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ABSTRACT
Dietary patterns influence gutmicrobiota composition. To date, there has not been an assessment of diet and
gut microbiota in Veterans, who have a history of unique environmental exposures, including military
deployment, that may influence associations between diet and gut microbiota. Our aim was to characterise
Veteran habitual dietary intake and quality, and to evaluate correlations between diet and gut microbiota.
We administered Food Frequency Questionnaires (FFQs) and collected stool samples from 330 Veterans.
FFQ data were used to generate Healthy Eating Indices (HEI) of dietary quality. Exploratory factor analysis
was used to identify two dietary patterns we defined as “Western” and “Prudent.” Stool samples underwent
16S rRNA gene sequencing, and the resulting data were used to evaluate associations with dietary variables/
indices. Analyses included linear regression of α-diversity, constrained analysis of principal coordinates of
β-diversity, and multivariate association with linear models and Analysis of Composition of Microbiomes
analyses of dietary factors and phylum- and genus-level taxa. There were no significant associations between
dietary patterns or factors and α- or β-diversity. At the phylum level, increasing HEI scores were inversely
associated with relative abundance of Actinobacteria, and added sugar was inversely associated with
abundance of Verrucomicrobia. Veterans largely consumed a Western-style diet, characterised by poor
adherence to nutritional guidelines.
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Introduction

The gut microbiota plays a significant role in host functioning, and a growing body of evidence
explores its impact onmetabolic pathology, immune regulation (Mazidi et al., 2016; Thaiss et al., 2016)
and neurological and cognitive functioning (Dinan and Cryan, 2017). As such, the gut microbiota is
increasingly viewed as a potential target for therapeutic intervention (Belizário and Napolitano, 2015).
A wide array of genetic factors and environmental exposures influence the microorganisms that
comprise the gut microbiota, and, among environmental exposures, diet has been proposed as a
potentially significant modulator (Graf et al., 2015).

Short-term dietary interventions can alter gutmicrobiota composition (Faith et al., 2013), and dietary
intake in the days preceding stool sampling can exert a significant influence on species diversity (Johnson
et al., 2019). Nevertheless, there is increasing evidence that lifelong dietary habits exert amore significant
and lasting influence onmicrobial composition, as observed in a recent study byPartula et al. (2019). There is
also evidence to suggest that regular consumption of a greater variety of nutritious foods, as measured for
example by the Healthy Eating Index (HEI; Krebs-Smith et al., 2018), is associated with a more diverse gut
microbiota (Asnicar et al., 2021; Claesson et al., 2012; Menni et al., 2021; Vujkovic-Cvijin et al., 2020).
Moreover, broader eating patterns (eg. “Prudent”-style and “Western”-style) may also be useful measures of
nutritional influences on microbial composition. While there is a growing body of research in these areas,
many different populations have yet to be examined. U.S. military Veterans are particularly underexamined
in both microbiota and nutrition research. The majority of nutrition studies in U.S. military Veterans have
focussed on specific disease etiology rather thanonoverall dietary habits (Collins et al., 2020), though a single
systematic review andmeta-analysis revealed the health benefits of a Mediterranean or “Prudent-style” diet
in U.S. Veterans (Bloomfield et al., 2016). Although the gut microbiome is a potential mediator of these
effects, little is known about the relationship between dietary patterns and the gut microbiome diversity or
community composition in this population. U.S. Veterans currently number nearly 19 million (Veteran
Population – National Center for Veterans Analysis and Statistics, 2016) and they are more likely than the
general population to have unique microbial exposures, such as living in foreign environments (military
deployment), and experiencing higher rates of homelessness (Brenner et al., 2018). Veterans comprise a
unique population; therefore, the primary aim of the present work was to evaluate the associations between
dietary characteristics and gut microbiota composition in a sample of U.S. military Veterans.

Methods

Study population

The United States-Veteran Microbiome Project (US-VMP) has previously been described (Brenner
et al., 2018). Briefly, U.S. Veterans are eligible to participate, and data collection has continued sinceMay
2016. For this study, data from 330 U.S. Veterans were drawn from an in-person baseline assessment. At
that visit, Veterans completed clinical interviews and self-report measures related to demographics and
health histories, as well as provided skin, oral and stool microbiome samples.

Ethics

This study was conducted according to the guidelines laid down in the Declaration of Helsinki and all
procedures involving humanparticipantswere approved by theColoradoMultiple Institutional ReviewBoard
(COMIRB). Written informed consent was obtained before Veterans participated in any study procedures.

Data collection

Dietary data
Dietary data were evaluated using the Harvard Willett Food Frequency Questionnaire (FFQ; Willett
et al., 1985) that was administered by trained research assistants. The FFQ consists of over 100 items in
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18 categories, including: nutritional supplements; dairy foods; dairy substitutes; fruits; non-starchy
vegetables; animal proteins (eggs, meat, fish and seafood); carbohydrate-rich foods (grains, cereals,
breads, pasta and starchy vegetables); soft drinks (sugar-sweetened and artificially-sweetened); other
non-alcoholic beverages (coffee, tea and fruit juice); alcoholic beverages; desserts and baked goods;
condiments (eg. ketchup and salad dressing) and types of cooking fats and oils, consumed in and outside
the home. Participants were asked to report how often they had consumed a standardised portion of each
type of food/beverage in the previous year (eg. half a cup of cooked beans, one orange and five-ounce
glass of wine), with possible responses ranging from “never” to “6 or more times per day.”

Covariates
Standard demographic questions and information regarding military history were also collected. Other
demographic data including smoking history, as well as the Charlson Comorbidity Index (VIReC, 2014,
Rev. September 2017) were obtained from the electronic medical record via the Veterans Affairs
Corporate Data Warehouse.

Gut microbiota
The data collection for the US-VMP has been previously described in detail (Brenner et al., 2018),
including microbiota sample collection procedures (see Supplementary Material). Sample DNA was
extracted from fecal samples using the PowerSoil DNA extraction kit (Cat. No. 12955-4, Qiagen,
Valencia, CA). The 16S rRNA gene sequences in isolated DNA were polymerase chain reaction
(PCR)-amplified using GoTaq Hot Start Master Mix (Cat. No. M5133, Promega, Madison, WI). PCR
products were cleaned and normalised using the SequalPrep Normalisation Kit (Cat. No. A1051001,
ThermoFisher, Waltham, MA) following manufacturer’s instructions. The normalised amplicon pool
was sequenced on an Illumina MiSeq using V3 chemistry and 2 � 300 sequencing run. All library
preparation and sequencing were conducted at the University of Colorado Boulder BioFrontiers Next-
Gen Sequencing core facility.

Sequencing data were processed using the Quantitative Insights into Microbial Ecology programme
(QIIME2 v. 2019.10; Bolyen et al., 2019). The Deblur (Amir et al., 2017b) algorithm was used to denoise
demultiplexed sequences. SEPP (Janssen et al., 2018) analysis was performed to remove sequences that
were not 75 per cent similar to any record in the tree. Quality-filtered sequences were assigned taxonomic
classification based on the silva_12.8 database (Quast et al., 2012). Samples that were shipped to the
research facility and had taxa that are known to “bloom” during shipping were removed as previously
described by Amir et al. (2017a). Additionally, taxa identified by Bokulich et al. (2019), to “bloom” with
increased time spent at room temperature were also considered for removal. Details regarding the
“deblooming” analysis can be found in Supplementary Material. For α- and β-diversity and taxonomic
evaluations, samples were rarefied to a level of 2,535 sequences per sample.

Statistical analyses

As a descriptive and exploratory cross-sectional study, feasibility of recruitment determined the final
sample size (N = 330).

FFQ responses were converted and standardised as daily intakes using Harvard FFQ guidelines
(Willett et al., 1985). For example, a response of “2–4 times per week”was converted to 0.43 servings per
day. For specific nutrients or ingredients (eg. sodium, caffeine and artificial sweeteners), portion sizes
were multiplied by frequencies of intake, and the subsequent intakes were summed across all foods using
food composition data from the U.S. Department of Agriculture (Gebhardt et al., 2008).

We applied theHEI (2015 version; Krebs-Smith et al., 2018) to evaluate dietary quality. TheHEI-2015
was created to assess adherence to the 2015–2020 U.S. Dietary Guidelines for Americans established by
the U.S. Departments of Agriculture, and Health and Human Services (US Department of Agriculture,
2015), and can be used to identify 13 different energy-adjusted variables. These include items that assess
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frequencies of intake of food groups (eg. whole grains, saturated fat and added sugars), and proportional
intakes (eg. density of total protein or sodium per 1,000 kilocalories). HEI analysis yields individual
subscales for each variable, and as an aggregate score ranging from 0 to 100, with 0 being no adherence to
dietary guidelines, and 100 being perfect adherence.

To evaluate dietary patterns, items from the FFQ were first classified into 20 groups based on
nutritional characteristics (eg. plant proteins and dietary fat of animal origin; see Supplementary
Table S2). Other groups included foods or nutrients of potential interest that have previously been
examined in gut microbiota research (eg. lacto-fermented dairy products and dietary flavonoids) (Singh
et al., 2017). Before applying exploratory factor analysis (principle component analysis) to the food
groups, the data were tested and found to be suitable for factor analysis using the Kaiser–Mayer–Olkin
test (Measure of Sampling Adequacy = 0.805), and the Bartlett test of Sphericity (p < 0.001). We used
varimax rotation to obtain combinations of correlated factors, and using an eigenvalue criterion of 1.0,
identified two distinct factors (dietary patterns) that we labeled “Western” and “Prudent.” A scree plot
(not pictured) confirmed the two-factor solution, with the Western and Prudent dietary patterns
explaining 58 and 17 per cent of the variance, respectively. In Figure 1, a radar graph of factor loadings
for each dietary pattern is presented. The Western dietary pattern was characterised primarily by more
frequent consumption of processed meats (eg. sausages, bacon and cold cuts), added sugar, sodium and
dietary fat of animal origin. More frequent intakes of vegetables, plant proteins, fiber from fruit/
vegetable/legume sources, and dietary fat of plant origin were characteristic of the Prudent dietary
pattern. Items with factor loadings <0.4 for both the Western and Prudent dietary patterns included
fermented dairy products, artificially sweetened beverages, alcohol and caffeine. The factor scores
(ie. Prudent and Western scores) generated for each participant were then split at the median to
represent high or low adherence to each pattern. The combination of each participants’ categorised
pattern scores was then used to create four final categories representing Very Low, Low, Moderate and

Figure 1. Radar graph of factor loadings that characterise each dietary pattern. The blue line represents the distribution of factor
loadings for the Western dietary pattern, the orange line for the Prudent dietary pattern.
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High adherence to a Western-style diet. Specifically, participants with Western pattern scores less than
the median and Prudent scores greater than or equal to the median were placed in the final category of
Very Low adherence to theWestern-style diet; those with low scores for both patterns were placed in the
final category of Low adherence; those with high scores for both patterns were placed in the final category
of Moderate adherence; and, those with low Prudent scores and high Western scores were placed in the
final category of High adherence to the Western-style diet. These final four categories were used for
subsequent microbiota analyses.

Based on previous literature, we selected 22 dietary variables (see Figure 4 for the complete list) for
microbiota diversity analyses. For α-diversity, the metrics assessed were: (1) observed Operational
Taxonomic Units (OTUs); (2) Shannon diversity and (3) Faith’s phylogenetic diversity (PD). Linear
regression models were conducted for each α-diversity metric as a function of each dietary variable. For
β-diversity, in order to determine the strongest correlates of the gutmicrobiota composition, we used the
model building tool for constrained ordination methods envfit from the vegan package in R based on
adjusted R2 value using the weighted and unweighted UniFrac distance metrics (Oksanen et al., 2018).
α-diversity regression analyses and β-diversitymodel building were conducted while controlling for total
energy intake, gender, race (Caucasian/White; Black; other), number of military deployments, current
homeless status, marital status (married/partnered or single), education (high school diploma equivalent
or less; some college, no degree; post-secondary degree, post-graduate degree), and lifetime smoking
status. In addition, we used the Benjamini–Hochberg false discovery rate (FDR) (Benjamini and
Hochberg, 1995) to correct for the 22dietary variables examinedwith a significance cutoff of FDRp<0.10.
Multivariate association with linear models (MaAsLin) was used in the Galaxy platform v.1.0.1 (Afgan
et al., 2018) to examine the association between dietary variables and taxa at the phylum and genus levels
with multivariate adjustment for all other dietary covariates, and correction for multiple comparisons
made for the number of taxa examined, again using FDR (Benjamini and Hochberg, 1995) with a
significance cutoff FDRp < 0.10. We used Analysis of Composition of Microbiomes(Mandal et al., 2015)
to determine differentially abundant taxa by quartile of adherence to a Western dietary pattern. All
statistical analyses were performed with QIIME2 v. 2019.10, the open source statistical package R v.3.5.1,
or SAS v.9.4.

Results

Cohort characteristics

A total of 330 Veterans completed all microbiota and dietary measures. Demographic and medical
characteristics are presented in Supplementary Table S3. The majority of the cohort was male,
Caucasian/White, single or divorced/separated, and had completed at least some post-secondary
education. Nearly 9 per cent were homeless at the time of data collection, and a further 42 per cent
reported having previously experienced homelessness at least once in their lives. Over three-quarters of
the cohort were current or former tobacco users.

The mean and median total HEI scores were both 59, which is also the U.S. mean score (Center for
Disease Control and Prevention, 2016). HEI component sub-scores for food groups are presented in
Figure 2,b. Overall, Veterans largely aligned with the general population in their scores for total
vegetables, total and whole fruit, seafood and plant proteins, dietary fat (fatty acids) and refined grains.
Compared to the general population, however, Veterans scored higher for green vegetables and legumes
(Greens and Beans), and most notably, added sugars and sodium. For HEI scores for proportions of
energy intake (not pictured), many of the data distributions were skewed. As a proportion of 1,000
calories, 75 per cent or more of Veterans scored on the lowest end of total vegetables, greens and beans,
whole fruit and dairy.

Mean intake frequencies for selected food groups thought to exert a significant influence onmicrobial
composition (Claesson et al., 2012) are presented in Supplementary Figure S2. Veterans infrequently
consumed fermented dairy products (eg. Veterans reported rarely, if ever, consuming yogurt in
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particular), and the majority reported that they “never” consumed artificially sweetened beverages.
Closer examination of legume intake showed that Veterans also infrequently consumed any varieties of
beans, with only 11 per cent reporting that they consumed beans once per week or more, indicating that
their scores in the greens and beans HEI component was largely driven by consumption of green
vegetables. Fewer than 20 per cent of respondents reported consuming one or more alcoholic beverages
on a daily basis. Among other dietary characteristics, the majority of the cohort (68 per cent) reported
having taken a nutritional supplement in the past year, particularly a psyllium fiber supplement (69 per
cent), though with uncertain frequency.

Figure 2. (a and b) Box-and-whisker plots of Healthy Eating Index (HEI) component scores for the United States-Veteran Microbiome
Project (US-VMP) cohort, with comparisons to mean scores for the general U.S. population.

6 Diana Brostow et al.

https://doi.org/10.1017/gmb.2021.1 Published online by Cambridge University Press

https://doi.org/10.1017/gmb.2021.1


Dietary variables and α-diversity indices

Figure 3,c presents the correlation coefficients between dietary variables and three α-diversity indices.
Corresponding regression estimates are presented in Supplementary Table S4. Caffeine and animal fat
showed significant direct associations with Shannon indices of α-diversity (rho = 0.06, p = 0.01 and
rho = 0.05, p = 0.03, respectively), whereas sugar sweetened beverages showed a significant inverse
associationwith the Shannon index ofα-diversity, rho=�0.05, p=0.05. Added sugars showed a significant
inverse association across all three metrics of α-diversity (Observed OTUs rho =�0.07, p = 0.02, Shannon
diversity rho = �0.06, p = 0.01, and Faith’s PD rho = �0.06, p = 0.02). After adjustment for multiple
comparisons, however, no single dietary variable was significantly associated with any index of α-diversity.

Dietary variables and ß-diversity indices

Associations between dietary variables and β-diversity are presented in Figure 4, with corresponding R2

estimates presented in Supplementary Table S5. After adjustment for multiple comparisons, no dietary
variables were associated with dissimilarity in microbial composition among participants.

Dietary variables and relative abundances of phyla and genera

Phylum level microbiota composition varied among participants (see Supplementary Figure S3). The six
most abundant phyla, in descending order, were Firmicutes, Bacteroidetes, Actinobacteria, Proteobac-
teria, Verrucomicrobia and Tenericutes. Table 1 presents associations between dietary variables and
taxa. To limit the number of comparisons, we analysed food groups from the FFQ thought to be
particularly associated with gutmicrobial composition: animal foods; fruit and vegetables; plant proteins

Figure 3. (a–c) Demographic-, comorbidity- and energy-adjusted correlation coefficients between dietary variables and α-diversity
indices (Observed OTUs, Shannon diversity, and Faith’s phylogenetic diversity) in the United States-Veteran Microbiome Project (US-
VMP) cohort, N = 330.
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and added sugars, as well as Total HEI scores. Added sugar intake was inversely associated at the phylum
level withVerrucomicrobia (rho= –0.0003; FDR corrected-p= 0.03). Also at the phylum level, increasing
total HEI scores were inversely associated with Actinobacteria (rho = –0.002; FDR corrected-p = 0.09).
We did not observe any significant associations between these variables andmicrobiota at the genus level
(Table 1). Lastly, there were no significant differences in relative abundances in taxa by quartile of
adherence to a Western-style dietary pattern (data not shown, p > 0.05).

Discussion

In this study, we examined habitual dietary intake and quality, as well as associations between diet and
various metrics of gut microbial diversity and community structure in a sample of 330 U.S. military
Veterans. Veterans’ dietary quality, as measured by the HEI, matched estimates of national average diet
quality. Factor analysis confirmed that there were two general dietary patterns among Veterans, which
were distinctly characterisable as Western-style and Prudent-style eating habits. We did not observe
significant associations between dietary variables and α- or β-diversity metrics, though we did find
significant correlations between added sugar and total HEI with the relative abundance of specific phyla.

Phyla-level correlations are relatively broad and are less robust indicators of diet-microbiome
associations than more specific microbial signatures. Nevertheless, these findings highlight the possible
phyla that merit further investigation. In our study, Actinobacteria was inversely associated with HEI
scores. Previous studies have reported an inverse association between Actinobacteria and increased
intakes of dietary fiber (Wu et al., 2011), and a positive associationwith high-fat, high-animal food intake
in human populations (Rinninella et al., 2019). Recently, Partula et al.’s (2019) study of a large
community-based cohort observed a direct association between consumption of high-fat sweets and
increased relative abundance of Actinobacteria. In addition, we found that added sugar was significantly
associated with decreased relative abundance of Verrucomicrobia. A small study (Egshatyan et al., 2016)
observed a decreased relative abundance of Verrucomicrobia in participants with diabetes-related
impaired glucose tolerance, suggesting there may be a correlation with dietary sugar; however, research
in this area is still scant.

Figure 4. Proportions of explained variation in gut microbiome composition explained by dietary variables (Weighted and
Unweighted Unifrac dissimilarities), adjusted for demographic variables, medical comorbidities, total energy intake, and military
deployment history.
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Table 1. Associations between selected dietary variables and relative abundances of taxa.a

Dietary Variableb Phylum MaAsLin coefficient % Coveragec P-value FDRp-valued

Animal foods Firmicutes –0.00584 100 0.211 0.449

Bacteroidetes 0.00500 100 0.418 0.449

Proteobacteria 0.00196 96.4 0.380 0.449

Verrucomicrobia –0.00118 45.8 0.449 0.449

Fruit and vegetables Bacteroidetes 0.00565 100 0.480 0.765

Firmicutes –0.00212 100 0.682 0.765

Actinobacteria –0.00402 99.1 0.320 0.765

Proteobacteria 0.00086 96.4 0.765 0.765

Plant protein Bacteroidetes 0.00957 100 0.641 0.847

Firmicutes 0.00530 100 0.726 0.847

Tenericutes 0.00297 19.4 0.416 0.774

Synergistetes 0.00019 9.09 0.418 0.862

Added sugar Firmicutes 0.00016 100 0.538 0.731

Bacteroidetes –0.00018 100 0.640 0.731

Proteobacteria –0.00023 96.4 0.107 0.286

Verrucomicrobia –0.00027 45.8 0.004 0.033

Bacteroidetes 0.00019 100 0.899 0.898

Healthy Eating Index Actinobacteria –0.00169 99.1 0.024 0.085

Proteobacteria 0.00050 96.4 0.356 0.623

Fusobacteria 0.00001 20.9 0.859 0.899

Firmicutes –0.00584 100 0.211 0.449

Dietary Variableb Genus MaAsLin coefficient % Coveragec p-value FDRp-valued

Animal foods Blautia –0.00089 98.5 0.668 0.936

Ruminococcus 0.00033 93.6 0.773 0.936

Faecalibacterium –0.00077 93.3 0.812 0.936

Alistipes –0.00005 90.3 0.984 0.984

Fruit and vegetables Bacteroides 0.01655 99.4 0.020 0.666

Blautia 0.00225 98.5 0.403 0.849

Faecalibacterium 0.00342 93.3 0.410 0.849

Parabacteroides 0.00099 92.7 0.767 0.929

Plant protein Bacteroides 0.02238 99.4 0.223 0.747

Blautia 0.01097 98.5 0.112 0.665

Ruminococcus 0.00027 93.6 0.939 0.973

Faecalibacterium –0.00137 93.3 0.897 0.973
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A variety of factors may explain the overall lack of distinct associations between dietary variables and
gut microbial composition observed in this cohort. In this study, we used the HEI to assess dietary
quality. While our cohort’s dietary habits were similar to those of the general U.S. population, there was
evidence to suggest that Veterans consume poorer-quality foods more frequently, specifically foods high
in added sugar and sodium.While the general population consistently exceedsmaximum recommended
intakes of added sugar and sodium (24–36 g/day and 2,300 mg/day, respectively; US Department of
Agriculture, 2015), our data suggest that Veterans on average exceed those recommendations even
further. Skewed data for several proportional intake scores also suggest that many Veterans consumed a
largely uniformWestern-style diet. Despite the presence of two distinct dietary patterns, most Veterans
derived relatively little of their caloric energy from fiber-rich or probiotic-containing foods, which may
have made associations with microbial composition more difficult to detect. These findings may be
random artifacts of data derived from a single, cross-sectional FFQ, the use of which is a key limitation of
our study. Of note, previous studies of other populations have observed significant correlations between
decreased microbial diversity and a Western-style dietary pattern (Davis et al., 2017; Graf et al., 2015;
Partula et al., 2019). All the same, given the relative paucity of data on Veterans’ general dietary habits,
our findings comprise an important step towards rectifying these gaps in knowledge.

Secondly, parsing the individual contributions of various factors, independently of diet, is highly
complex. In Falony et al.’s (2016) study of population-levelmicrobiota variation, dietary intakes were less
predictive of gut microbial composition than other intersecting characteristics, such as blood compo-
sition (eg. blood cell counts and serum lipid concentrations), stool consistency and pharmaceutical use.
While we adjusted for a variety of potential confounders that may exert their own influences on
microbial composition, we were likely unable to account for all pertinent factors. Next, detecting diet-
microbiota associations is limited by the extent to which particular microbial species are identified and
can be isolated. Emerging research has demonstrated that significant diet-microbiota associations may
pertain to microbial taxa that have only recently been characterised. Notably, Asnicar et al.’s (2021)
Personalised Responses to Dietary Composition Trial (PREDICT 1) used metagenomic analyses to
identify diet-microbiota associations, and observed that the strongest correlation in their dietary data
was between coffee intake and a previously unexamined species of Lawsonibacter.Our use of 16S rRNA
gene amplicon sequencing may also have limited our ability to detect diet-microbiota associations.
Asnicar et al.’s (2021) metagenomic sequencing identified significant correlations between HEI scores
and microbial composition, as well as distinct clustering between food groups and microbial clades.

Table 1 Continued

Dietary Variableb Phylum MaAsLin coefficient % Coveragec P-value FDRp-valued

Added sugar Bacteroides –0.00076 99.4 0.034 0.676

Blautia 7.61E-05 98.5 0.564 0.958

Ruminococcus –1.22E-06 93.6 0.853 0.967

Faecalibacterium –0.00016 93.3 0.434 0.958

Healthy Eating Index Bacteroides –0.00166 99.4 0.231 0.761

Blautia –0.00076 98.5 0.140 0.726

Ruminococcus 0.00012 93.6 0.592 0.875

Faecalibacterium 0.00018 93.3 0.817 0.937

aDerived from participants’ responses to the food frequency questionnaire (FFQ). Bolded p-values indicate a value </ = 0.05.
bMost abundant relative taxa after multiple comparison testing using multivariate association with linear models (MaAsLins) in the United
States-Veteran Microbiome Project (US-VMP) cohort, N = 330.
cPercentage of samples with specified bacterial taxa in the US-VMP cohort.
dp value after multivariate adjustment for all other dietary variables, and correction formultiple comparison testing using a false discovery rate
(FDR) of 0.10.
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Lastly, current and previous homelessness in this cohort underscores the uniqueness of U.S. Veterans
and the challenges they face. The association between homelessness and poor diet is well-established
(Bottino et al., 2019). The impact on the gut microbiome, however, is unknown, and a comprehensive
analysis of non-dietary influences onmicrobiota was outside the scope of this paper. Nevertheless, this is
a potentially significant avenue of research that merits further investigation.

A major strength of this study is its focus on military Veterans, an underexamined population in
microbiome and nutrition research. While our findings suggest Veterans’ diets largely align with the
eating habits of the general population, larger-scale studies are needed to assess if and how Veterans’
shared occupational, environmental and psychological experiences shape their dietary habits and gut
microbiota. To the best our knowledge, this is the first study of gutmicrobiota and diet in this population.

We must also acknowledge this study’s limitations. FFQs assess dietary habits for the previous
12 months, whereas microbiome analyses were conducted on a single stool sample. Repeated analyses of
multiple stool samples, as well as longitudinal dietary data, would have been preferable for identifying
diet-microbiota associations. Additionally, as our dietary analyses were based on a standardised nutrient
database, we were not able to assess the impact of the numerous non-nutritive compounds found in food
(eg, flavouring additives and preservatives) that may exert their own influence onmicrobial composition
and diversity (Johnson et al., 2019). Lastly, despite our efforts to mitigate the effects of shipping samples
by performing “deblooming” analysis, we were unable to prevent shipping from being a significant
predictor of community level composition.

Conclusion

Overall, themajority of the cohort consumed a diet similar to that of the general U.S. population; this diet
was characterised by poor adherence to nutritional guidelines for consumption of fiber-rich foods,
sodium and added sugar. We did not observe significant associations between dietary variables and gut
microbiota diversity in this study of a cohort of Veterans from the US-VMP. Nevertheless, we observed
that the relative abundance of particular phyla was inversely associated withHEI scores, and added sugar
intake. Both of these are core factors used to define and characterise populations’ eating habits, and
therefore merit further investigation. Lastly, while we did not observe significant diet-microbiota
associations, future metagenomic analyses may be able to identify more precise correlations. In
particular, more comprehensive analyses are needed that examine relations between dietary data and
the microbiome among specific cohorts of Veterans, including those with a history of homelessness.
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