Proposition 56]). For any h, c ∈N, there exists d ∈N such that for every graph H,
if Th,d is contained in H � Kc, then pw(H)� h.

Let T be any tree with radius h. Thus, T contains a path on 2h vertices, and Th−1,d contains
no T-minor, as otherwise Th−1,d would contain a path on 2h vertices. By Lemma 2, if Th−1,d is
contained in H �Kc, then pw(H)� h− 1. Hence,

h− 1� g(T)� 2h− 1. (1)

This says that the radius of T is the right parameter to consider in Theorem 1.
Moreover, both the lower and upper bounds in (1) can be achieved, as we now explain. The

upper bound in (1) is achieved when T is a complete ternary tree, as shown by the following
result.

Proposition 3. For all h, c ∈N, there is a Th,3-minor-free graph G, such that for every graph H, if G
is contained in H � Kc, then H has a clique of size 2h, implying pw(H)� tw(H)� 2h− 1.

The next result improves Theorem 1 for an excluded path. It shows that the lower bound in (1)
is achieved when T is a path, since P2h+1 has radius h, and a graph has no path on 2h+ 1 vertices
if and only if it is P2h+1-minor-free.

Proposition 4. For any h ∈N, every graph G with no path on 2h+ 1 vertices is contained in
H �K4h for some graph H with pw(H)� h− 1.

2. Background
We consider simple, finite, undirected graphs G with vertex set V(G) and edge set E(G). See [4]
for graph-theoretic definitions not given here. For m, n ∈Z with m� n, let [m, n] := {m,m+
1, . . . , n} and [n] := [1, n].

A graph H is a minor of a graph G if H is isomorphic to a graph that can be obtained from
a subgraph of G by contracting edges. A graph G is H-minor-free if H is not a minor of G. An
H-model in a graph G consists of pairwise disjoint vertex subsets (Wx ⊆V(G) : x ∈V(H)) (called
branch sets) such that each subset induces a connected subgraph ofG, and for each edge xy ∈V(H)
there is an edge in G joining Wx and Wy. Clearly, H is a minor of G if and only if G contains an
H-model.

A tree decomposition of a graph G is a collection (Bx : x ∈V(T)) of subsets of V(G) (called bags)
indexed by the vertices of a tree T, such that (a) for every edge uv ∈ E(G), some bag Bx contains
both u and v, and (b) for every vertex v ∈V(G), the set {x ∈V(T) : v ∈ Bx} induces a non-empty
(connected) subtree of T. The width of (Bx : x ∈V(T)) is max{|Bx| : x ∈V(T)} − 1. The treewidth
of a graph G, denoted by tw(G), is the minimum width of a tree decomposition of G. A path
decomposition is a tree decomposition in which the underlying tree is a path, simply denoted by
the sequence of bags (B1, . . . , Bn). The pathwidth of a graphG, denoted by pw(G), is the minimum
width of a path decomposition of G.

https://doi.org/10.1017/S0963548323000275 Published online by Cambridge University Press

https://doi.org/10.1017/S0963548323000275


Combinatorics, Probability and Computing 87

The following lemma is folklore (see [6] for a proof).

Lemma 5. For every graph G, for every tree decomposition D of G, for every collection F of
connected subgraphs of G, and for every � ∈N, either:

(a) there are � vertex disjoint subgraphs in F , or
(b) there is a set S⊆V(G) consisting of at most � − 1 bags of D such that S∩V(F) �=∅ for all

F ∈F .

The strong product of graphs A and B, denoted by A� B, is the graph with vertex set V(A)×
V(B), where distinct vertices (v, x), (w, y) ∈V(A)×V(B) are adjacent if v=w and xy ∈ E(B), or
x= y and vw ∈ E(A), or vw ∈ E(A) and xy ∈ E(B).

LetG be a graph. A partition ofG is a collectionP of sets of vertices inG such that each vertex of
G is in exactly one element ofP . Each element ofP is called a part. Thewidth ofP is themaximum
number of vertices in a part. The quotient of P (with respect to G) is the graph, denoted by G/P ,
with vertex set P where distinct parts A, B ∈P are adjacent in G/P if and only if some vertex in
A is adjacent in G to some vertex in B. An H-partition of G is a partition P of G such that G/P is
contained in H. The following observation connects partitions and products.

Observation 6 ([5]). For all graphs G and H and any p ∈N, G is contained in H �Kp if and only
if G has an H-partition with width at most p. �

3. Proofs
We prove the following quantitative version of Theorem 1.

Theorem 7. Let T be a tree with t vertices, radius h, and maximum degree d. Then every T-
minor-free graph G is contained in H �K(d+h−2)(t−1) for some graph H with pathwidth at most
2h− 1.

Recall that Th,d is the complete d-ary tree of radius h. Observation 6 and the next lemma imply
Theorem 7, since the tree T in Theorem 7 is a subtree of Th,d, and every T-minor-free graph G
satisfies tw(G)� pw(G)� t − 2 by the result of Bienstock, Robertson, Seymour, and Thomas [1]
mentioned in Section 1.

Lemma 8. For any h, d ∈N with d + h� 3, for every Th,d-minor-free graph G, for every tree
decomposition D of G, and for every vertex r of G, the graph G has a partition P such that:

• each part of P is a subset of the union of at most d + h− 2 bags of D,
• {r} ∈P , and
• G/P has a path decomposition of width at most 2h− 1 in which the first bag contains {r}.

Proof. We proceed by induction on pairs (h, |V(G)|) in a lexicographic order. Fix h, d, G, D, and
r as in the statement. We may assume that G is connected. The statement is trivial if |V(G)|� 1.
Now assume that |V(G)|� 2.

For the base case, suppose that h= 1. For i� 0, let Vi := {v ∈V(G) : distG(v, r)= i}. So V0 =
{r}. If |Vi|� d for some i� 1, then contractingG[V0 ∪ · · · ∪Vi−1] into a single vertex gives a T1,d-
minor. So |Vi|� d − 1= d + h− 2 for each i� 0. Thus, P := (Vi : i� 0) is a partition of G, and
each part ofP is a subset of the union of at most d + h− 2 bags ofD. Moreover, the quotientG/P
is a path, which has a path decomposition of width 1, in which the first bag contains {r}.

Now assume that h� 2 and the result holds for h− 1. Let R be the neighbourhood of r
in G. Let F be the set of all connected subgraphs of G− r that contain a vertex from R and
contain a Th−1,d+1-minor. If there are d pairwise vertex disjoint subgraphs S1, . . . , Sd in F ,
then we claim that G contains a Th,d-minor. Indeed, for each i ∈ [d] consider a Th−1,d+1-model
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(Wi
x : x ∈V(Th−1,d+1)) in Si. Since Si is connected, we may assume that all vertices of Si are in the

model. For each i ∈ [d], let yi be a node of Th−1,d+1 such that Wi
yi contains a vertex from R, and

let Yi be the union ofWi
x for all ancestors x of yi in Th−1,d+1. Observe that there is a Th−1,d-model

in Si such that the root of Th−1,d is mapped to the set Yi. Therefore, G− r contains d pairwise
disjoint models of Th−1,d such that each root branch set contains a vertex from R. So G contains a
model of Th,d, as claimed.

So F contains no d pairwise vertex disjoint elements. By Lemma 5, there is a minimal set
X ⊆V(G− r), such that X is a subset of the union of d − 1� d + h− 2 bags of D, and G− r − X
contains no element of F .

Let G1, . . . ,Gp be the components of G− r − X that contain a vertex from R. By construction
of X, the graph Gi contains no Th−1,d+1-minor. By induction, Gi has a partition Pi such that:

• each part of Pi is a subset of the union of at most (d + 1)+ (h− 1)− 2= d + h− 2 bags
of D, and

• Gi/Pi has a path decomposition Bi of width at most 2h− 3.

Let Z := V(G− r − X) \V(G1 ∪ · · · ∪Gp); that is, Z is the set of vertices of all components of
G− r − X that have no vertex in R.

Consider a vertex v ∈ X. By the minimality of X, the graph G− r − (X \ {v}) contains a con-
nected subgraph Yv that contains v and a vertex rv ∈ R (and contains a Th−1,d+1-minor). Let Pv be
a path from v to rv inYv plus the edge rvr. So Pv − {v, r} is contained in someGi, and thus Pv avoids
Z. So ∪{Pv : v ∈ X} is a connected subgraph in G− Z. Let G′ be obtained from G by contracting
∪{Pv : v ∈ X} into a vertex r′, and deleting any remaining vertices not in Z. So V(G′)= {r′} ∪ Z.
Since G′ is a minor of G, the graph G′ is Th,d-minor-free. Let D′ be the tree decomposition of G′
obtained from D by replacing each instance of each vertex in ∪{Pv : v ∈ X} by r′ then removing
the other vertices in V(G) \V(G′). Observe that for every bag B inD′, we have B− {r′} contained
in some bag of D. By induction, G′ has a partition P ′ such that:

• each part of P ′ is a subset of the union of at most d + h− 2 bags of D′,
• {r′} ∈P ′, and
• G′/P ′ has a path decomposition B′ of width at most 2h− 1 in which the first bag contains

{r′}.
Let P := {{r}} ∪ {X} ∪P1 ∪ · · · ∪Pp ∪ (P ′ \ {{r′}}). Then P is a partition of G such that each

part is a subset of the union of at most d + h− 2 bags of D. Let B be a sequence of subsets of
vertices of G/P obtained from the concatenation of B1, . . . , Bp, and B′ by adding {r} and X to
every bag that comes from B1, . . . , Bp and replacing {r′} by X. Now we argue that B is a path
decomposition of G/P . Indeed, each part of P is contained in consecutive bags of B, specifically
{r} and X are added to all bags across B1, . . . , Bp, and X is in the first bag of B′. Since G1, . . . ,Gp
are components of G− r − X, the neighbourhood in G/P of a part in Pi is contained in Pi ∪
{{r}, X}. Note also that the neigbourhood of {r} in G/P is contained in P1 ∪ · · · ∪Pp ∪ {X}. It
follows that B is a path decomposition of G/P . By construction, the width of B is at most 2h− 1
and the first bag contains {r}, as required. �

We now turn to the proof of Proposition 4. We in fact prove a stronger result in terms of tree-
depth. A forest is rooted if each component has a root vertex (which defines the ancestor relation).
The vertex height of a rooted forest F is the maximum number of vertices in a root–leaf path in
F. The closure of a rooted forest F is the graph G with V(G) := V(F) with vw ∈ E(G) if and only
if v is an ancestor of w (or vice versa). The tree-depth of a graph G is the minimum vertex height
of a rooted forest F such that G is a subgraph of the closure of F. It is well known and easily
seen that pw(G)� td(G)− 1 for every graph G. Thus, the following lemma implies Proposition 4
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since every P2h+1-minor-free graph G has tw(G)� pw(G)� 2h− 1 by the result of Bienstock,
Robertson, Seymour, and Thomas [1] mentioned in Section 1.

Lemma 9. For any h, k ∈N, for every graph G with no path on 2h+ 1 vertices, for every tree decom-
positionD of G, the graph G has a partition P such that td(G/P)� h and each part of P is a subset
of at most two bags of D.

Proof. We proceed by induction on h. For h= 1, G is the disjoint union of copies of K1 and K2.
Let P be the partition of G where the vertex set of each component of G is a part of P . Thus,
E(G/P)=∅ and td(G/P)= 1. Each part is a subset of one bag of D.

Now assume h� 2 and the claim holds for h− 1. Wemay assume thatG is connected. Suppose
G contains three vertex disjoint paths, P(1), P(2) and P(3), each with 2h− 1 vertices. Let G′ be the
graph obtained by contracting each path P(i) into a vertex vi. Since G′ is connected, there is a
(vi, vj)-path of length at least 2 in G′ for some distinct i, j ∈ {1, 2, 3}. Without loss of generality,
i= 1 and j= 2. So there exist vertices u ∈V(P(1)) and v ∈V(P(2)) together with a (u, v)-path Q
of length at least 2 in G that internally avoids P(1) ∪ P(2). Let x be the endpoint of P(1) that is
furthest from u (on P(1)) and let y be the endpoint of P(2) that is furthest from v (on P(2)). Then
(xP(1)uQvP(2)y) is a path with at least 2h+ 1 vertices, a contradiction.

Now assume that G contains no three vertex disjoint paths with 2h− 1 vertices. By Lemma 5,
there is a set S⊆V(G) consisting of at most two bags of D such that G− S is P2h−1-free. By
induction, G− S has a partition P ′ such that td((G− S)/P ′)� h− 1 and each part of P ′ is a
subset of at most two bags of D. Let P := P ′ ∪ {S}. Then, P is the desired partition of G since
td(G/P)� td((G− S)/P ′)+ 1� h. �

We turn to the proof of Proposition 3. It is a strengthening of a similar result by Norin, Scott,
Seymour, and Wood [7, Lemma 13].

Proposition 3. For all h, c ∈N, there is a Th,3-minor-free graph G, such that for every graph H, if G
is contained in H �Kc, then H has a clique of size 2h, implying pw(H)� tw(H)� 2h− 1.

Proof. We proceed by induction on h� 1. First consider the base case h= 1. Let G be a path on
n= c+ 1 vertices. Thus, G is T1,3-minor-free. Suppose that G is contained in H �Kc. Since n> c
and G is connected, |E(H)|� 1 and H has a clique of size 2, as desired.

Now assume h� 2 and the result holds for h− 1. Let t0 := |V(Th−1,3)|. By induction, there is a
Th−1,3-minor-free graph G0, such that for every graphH, if G0 is contained inH �Kc, thenH has
a clique of size 2h− 2. Let G be obtained from a path P of length c+ 1 as follows: for each edge vw
of P, add 2c copies of G0 complete to {v,w}.

Suppose for the sake of contradiction that G contains a Th,3-model. Let X be the branch set
corresponding to the root of Th,3. So G− X contains three pairwise disjoint subgraphs Y1, Y2, Y3,
each containing a Th−1,3-minor. Each Yi intersects P, otherwise Yi is contained in some compo-
nent of G− P which is a copy of G0. By the construction of G, each Yi intersects P in a subpath Pi.
Without loss of generality, P1, P2, P3 appear in this order in P. Since each component of G− P is
only adjacent to an edge of P, no component ofG− P2 is adjacent to both Y1 and Y3. In particular,
X is not adjacent to both Y1 and Y3, which is a contradiction. Thus G is Th,3-minor-free.

Now suppose that G is contained in H �Kc. Let P be the corresponding H-partition of G.
Since |V(P)| > c there is an edge v1v2 of P with vi ∈Qi for some distinct parts Q1,Q2 ∈P . At
most c− 1 of the copies of G0 attached to v1v2 intersect Q1, and at most c− 1 of the copies of G0
attached to v1v2 intersect Q2. Thus, some copy of G0 attached to v1v2 avoids Q1 ∪Q2. Let H0 be
the subgraph of H induced by those parts that intersect this copy of G0. So neither Q1 nor Q2 is
inH0. By induction,H0 has a clique C0 of size 2(h− 1). Since G0 is complete to v1v2, we have that
C0 ∪ {Q1,Q2} is a clique of size 2h in H, as desired. �
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References
[1] Bienstock, D., Robertson, N., Seymour, P. and Thomas, R. (1991) Quickly excluding a forest. J. Comb. Theory Ser. B

52(2) 274–283.
[2] R. Campbell, Clinch, K., Distel, M., Gollin, J. P., Hendrey, K., Hickingbotham, R., Huynh, T., Illingworth, F.,

Tamitegama, Y., Tan, J. and Wood, D. R. (2022) Product structure of graph classes with bounded treewidth. arXiv:
2206.02395.

[3] Diestel, R. (1995) Graph minors. I. A short proof of the path-width theorem. Comb. Probab. Comput. 4(1) 27–30.
[4] Diestel, R. (2018) Graph Theory, Vol. 173 of Graduate Texts in Mathematics, 5th edn. Springer.
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