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Turbulent mixing is a pivotal phenomenon in fusion research with profound implications
for energy gain. A Reynolds-averaged Navier–Stokes model capable of predicting realistic
mixing transition processes is of significant importance for fusion applications, yet such a
model remains elusive. This work addresses the limitations of prevalent global transition
criteria, proposing a new idea to quantify local transition characteristics based on the
mixing state, recognizing its direct relevance to fusion reaction rates. We delve into
the description and analysis of the spatiotemporal evolution of the mixing state and its
interplay with the transition process. Then, a local transition indicator is developed and
compared with conventional global criteria using the large-eddy simulation (LES) of
Rayleigh–Taylor turbulent mixing. Building upon this foundation, we introduce a novel
eddy viscosity model based on the local transition indicator. A posterior assessment using
LES data validates that it significantly outperforms standard gradient transport models
during the transition stage. Consequently, we integrate this new eddy viscosity model with
the Besnard–Harlow–Rauenzahn model to construct a comprehensive transition model,
which demonstrates reasonably good performance in comparison with LES results. This
work paves the way for future research in developing advanced modelling strategies
that can effectively address the complexities of transitional flows in fusion engineering
applications.

Key words: turbulent mixing, turbulent transition, transition to turbulence

1. Introduction

Turbulent mixing induced by hydrodynamic instabilities, such as Rayleigh–Taylor (RT)
(Rayleigh 1883; Taylor 1950), Richtmyer–Meshkov (RM) (Richtmyer 1960; Meshkov 1969)
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and Kelvin–Helmholtz (Helmholtz 1868; Kelvin 1871), broadly occur for a wide range of
variable density physical events ranging from inertial confinement fusion (ICF) (Petrasso
1994) to supernova explosions (Burrows 2000). Especially, in the fusion engineering
problems represented by ICF, mixing will cause non-fusion materials to mix with fusion
materials, which significantly affects the fusion reaction rate, yielding breakup of the
capsule shell and preventing ignition (Zhou 2017a).

The entire process of turbulent mixing covers initial instability, transition and fully
developed turbulence (Dimotakis 2000). Note that it can also be divided into four
typical stages, namely independent modal growth, weak turbulence, mixing transition and
strong turbulence (Cook, Cabot & Miller 2004). In fact, the mixing problem for many
applications, such as high-energy-density physics (HEDP) experiments on lasers and Z
pinches, is a transitional problem (Zhou 2017b), as flows start from rest at t = 0. Ideally,
the model should mimic the initial instability and transition as well as the fully turbulent
late-stage mixing. However, the research on mixing transition is comparatively scarce
and present turbulent mixing models are based on the hypothesis that the flows must be
sufficiently turbulent. How to model mixing transition is still a bottleneck issue restricting
accurate simulations of fusion engineering problems.

On the one hand, the existing research mainly focuses on developing global transition
criteria, as accurate and robust transition criteria will be critical for guiding the design
activities for creating turbulent flows on HEDP platforms and realizing laboratory-scale
research comparable to astrophysical scale systems (Zhou et al. 2019). Dimotakis (2000)
found that the Reynolds number defined on the outer scale needs to reach 1–2 × 104 in
order to achieve turbulence, by studying steady-state flows such as shear flow and jet
flow. Zhou (2007) pointed out that at Reynolds number ∼104, the separation between
energy-containing and dissipation scales is just beginning, and the lowest Reynolds
number that will provide a sufficiently long inertial range is around 1.6 × 105, which
is called minimum state turbulence (Zhou 2007). At the same time, for unsteady flow
such as RT and RM, it is necessary to require the temporal criterion of transition (Robey
et al. 2003; Zhou, Robey & Buckingham 2003). Based on this criterion, simulation
(Lombardini, Pullin & Meiron 2012) and experiment (Mohaghar et al. 2019) show that
the mixing transition to turbulence can be achieved in the late stage after the reshock for
the RM flow. Wang et al. (2022) developed a new global transition criterion identified via
posterior integral mixed mass, which is shown to be a promising strategy for handling
complex transitional phenomena. Unfortunately, these criteria are all based on global
physical quantities, which cannot quantify local transition features and guide transition
modelling.

On the other hand, the existing research on mixing transition pays more attention
to the dynamics characteristics of the fluid than the mixing characteristics. Large-eddy
simulation (LES) of RT flow conducted by Cook et al. (2004) shows that during the mixing
transition, an inertial range in the two-dimensional spectrum of vertical velocity begins
to form. When the flow approaches the self-similar state (fully developed turbulence),
the kinetic to potential energy ratio is still gradually increasing. Thus, larger simulations
are needed to investigate whether the growth rate ever becomes independent of Reynolds
number. Compared with RT flow, the energy of RM flow (Mosedale & Drikakis 2007)
decays after the initial shock energy deposition, so it is more difficult to transition to
a turbulent state (Zhou et al. 2019). In the aspect of mixing characteristics during the
transition stage, the mixing degree increases obviously, and the diffusing of mixed fluids
is faster than the entrainment of pure fluids, yielding a suppressed growth rate of the
mixing layer (Cook et al. 2004). However, there is relatively little discussion on the
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Local transition of turbulent mixing

mixing state characteristics. The important point is that different kinds of mixing states
(e.g. pure molecular-mix, pure no-mix or hybrid-mix) directly determine the mean fusion
reaction rate of mixed materials. For example, for the variable density turbulence formed
by two initially separated fluids, the mean reaction rate is lower than that of constant
density turbulent mixing considering density fluctuations caused by no-mix or hybrid mix
scenarios (Ristorcelli 2017). Noted that mixing state characteristics are highly coupled
with the local transition process. It is necessary to carry out more in-depth research on the
mixing state both for understanding the transition process and for engineering applications.

Based on above considerations, this paper puts forward a brand-new idea, developing a
local transition indicator based on characteristics of the mixing state. It is applied and
compared with previous global transition criteria using LES of RT turbulent mixing.
A posterior assessment on improving the eddy viscosity model using LES data and a
further application in the Besnard–Harlow–Rauenzahn (BHR) model validate its ability of
modifying modelling issues when describing transition characteristics. The layout of this
paper is as follows. In § 2, the idea and derivation of local transition indicator are given;
§ 3 analyses the local transition indicator using LES of RT turbulent mixing; § 4 validates
its ability of modifying the modelling issues; finally, discussions and conclusions are given
in § 5.

2. Local transition indicator

The highlighted feature of multimaterials turbulent mixing which is different from
classical wall-bounded turbulence, is the existence of the mixing process. Mixing and
turbulent dynamics are highly coupled. Mixing induces turbulence, and the enhancement
of turbulence also enhances the mixing process. Mixing characteristics are usually
described by integral mixing degree, mixing width and its growth rate, and mass
fraction/volume fraction distribution. However, the mixing state, as a local feature, has
attracted more and more attention as its importance on the reaction rate of fusion
engineering problems (Ristorcelli 2017).

The mixing state can be quantified by the density specific volume covariance b ≡
−ρ′(1/ρ)′, where ρ is the mixed density, φ̄ denotes the Reynolds average of quantity
φ and φ′ ≡ φ − φ̄ is the Reynolds fluctuation. This quantity plays an important role in the
K-L-a-b four equation (Kokkinakis, Drikakis & Youngs 2019) and BHR family models
(Besnard et al. 1992; Schwarzkopf et al. 2011; Xie, Xiao & Zhang 2021). When two fluids
are completely miscible and exhibit a molecular mix state, quantity b approximates to 0 in
the fully mixed limit. On the contrary, when two fluids are totally immiscible and exhibit
no-mix (subscript nm) state, quantity b attains a maximum value bnm (φnm represents the
value of physical quantity φ in no-mix state) in the no-mix limit, which can be analytically
calculated as follows (Ristorcelli 2017):

bnm = Ȳ1Ȳ2
(ρ1 − ρ2)

2

ρ1ρ2
= 4Ȳ1Ȳ2

A2
t

1 − A2
t
, (2.1)

where Yi and ρi are the mass fraction and the density of the ith (i = 1, 2) material.
Here At is the Atwood number, defined as At ≡ (ρ1 − ρ2)/(ρ1 + ρ2). This means that
for two fluids with known density, once mass fractions of two fluids are determined, the
maximum value of the mixing quantity b is also determined. For practical miscible fluids,
the entrainment of unmixed fluids into the mixing layer and molecular mixing processes
coexist and come into a balance. Thus, it is described as the hybrid mix state. When b is
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normalized by its maximum value bnm, one can get

b
bnm

=
⎧⎨⎩0 molecular mix state,

0 ∼ 1 hybrid mix state,
1 no mix state,

(2.2)

which can be regarded as a mixing state indicator. Its evolution is also highly coupled with
different stages of the turbulent mixing process, as similarly shown by the evolution of the

quantity
√
ρ′2/ρ̄ (b ≈ ρ′2/ρ̄2 at moderate Atwood numbers (Livescu et al. 2009)) at the

mixing zone centre given by Cook et al. (2004). To be more specific, the characteristics of
the mixing state indicator in different mixing stages are as follows.

(i) In the initial stage of instability, the large-scale entrainment effect dominates, and
pure fluids on both sides of the disturbed interface are continuously entrained into
the disturbed region. Thus, b/bnm increases rapidly from a small value.

(ii) In the mixing transition stage, the molecular diffusion effect near the mixing
interface becomes obvious due to the sharp increasing of the distorted interface area.
At this time, b/bnm firstly shows a slowing growth trend and then begins to decrease
when the two fluids are diffusing together faster than pure fluids are entrained into
the mixing zone. Thus, an overshoot of b/bnm presents, which is also observed in
LESs of Cook et al. (2004) and Kokkinakis et al. (2019) by plotting a similar quantity√
ρ′2/ρ̄ and b at the centre of the mixing zone.

(iii) In the fully developed turbulence stage, the flow reaches self-similarity. The
molecular mixing and entrainment rates come into balance. Thus, b/bnm
approximates to a constant. It also means that the proportion of no-mix and
molecular-mix state in the mixing zone tends to be a constant value.

This shows that b/bnm exhibits completely different characteristics in different stages and
could be an ideal transition indicator, similar to the intermittent factor in wall-bounded
transitional flows.

Based on the above analysis, it can be seen that b/bnm finally tends to a saturated
asymptotic value, denoted as Θb. This inspires us that the entire evolving process can
be quantitatively expressed by b/Θbbnm, namely

b
Θbbnm

=
⎧⎨⎩< 1 instability,
> 1 transition,
≈1 turbulence.

(2.3)

It should be highlighted that this local transition indicator is quite different from the
prevailing global transition criteria (Dimotakis 2000; Zhou 2007; Wang et al. 2022).
From a temporal perspective, previous global analyses of Dimotakis (2000) and Zhou
(2007) have treated transition as an abrupt event occurring instantly upon surpassing a
critical threshold, whereas our local perspective acknowledges transition as a temporal
process that unfolds over time. Spatially, prior global criteria have viewed the Reynolds
number (Re) (Dimotakis 2000; Zhou 2007) or the integral mixing mass (Wang et al.
2022) as a bulk measure of a mixing zone, ignoring spatially localized information.
By contrast, our local approach underscores the simultaneous dependence of local
transitional characteristics on both time and space. In accordance with this definition,
the present local transition indicator aims at constructing a closure model that captures
the local transition characteristics of turbulent mixing, utilizing the information gleaned
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from the ensemble average of physical quantities. The ensemble average represents the
lowest extremum where all relevant characteristics can be captured without any loss of
essential spatiotemporal information. If the flow is inherently N-dimensional (ND) for
ensemble statistical purposes, the outcome will also be ND. However, in specific scenarios,
reductions in dimensionality can occur due to additional spatial symmetries or temporal
stationarities. For the three-dimensional (3-D) planar RT turbulent mixing problem under
investigation here, after being averaged in the spanwise plane (perpendicular to the
acceleration direction), it becomes a one-dimensional (1-D) statistical mean field.

The next work is how to deduce the final asymptotic constant Θb. Based on the
derivation of Ristorcelli (2017), there are

b
bnm

= Ỹ ′′2

Ỹ ′′2nm

, (2.4)

where φ̃ denotes the Favre average of quantity φ and φ′′ = φ − φ̃ is the Favre fluctuation.

Ristorcelli (2017) deduces that Ỹ ′′2nm = Ỹ(1 − Ỹ). Based on the relationship of the Favre
average (Ỹ ′′ = 0), we can get

Ỹ ′′2 = Ỹ(1 − Ỹ)− ˜Y(1 − Y). (2.5)

Then, we obtain

Ỹ ′′2

Ỹ ′′2nm

= Ỹ(1 − Ỹ)− ˜Y(1 − Y)

Ỹ(1 − Ỹ)
= 1 −

˜Y(1 − Y)

Ỹ(1 − Ỹ)
. (2.6)

Based on the self-similarity analysis method used by Dimonte & Tipton (2006),
Morgan & Wickett (2015), Zhang et al. (2020a) and others in deriving turbulence model
coefficients, for 1-D turbulent mixing with density ratio approaching 1, the profile of the
Favre-averaged mass fraction satisfies linear distribution in the self-similar turbulent stage,

Ỹ = 1
2

(
1 − x

h

)
, (2.7)

where x is the spatial coordinate and h is the half-width of the mixing zone. This yields

Ỹ(1 − Ỹ) = 1
4

(
1 − x2

h2

)
. (2.8)

Here ˜Y(1 − Y) is similar to other second-order quantities (such as b, Ỹ ′′2) (Morgan &
Wickett 2015), whose profile should satisfy quadratic distribution, namely

˜Y(1 − Y) = f0(t)
(

1 − x2

h2

)
, (2.9)

where f0(t) is a time-varying term independent of space. Thus, we have

˜Y(1 − Y)

Ỹ(1 − Ỹ)
= f0(t)

1/4
, (2.10)
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which means that this ratio is independent of space, then

˜Y(1 − Y)

Ỹ(1 − Ỹ)
≈

∫
˜Y(1 − Y) dx∫

Ỹ(1 − Ỹ) dx

.= Θ, (2.11)

where Θ is the so-called mixedness parameter. It is proved to be asymptotic to a constant
value of approximately 0.8 for fully developed turbulent mixing both theoretically (Zhang
et al. 2020b,c) and numerically under different Grashof number, Schmidt number, Atwood
number and initial perturbation spectrum (Cook et al. 2004; Livescu, Wei & Petersen 2011;
Youngs 2013; Morgan & Black 2019), while for some simulations with initial long-wave
disturbances, the mixing degree is less than 0.8 because it has not completely reached the
fully developed turbulent state. As the mixing zone is forced to grow more rapidly, the
process becomes less dissipative (Youngs 2013). Thus, we can get

b
bnm

≈ 1 −Θ, (2.12)

which yields Θb ≈ 1 −Θ = 0.2. Later, we will show that the above relationship is
approximately valid in the entire mixing process through numerical results.

3. Numerical verifications

3.1. Numerical simulation
A LES of RT turbulent mixing with a 3 : 1 density ratio (ρ1 = 1 g cm−3, ρ2 = 3 g cm−3,
At = 0.5) is performed. The employed LES model is an explicit one-equation model
considering the buoyancy production effect, recently developed by Xiao et al. (2022).
A high-resolution grid of 1001 × 1801 × 1001(Δy = 0.01 cm) is used in the main
computational domain [0, 10] × [−8, 10] × [0, 10], and a stretched buffer region with
extra 100 grids is added at both sides of vertical direction to eliminate the reflecting effects
of boundary.

The heavy fluid is placed on the upper side of the domain and the initial interface is
at y = 0 cm. The adiabatic exponent is γ = 5/3 for both fluids. The relation Atg = 1 is
satisfied, thus for the 3 : 1 density ratio the gravitational acceleration is g = 2 cm ms−2.
A random initial perturbation η(x, z) similar to Youngs (2013), with the power spectrum
P(k) ∼ k−2 and wavelength 0.04 cm (4Δy) to 5 cm (half the domain width) and the
perturbation standard deviation amplitude 0.0025 cm, is applied to the interface y = 0.
A finite initial interface thickness is imposed in the mass fraction field to facilitate a grid
sensitivity study, as

ψ(x, y, z) = 1
2

(
1 + tanh

(
y − η(x, z)

Lpremix

))
, (3.1)

with Lpremix = 0.001 cm being the characteristic initial thickness. For other detailed
numerical settings, the readers are suggested to refer to Xiao et al. (2022).

Figure 1 depicts the instantaneous rendering of the isosurface of the mass fraction
of the heavy fluid at t = 2, 5, 10 ms, illustrating that the flow approximately reaches
the multiscale turbulent state. Figure 2(a) presents the temporal evolution of the bubble
height hb, defined by the position where the volume fraction (VF) of the light fluid
is 0.01, and its growth rate αb = ∂h/∂Atgt2 against self-similar time Atgt2. Here hb
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Local transition of turbulent mixing
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Figure 1. Instantaneous rendering of isosurfaces of the mass fraction (0.05–0.95) of the heavy fluid at
t = 2, 5, 10 ms, also coloured by the mass fraction of the heavy fluid: (a) t = 2; (b) t = 5; (c) t = 10.
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Figure 2. Temporal evolution of bubble height and its growth rate (a) and integral mixing parameter Θ (b).

exhibits a linear scaling in the late stage, and the growth rate αb approximates to 0.045,
larger than 0.026 given by previous direct numerical simulation or LES performed using
short-wavelength perturbations (Cabot & Cook 2006; Youngs 2013). This is attributed to
the influence of the initial long-wavelength random perturbations (Kokkinakis et al. 2019).
Figure 2(b) further depicts the temporal evolution of the integral mixing parameter Θ ≡∫

˜Y(1 − Y) dy/
∫

Ỹ(1 − Ỹ) dy, which approximates to 0.78 in the late stage, consistent
with existing approximations to 0.78 in the late stage, consistent with existing works (Cook
et al. 2004; Livescu et al. 2011; Youngs 2013; Morgan & Black 2019; Zhang et al. 2020b,c).

Furthermore, comparisons of VF and turbulent kinetic energy (TKE) over maximum
value K/Kmax profiles versus y/W at t = 10 between present LES and implicit LES (ILES)
of Youngs (2013) are presented in figure 3, since ILES results of Youngs (2013) are
obtained from similarly high-resolution simulations and have been applied to validations
of turbulence modelling (Kokkinakis et al. 2015, 2019). Here W is the integral mixing
width, defined by W = ∫

f̃ (1 − f̃ ) dy, where f̃ is the VF of the heavy fluid. It exhibits a
good agreement between these two simulations, validating the correctness of the present
LES.
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Figure 3. Comparisons of VF (a) and TKE over maximum value(K/Kmax) (b) profiles between present LES
and ILES of Youngs (2013) at t = 10.
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Figure 4. Temporal evolution of b/bnm at the centre of mixing zone, namely bmax/bmax
nm (a) and local

temporal–spatial transition characteristics coloured by different levels of b/bnm (b). Quantities are spanwise
(x–z plane) averaged.

3.2. Results
Figure 4(a) shows the ratio of bmax/bmax

nm with time, representing the temporal evolution
of b/bnm at the centre of the mixing zone. It can be seen that this ratio eventually tends to
a constant value of 0.22, which is in close proximity to the theoretical value of 0.2 in the
above deduction. Figure 4 also shows the evolution of the characteristic quantity of mixing
degree 1 −Θ . It can be seen that it finally tends to 0.22 (that is, the mixing degree finally
approximately reaches 0.78, as shown in figure 2b), and its evolving trend and magnitude
are basically consistent with bmax/bmax

nm in the entire evolving process, which verifies the
applicability of (2.12) besides the turbulent stage.

If the above-mentioned transition indicator is adopted, the mixing zone centre enters the
transition stage at t ∼ 1.0 ms and reaches the fully developed turbulence at t ∼ 6.8 ms.
That is, for this case, the transition region is quite long and presents an obvious overshoot
phenomenon, which is owing to the initial random long wavelength perturbations (k−2

spectrum).
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Local transition of turbulent mixing

Next, according to the local transition indicator developed above, for the statistically
averaged field, the local temporal–spatial transition characteristics can be depicted, as
shown in figure 4(b) with contour rendered by different thresholds of b/bnm. The deep-blue
region is the no-mix (pure fluids) region (b/bnm = 0), the light-blue region denotes the
initial instability region (b/bnm < (0.2 − 0.02)) and the white-like region represents the
approximately fully developed turbulence region (b/bnm ∼ 0.2 ± 0.02) and the red-like
region is the mixing transition region (b/bnm > 0.2 + 0.02). It can be seen that the bubble
side ( y > 0) transitions first, so that the central turbulence region is closer to the bubble
side. On the spike side ( y < 0), it is harder to enter the transition or reach the turbulent
state. This is because the spikes are falling faster than the ascending velocity of the bubbles
and their speeds can be quite different between different modes, thus harder to reach the
self-similar state. All these observations are consistent with our physical understanding.

A comparison with published global transition criteria is also given in figure 4(b).
According to Reynolds number (Re ≡ hḣ/ν, where h and ḣ are the mixing width and
its growth rate, and ν is the kinematic viscosity) criteria, the flow reaches the criterion
1 × 104 of Dimotakis (2000) at t1 = 2.61 ms, and reaches the minimum state turbulence
criterion 1.5 × 105 of Zhou et al. (2019) at t3 = 9.76 ms, which represent the global onset
of transition and of turbulence, respectively. Meanwhile, according to the integral mixing
mass (M ≡ ∫

4ρY1Y2 dV) criterion of Wang et al. (2022), the flow satisfies the onset of
transition condition at t2 = 2.81 s. It can be seen that the global onsets of transition given
by Dimotakis (2000) and Wang et al. (2022) are more backward than that of the local
centre position and closer to the peak value of b/bnm. At the time of onset of turbulence
given by Zhou et al. (2019), for the local flow field, more than 60 % of the region basically
reaches the transition and the turbulent stages.

4. Modelling and validation

4.1. A posteriori validation using LES data
In this section, the present local indicator serves for modifying the gradient transport
hypothesis for the turbulent transport terms. The modelling issues related to the eddy
viscosity was previously investigated by Livescu et al. (2009) using the high Reynolds
number fully resolved numerical simulation of Cabot & Cook (2006). It found that
the popular eddy viscosity expression, μt ∼ ρ̄k̃/ε (k̃ and ε are TKE and dissipation,
respectively), does not model the temporal variation of the turbulent transport in any of
the moment equations. The results suggest that an eddy viscosity based on a length scale
related to the mixing width h, μt ∼ ρ̄

√
k̃h, works well. However, the mixing width is a

global quantity and does not lead to local closure. In this paper, based on the present local
indicator, we propose a modified eddy viscosity as follows:

μt = Cμ
b

Θbbnm
ρ̄k̃/ε, (4.1)

where Cμ is a model coefficient, chosen such that it yields an optimal match within the
mixing layer when t = 10. Equation (4.1) shows that the results given by the new closure
are smaller than those given by the original form in the instability stage (b/Θbbnm < 1),
larger in the transition stage (b/Θbbnm > 1) and degenerate to the original form in the
fully developed turbulent stage (b/Θbbnm ∼ 1). Below, it is shown that the transport terms
can be better described using the new closure instead of the original form in the gradient
transport hypothesis.
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Figure 5. Comparisons of ρ′u′2 across the layer with a gradient transport hypothesis, −0.18k̃/ε(∂ρ̄/∂y) (blue
dashed line) and −0.18(b/Θbbnm)k̃/ε(∂ρ̄/∂y) (red solid line) at t = 2 (a) and t = 10 (b). The coefficients are
chosen to provide a good fit in the interior of the layer at t = 10.
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Figure 6. Comparison of Rii2/ρ̄ across the layer with a gradient transport hypothesis, −1.0k̃/ε(∂ k̃/∂y) (blue
dashed line) and −1.0(b/Θbbnm)k̃/ε(∂ k̃/∂y) (red solid line) at t = 2 (a) and t = 10 (b). The coefficients are
chosen to provide a good fit in the interior of the layer at t = 10.

The gradient transport hypothesis for the mass flux is ρ′u′2 = −(μt/ρ̄)(∂ρ̄/∂x2).
Figure 5 plots comparisons of ρ′u′2 across the layer with a gradient transport hypothesis,
−0.18k̃/ε(∂ρ̄/∂y) and −0.18(b/Θbbnm)k̃/ε(∂ρ̄/∂y) versus y/W, at t = 2 and t = 10.
It clearly shows that the new closure yields better results in the early transition stage,
while it gives a similar profile in the later turbulence stage.

The gradient transport hypothesis for the term Rii2 ≡ ρu′′iu′′iu′′2 in kinetic energy
equation is Rii2/ρ̄ = −(μt/ρ̄)(∂ k̃/∂x2). This term is important both at the centre and edges
of the layer (Livescu et al. 2009). As shown in figure 6, the new closure works well both at
the transition and turbulence stage, while the standard closure fails to capture the variation
in the early transition stage.
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4.2. Modelling validation
In the following part, the improved eddy viscosity is further applied to transition
modelling, by coupling with the BHR2 model (Kokkinakis et al. 2019). It should
be noticed that much effort has been made to improve the Reynolds-averaged
Navier–Stokes (RANS) models’ ability of capturing transition features (Grinstein 2017;
Grinstein et al. 2017; Morgan & Black 2019; Singh, Duraisamy & Morgan 2019; Griffond,
Soulard & Gréa 2023), including manually controlling the start time of the RANS model
(Grinstein 2017), using the hybrid RANS-LES model (Grinstein et al. 2017), developing
data-augmented machine learning models (Morgan & Black 2019; Singh et al. 2019),
suggesting a new closure of the eddy viscosity model based on the mixing width (Livescu
et al. 2009) and proposing a modified dissipation equation to improve the model’s transient
behaviour (Griffond et al. 2023). Here, the present local transition indicator is used in
the closure of the eddy viscosity to characterize the transition process. The governing
equations are given by RANS equations. Neglecting mean molecular diffusion, the
Favre-averaged continuity, momentum, total energy, species mass fraction and turbulent
quantities equations are

∂ρ̄

∂t
+ ∂ρ̄ũj

∂xj
= 0, (4.2)

∂ρ̄ũi

∂t
+ ∂ρ̄ũiũj

∂xj
+ ∂ p̄
∂xi

− ρ̄ḡi = −∂τ̄ ij

∂xj
, (4.3)

∂ρ̄Ẽ
∂t

+ ∂ ũj(ρ̄Ẽ + p̄)
∂xj

− ρ̄ũiḡi = ∂

∂xj

(
μt

Nh

∂ h̃
∂xj

)
+ ∂

∂xj

(
μt

Nk

∂ k̃
∂xj

− τ̄ ijũi

)
, (4.4)

∂ρ̄Ỹa

∂t
+ ∂ρ̄ũjỸa

∂xj
= ∂

∂xj

(
μt

NY

∂Ỹa

∂xj

)
, (4.5)

∂ρ̄k̃
∂t

+ ∂ρ̄ũjk̃
∂xj

= CBaj
∂ p̄
∂xj

− τ̄ ij
∂ ũi

∂xj
+ ∂

∂xj

(
μt

Nk

∂ k̃
∂xj

)
− CDρ̄

k̃
3/2

L̃
, (4.6)

∂ρ̄L̃
∂t

+ ∂ρ̄ũjL̃
∂xj

= L̃

k̃

[(
3
2

− C3

)
aj
∂ p̄
∂xj

−
(

3
2

− C1

)
τ̄ ij
∂ ũi

∂xj

]
+ ∂

∂xj

(
μt

NL

∂L̃
∂xj

)
+CLρ̄

√
k̃,

(4.7)

∂ρ̄ai

∂t
+ ∂ρ̄ũjai

∂xj
= b

∂ p̄
∂xi

− τ̄ ij

ρ̄

∂ρ̄

∂xj
− CBaρ̄aj

∂(ũi − ai)

∂xj
+ CRaρ̄

∂aiaj

∂xj
+ ∂

∂xj

(
μt

Na

∂ai

∂xj

)

− CDaρ̄ai

√
k̃

L̃
, (4.8)

∂ρ̄b
∂t

+ ∂ρ̄ũjb
∂xj

= −2(b + 1)aj
∂ρ̄

∂xj
+ 2CRbρ̄aj

∂b
∂xj

+ ρ̄2 ∂

∂xj

(
μt

ρ̄2Nb

∂b
∂xj

)
− CDbρ̄b

√
k̃

L̃
,

(4.9)

where ρ is the density, ui is the velocity in the ith (i = 1, 2, 3) direction, p is the pressure,
gi is the acceleration in the ith direction, E = e + ui

2/2 is the total energy (e denotes the
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Cμ CD CB CL C2 C4 CDa CDb CRa CRb

0.6 0.66 1.58 0.28 0.06 0.48 1.39 1.37 −0.05 0.05

Table 1. Model coefficients for transition modelling.

internal energy), Yα is the mass fraction of αth species. Here t is the temporal coordinate
and xi is the spatial coordinate in the ith direction. Based on the BHR2 model framework
(Besnard et al. 1992; Rollin et al. 2012; Haines, Grinstein & Schwarzkopf 2013; Denissen
et al. 2014; Kokkinakis et al. 2019), four transport equations of turbulent quantities,
including the TKE k̃, the turbulent length scale L̃, the turbulent mass flux ai ≡ −u′′i and
the density-specific-volume covariance b ≡ −ρ′(1/ρ)′, are introduced.

The right-hand sides of (4.2)–(4.9) are the modelled turbulent terms, in which the
turbulent transport terms are described by the gradient diffusion assumption and for the
quantity φ,

∂ρu′′jφ′′

∂xj
= − μt

Nφ

∂φ̃

∂xj
, (4.10)

where μt is the eddy viscosity and Nφ is the closure coefficient. Here τ̄ ij ≡ ρu′′iu′′j
is the Reynolds stress, h̃ ≡ ẽ + p̄/ρ̄ is the Favre-averaged enthalpy and k̃ ≡ u′′iu′′i/2 is
the TKE. The equation array is solved by coupling with the equation of state (EOS)
p̄M = ρ̄RT̃ for the perfect gas, where M is the molar mass, R is the gas constant and
T̃ is the Favre-averaged static temperature. The assumptions of isotemperature (i.e. T =
T1 = · · · = Tα) and partial-pressure (i.e. p = ∑

pα) are used to calculate the EOS of the
mixture (Livescu 2013), and the species linearly weighted assumption (i.e. f = ∑

Yαfα) is
adopted to calculate the fluid properties of the mixture.

Based on the Boussinesq eddy-viscosity assumption, the Reynolds stress is described as

τ̄ ij = 2
3 ρ̄k̃δij − 2μt(S̃ij − 1

3 S̃kkδij), (4.11)

where S̃ij = 1
2(∂ ũi/∂xj + ∂ ũj/∂xi) is the strain-rate tensor. Here, the eddy viscosity is given

according to (4.1) as follows:

μt = Cμ
b

Θbbnm
ρ̄

√
k̃L̃, (4.12)

where Cμ is a constant coefficient.
All model coefficients are set according to the work of Kokkinakis et al. (2019).

Diffusion coefficients except for NK and NL are set to 1.0. Here NK and NL are set as
1.1 and 0.125, respectively. Other model coefficients are listed in table 1.

Then, we apply this model to the RT case and compare it with the LES results. The initial
field of 1-D RANS simulation satisfies the isentropic hydrostatic equilibrium, i.e. ũ = 0
and p̄/ρ̄γ = const. Combining this with the EOS of the ideal gas, we can integrate the
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Figure 7. Temporal evolution of the bubble height hb versus self-similar time Atgt2 (a) and the maximum
TKE Kmax versus t (b) for RT mixing using the present BHR2 model: effect of grid resolution.

momentum equation to derive the initial profiles of the density and the pressure as follows:

ρ̄0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ̄0H

[
1 + γ − 1

γ

ρ̄0H

p̄0I
g(x − xI)

]1/(γ−1)

x < xI

ρ̄0L

[
1 + γ − 1

γ

ρ̄0L

p̄0I
g(x − xI)

]1/(γ−1)

x ≥ xI

p̄0(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
p̄0I

[
1 + γ − 1

γ

ρ̄0H

p̄0I
g(x − xI)

]γ /(γ−1)

x < xI

p̄0I

[
1 + γ − 1

γ

ρ̄0L

p̄0I
g(x − xI)

]γ /(γ−1)

x ≥ xI

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

, (4.13)

where xI = 0 is the interface position, the subscript 0 denotes the interface (throughout this
paper), p̄0I is the interface pressure, ρ̄0H and ρ̄0L denote the density located at x = 0− (the
side of the heavy fluid) and x = 0+ (the side of the light fluid), respectively. Here ρ̄0L is
fixed as 1 g cm−3, and ρ̄0H is correspondingly set as ρ̄0H = ρ̄0L(1 + At)/(1 − At) g cm−3.
The value of p̄0I will influence the shape of the density profile, and a larger value of p̄0I =
6000 gcm−1 s−2 is used to lead to a flatter density profile to approach incompressible limit.
The velocity is initialized as zero across the whole field. The mass fraction of heavy fluid
Ỹ1(x) is set as 1 for x < xI and 0 for x ≥ xI . Inside the perturbed region(|x| ≤ �x, �x is
the mesh scale), k̃(0) is set as k̃(0) = AtgL̃(0) by a simple dimensional analysis, L̃(0) is the

initial length scale and is set as L̃(0) = 1 × 10−3, initial mass flux ax(0) is set to
√

k̃(0)/4,
b(0) is initialized as a small value of 10−8 (Kokkinakis et al. 2019). The boundaries at the
start and the end of the computational domain are set as wall conditions.

A grid convergence study is performed for the present BHR2 model using three grids
composing of 300, 600 and 1200 cells, as shown in figure 7. For grid resolutions of 300,
discrepancies are observed between the predicted bubble height hb and maximum TKE
Kmax when compared with grid resolutions of 600 during the early stages. Nevertheless,
the model exhibits clear grid convergence behaviour from 600 to 1200 cells. Consequently,
all subsequent results showcased are computed using a grid resolution of 600.
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Figure 8. Comparisons of temporal evolutions of the bubble height hb (a) and its growth rate αb (b) versus
self-similar time Atgt2 among LES (black circles), BHR2 model (blue solid lines) and the present BHR2 model
with transition (red solid lines). Legends of the following figures are the same as this.
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Figure 9. Comparisons of temporal evolutions of the maximum TKE Kmax (a) and the maximum density
specific volume covariance bmax (b) versus time t.

Figure 8 shows comparisons of temporal evolutions of the bubble height hb and its
growth rate αb versus self-similar time Atgt2 among LES, the BHR2 model and the present
BHR2 model with transition. The results suggest that both turbulence models enter the
quadratic growth stage earlier as compared with the results of LES, and their growth rates
saturate to the same value of 0.043. This discrepancy occurs because the initial set of
LES incorporates long-wavelength perturbation, consequently elongating the transitional
stage. Investigating how to tailor the turbulence model’s initial conditions to encompass
the spectral properties of these perturbations presents a subject conducive to further study.
It is noticed that the present model, owing to its consideration of transition effects, displays
a smaller overall mixing width development than the BHR2 model, aligning more closely
with the LES.

Figure 9 further depicts comparisons of temporal evolutions of the maximum TKE Kmax
and the maximum density specific volume covariance bmax versus time t. It illustrates that
the present model exhibits better agreement with LES results in the early stage, while
the BHR2 model tends to overestimate the TKE and b due to its neglect of transition
effects. In the late stage, the evolution characteristics of both models converge to a similar
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Figure 10. Comparisons of profiles of turbulent transport ρ′u′, Rii2/ρ̄, VF f̃ , TKE k̃, mass flux ax and density
specific volume covariance b at t = 10.

behaviour, e.g. the bmax saturates to a constant value of 0.2bmax
nm in agreement with the LES

results.
Moreover, the predicted profiles of turbulent transport ρ′u′, Rii2/ρ̄, VF f̃ , TKE k̃, mass

flux ax and density specific volume covariance b are shown in figures 10 and 11 for t = 10
and t = 2, respectively. It is noteworthy to clarify that the 1-D RANS simulations in
this study are conducted solely in the x-direction, with the acceleration aligned along the
x-axis as well. The heavy fluid is positioned to the left of the domain (x < 0). Conversely,
for the 3-D LES, the acceleration is oriented along the y-axis, and the heavy fluid is
situated on the right-hand side of the domain (y > 0). Consequently, when comparing
the RANS and LES results, the LES results necessitate a coordinate transformation to
align with the RANS reference frame, wherein −y corresponds to the x-coordinate,
and physical quantities such as ρ′u′, Rii2/ρ̄, mass flux ax require a sign reversal for an
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Figure 11. Comparisons of profiles of turbulent transport ρ′u′, Rii2/ρ̄, VF f̃ , TKE k̃, mass flux ax and density
specific volume covariance b at t = 2.

apt comparison. Accordingly, subsequent figures presented will adhere to the coordinate
system and scaling of the 1-D RANS simulations, depicting x/W as the horizontal axis.
In comparison to figures 5 and 6, profile plots of the physical quantities ρ′u′ and Rii2/ρ̄
necessitate not only a transformation of the abscissa polarity (from positive to negative
or vice versa) but also an inversion of the magnitude of these physical quantities. This
ensures a consistent comparison between the LES and RANS results. In the late turbulent
stage (t = 10), both RANS models exhibit commendable predictive capabilities, with the
present model demonstrating a closer agreement with LES results in terms of magnitude.
In the early transition stage (t = 2), the modified model’s predictions are not as large as
those of the unmodified BHR2 model, as they are compared through posterior analysis
in § 4.1. Instead, they are found to be smaller. This disparity can be attributed to the

1002 A4-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
35

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1135


Local transition of turbulent mixing

fact that in the posterior analysis, all results are derived based on accurate LES data
directly applied to the target quantities of interest. Conversely, the RANS predictions might
encompass inaccuracies due to the potentially suboptimal treatment of individual physical
quantities and their strong interdependencies. Note that the introduced local transition
indicator contributes to the turbulent viscosity term, thereby influencing the computation
of Reynolds stresses and diffusion terms. However, considering that for RT turbulent
mixing, the dominant production mechanism is driven by buoyancy effects rather than
shear effects. Thus, the modification in transition modelling does not fundamentally alter
the production–dissipation balance, resulting in the primary characteristics and growth
rates remaining consistent with the unmodified model. There remains considerable scope
for further research and improvement in effectively incorporating the local transition
indicator within the BHR2 model to enhance the capturing of transition features.

5. Conclusion

In this paper, a new perspective on the local transition indicator and modelling of turbulent
mixing is proposed. That is, from the point of view of fusion engineering applications,
developing a local transition indicator based on the mixing state. This indicator is
employed using LES of RT turbulent mixing and compared with established global
criteria. So far as we know, this is the first time that the local spatiotemporal transition
characteristics of turbulent mixing are depicted.

Furthermore, the present indicator is validated by investigating the modelling issues
of the gradient transport hypothesis. The analysis of the LES results proves that a new
closure of eddy viscosity based on the transition indicator provides a reasonably good
description of the transport terms both in transition and turbulence stages. Thus, we further
apply this local transition indicator for transition modelling, by coupling it with the BHR2
model. Note that predictions in the late stage exhibit better agreement with LES data;
there remains substantial room for improvement in predictions of the transition stage. The
refinement of methodologies to better incorporate the employment of the local transition
indicator into the BHR2 model for more accurately capturing transition characteristics
warrants further investigation. Notice that b is related to the mixing state, whose evolution
substantially depends on the initial perturbed spectrum. This model may have better
sensitivity to the mixing transition process induced by different initial disturbances. This
endeavour is expected to contribute to the understanding and simulation of complex fusion
scenarios, especially for precise calculations of reaction rates and assessments of fusion
performance.

However, before embarking on practical applications in fusion engineering, several
challenges need to be addressed. Primarily, it is crucial to assess the model’s adaptability to
complex mixing problems, like reshocked RM and spherical implosion issues. This might
involve refining the local transition criterion’s asymptotic value of 0.2 and addressing
realizable concerns. Additionally, enhancing the description accuracy of mixing state
representation necessitates incorporating the dynamics of particles and their interaction
with turbulence. Integrating a particle-turbulence framework into the transition modelling
could lead to a more comprehensive understanding and predictive capability. These
upcoming tasks, while posing their own complexities, offer exciting opportunities for
further refining the local transition indicator and solidifying its position as a powerful tool
in fusion engineering. Future publications are awaited to chronicle these advancements.
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