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We study semiparametric inference in a small-dimensional vector autoregressive
(VAR) model of order p augmented by unobservable common factors with a dynamic
described by a VAR process of order q. This state-space specification is useful
to measure separately the direct causality effects and the responses to dynamic
common factors. We show that the state-space parameters are identifiable from the
autocovariance function of the observed process. We estimate the model by means
of a multistep procedure in closed-form, which combines an eigenvalue–eigenvector
matrix decomposition and a linear instrumental variable estimation allowing for
Hansen–Sargan specification tests. We study the asymptotic and finite-sample prop-
erties of the parameter estimators and of rank tests for selecting the number of
unobservable factors and VAR orders. In an empirical illustration, we investigate the
dynamic common factors and the spillover effects that explain the co-movements
among the log daily realized volatilities of four European stock market indices.

1. INTRODUCTION

State-space systems are the backbone of many macroeconomic and financial
models because they enable to incorporate the time evolution of latent variables
(see Hamilton, 1994, for a review). The econometrics and statistics literatures
have devoted great efforts in studying the statistical properties of these dynamical
systems in terms of parameter identification and estimation. Hannan (1971)
establishes identifiability conditions for the parameters of a vector autoregressive
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moving average model with exogenous variables (VARMAX). This result is
strictly linked with the identifiability of the parameters of a state-space model,
since there exists a correspondence between state-space and VARMAX models
(see Akaike, 1974). Glover and Willems (1974) are among the first to propose a
(global) identifiability condition for the parameters of a linear state-space system.
They find that a state-space system is identifiable if it is observable and reachable
(i.e., minimal) and a rank condition on a matrix involving transformations of the
data generating process (DGP) parameters is satisfied. More recently, Komunjer
and Ng (2011) find local identifiability conditions for structural state-space param-
eters in a class of dynamic stochastic general equilibrium models. Furthermore,
Hannan and Deistler (1988), among others, discuss the asymptotic properties of
the quasi-maximum likelihood estimator (QMLE) in linear state-space models.

Despite their popularity, inference in linear state-space systems is confronted
with theoretical and practical difficulties. Indeed, identifiability conditions are
often hard to make explicit in terms of the DGP parameters, the QMLE is
difficult to compute when the dimension of the parameter space is large, and
formal inferential procedures for model selection (e.g., inference on the number
of latent states and the memory length) and specification testing are scarce.
A recent literature addresses related issues in a Bayesian framework (see, e.g.,
Chan, Eisenstat, and Koop, 2016, and the references therein). The goal of this
paper is to develop a novel fully fledged frequentist methodology for identification,
estimation, model selection, and specification testing in a general class of linear
state-space systems. The key novelty is the use of orthogonality restrictions from
instrumental variables internal to the model yielding closed-form estimators.

We consider a multivariate linear state-space model with n observed variables,
K < n latent variables (factors), and p predetermined variables that are the lags
of the endogenous observed process. From the vantage point of factor models,
our specification resembles the reduced form of the factor structural VAR model
of Stock and Watson (2005), but in our model, the latent factors are dynamic.
Moreover, our state-space specification corresponds to a factor-augmented vector
autoregressive (FAVAR) model (Bernanke, Boivin, and Eliasz, 2005). However,
the latent variables in our model are not introduced to solve the “limited
information problem” of standard small-dimensional vector autoregressive (VAR)
models but rather to capture dynamic common shocks. Moreover, while in the
FAVAR literature it is typically assumed that an external large dataset is available
from which to extract consistent estimates of the factor values using a static factor
representation (e.g., Bai, Li, and Lu, 2016), in our paper, this external source of
information is not necessary for statistical inference. An interesting feature of
our specification for applications in Economics and Finance, such as financial
stability analysis, is the possibility to empirically disentangle two conceptually
distinct sources of co-movements across the series when measuring impulse
responses (Darolles, Dubecq, and Gouriéroux, 2014, Darolles and Gourieroux
(2015)) and defining measures of network interconnectedness. These sources are
(i) the exogenous latent process, that we interpret as a systematic unobserved
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risk factor with a pervasive effect on the individual series, and (ii) the lags of
the endogenous observed process, that we interpret as direct causality effects—
i.e., lagged contagion—across the series. Identification of the model parameters,
notably the matrices of factor loadings and autoregressive coefficients, is made
difficult by the overlapping effects of contagion and common latent factors
(Manski, 1993, reflection problem).

We point out that this paper presents results for a finite-dimensional dynamical
system. When the number of series n is large, the VAR model augmented by a latent
factor can be approximated by generalized dynamic factor models (see, e.g., Forni
et al., 2000; Hallin and Lippi, 2013), leading to different identification strategies.

The methodological contributions of this paper are manifold. First, we show
under which conditions the parameters of the state-space specification are glob-
ally identifiable from the autocovariance function of the observed process. The
identification strategy is constructive and relies on the orthogonality restrictions
for instrumental variable (IV) estimation. A key step consists in proving that an
(n−K)-dimensional White Noise component obtained from the observable vector
and its lags is a valid instrument for estimating the autoregressive coefficients in
the measurement equation. This identification strategy is novel compared with the
previous literature on state-space models, notably the pioneering work of Darolles
et al. (2014). Second, we provide estimators for factor loadings, VAR coefficients,
and error variances that are in closed form (up to eigenvalues–eigenvectors decom-
position of matrices of small dimension) and easy to implement. Third, we show
that the estimators are consistent and asymptotically normal when the dimension
of the vector of observables is fixed and the time series dimension of the sample
increases. We provide a detailed comparison of our estimators with the QMLE
in terms of asymptotic standard errors and show that efficiency loss with our
approach is moderate, except in a neighborhood of DGP parameter values which
are not identified. Fourth, we provide statistical tests for conducting inference on
the number of unobservable factors and the memory length of VAR models. Fifth,
we define Hansen–Sargan statistics for testing correct model specification.

We illustrate our methodology with an empirical application on a system of
daily realized volatilities of four European stock market indices: CAC 40, OMX
Stockholm 30, IBEX 35, and DAX 30. Our procedure selects a state-space model
with four lags in the VAR specification that capture spillover effects in realized
volatilities across markets, and two dynamic latent common factors with six lags
in their VAR dynamics. In this state-space specification with 81 parameters, our
multistep estimator in closed form is a useful alternative to QMLE.

Our empirical illustration relates to the vast literature on contagion.1 Billio et al.
(2012) estimate measures of connectedness among financial institutions using,

1There is not a neat consensus in the literature on the exact meaning of the word “contagion.” For instance, in a
literature that contrasts “contagion” versus “interdependence,” Pesaran and Pick (2007) refer to Masson (1999) and
Forbes and Rigobon (2002) and distinguish among “monsoonal effects,” “spillovers,” and “pure contagion effects.” In
our paper, the meaning of “contagion” is more similar to spillovers. The theoretical literature on financial contagion
models this phenomenon as a widespread transmission of shocks among institutions through various market or
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e.g., pairwise Granger causality. Diebold and Yılmaz (2014) use the generalized
impulse response functions (IRFs) in Koop, Pesaran, and Potter (1996) and Pesaran
and Shin (1998) to understand in a VAR model the amount of connectedness
of different U.S. financial institutions. More recently, Adrian and Brunnermeier
(2016), Acharya et al. (2017), and Brownlees and Engle (2017) estimate measures
of association in market tail risks. Ait-Sahalia, Cacho-Diaz, and Laeven (2015)
model contagion via mutually exciting jump processes in which past jumps in
one series increase the jump intensity of all series. Related to our volatility
spillovers application, in an early important contribution on foreign exchange
markets, Engle, Ito, and Lin (1990) examine the impact of news in one market
on volatility in other markets. The distinctive feature of our analysis compared to
the aforementioned literature is the empirical disentangling of dynamic common
factors from contagion when measuring interconnectedness in a similar vein as
Darolles et al. (2014).2

The remainder of the paper is organized as follows. Section 2 presents the
model. Section 3 proves parameter identification from various representations of
the model. Section 4 presents the multistep estimation procedure and establishes
the large sample properties of the estimators and the model specification testing
procedures. Section 5 studies tests for the selection of the number of dynamic
latent factors and of the number of VAR lags. Section 6 presents the results of
our Monte Carlo experiments. Section 7 provides an empirical illustration with
the series of daily realized volatilities of four European stock market indices.
Section 8 concludes. We denote our assumptions with letters M, ID, IR, LS, and
SEL to distinguish the conditions to define the model (M), prove identification
(ID), restrict the parameter space and normalize the latent factor (IR, for iden-
tification restriction), derive the large sample properties (LS), and select model
orders (SEL), respectively. Proofs of theorems and propositions are provided in
Appendixes A and B. In the Supplementary Material available at Cambridge Core
(www.cambridge.org/core/journals/econometric-theory), we provide the proofs of
technical lemmas and additional theoretical and empirical results, and report the
results of the Monte Carlo experiments.

2. VAR MODEL WITH UNOBSERVABLE DYNAMIC FACTORS

We consider a VAR(p) model augmented by unobservable dynamic factors. The
state-space representation is defined in the next two assumptions.

information mechanisms (see, e.g., King and Wadhwani, 1990, Allen and Gale, 2000; Eisenberg and Noe, 2001;
Elliott, Golub, and Jackson, 2014; Acemoglu, Ozdaglar, and Tahbaz-Salehi, 2015; Trevino, 2020).
2Besides financial stability analysis, other strands of the economics literature have devoted interest to disentangling
linkages from common factors. In the multisector Real Business Cycle model of Long and Plosser (1983), in
equilibrium the sectoral log-output processes follow a VAR(1) dynamics. The autoregressive matrix is given by
the elasticities of commodity outputs with respect to commodity inputs and is responsible for the transmission of
productivity shocks across sectors. Foerster, Sarte, and Watson (2011) write the productivity shocks as a sum of an
idiosyncratic shock and a common factor driven by systematic shocks, leading to a model similar to the one studied
statistically in this paper.
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Assumption M.1. The measurement equation is

C(L)Yt = Bft +ut, (2.1)

where Yt is an n-dimensional vector of endogenous observable variables and
ft is a K-dimensional vector of exogenous unobservable factors. (i) The errors
ut ∼ WN(0,�u) are a (weak) White Noise process with positive definite variance
matrix �u

3. (ii) Process ( ft) is covariance stationary and uncorrelated at all leads
and lags with (ut). (iii) The matrix lag polynomial C(L) = In −∑p

j=1 CjLj, where
p ≥ 1 and L is the lag operator and Cj, for j = 1, . . . ,p, are n×n matrices, is such that
detC(z) has roots outside the complex unit circle. (iv) The number of unobservable
factors is strictly smaller than the number of observable variables, i.e., K < n, and
the n×K matrix B of factor loadings has full column rank K.

Assumption M.2. The transition equation is

�(L)ft = vt, (2.2)

where (i) the error terms vt ∼ WN(0,�v), with �v positive definite, are uncorre-
lated at all leads and lags with process (ut), and (ii) the matrix lag polynomial
�(L) = IK −∑q

j=1 �jLj, with q ≥ 1, is such that det�(z) has roots outside the
complex unit circle.

Assumptions M.1 and M.2 define a general linear state-space model with lagged
endogenous variables (e.g., Hamilton, 1994). We do not assume specific distribu-
tions for the innovations ut and vt, which are not necessarily i.i.d. across time.
The framework allows for nonlinear and conditionally heteroskedastic processes.
We state Assumptions M.1 and M.2 separately since we show some identification
results in Section 3 in the semiparametric framework of Assumption M.1 alone
without necessitating to specify a VAR(q) dynamics for the latent factor. In the
full model, we denote by θ ∈ �p,q,K the vector of unknown parameters, which
consists of the unique elements in matrices B, Cj, j = 1, . . . ,p, �j, j = 1, . . . ,q, �u

and �v subject to the normalization restrictions introduced in Section 3, and denote
by θ0 ∈ �p,q,K the true value in the DGP.

In our empirical illustration to stock market realized volatility series, we
interpret the dynamic latent factor ft as a vector of systematic shocks affecting
the entire economy. The autoregressive matrices Cj, for j = 1, . . . ,p, yield lagged
contagion effects across markets akin to volatility spillovers.

Remark 1. For the variance matrix �u, we can consider three (constrained)
specifications corresponding to different structural interpretations: (i) �u is
diagonal; (ii) �u = ��′ + D, where � is an n × s matrix, with s < n, and D
is a diagonal matrix; (iii) �u = Q−1

0 D(Q−1
0 )′, where Q0 is nonsingular and D

is diagonal. In case (i), the error term ut corresponds to a vector of idiosyncratic
shocks. The covariance between Yi,t and Yj,t, for i �= j, conditional on Yt−1,Yt−2, . . .,

3That is, it holds E(ut) = 0, V(ut) = �u, and E(utu′
t−j) = 0, for j �= 0.
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stems from the common factor ft only. In case (ii), the error term ut contains s
static factors. In case (iii), our model is the reduced form of a structural
dynamic simultaneous equations system with latent factors. Here, matrix D is
the variance–covariance matrix of the structural shocks and Q0 is the matrix of the
contemporaneous contagion effects.

Darolles et al. (2014) and Darolles and Gourieroux (2015) consider the model
in Assumptions M.1 and M.2 with p = q = 1 for the study of the impulse response
functions (IRFs) in a framework similar to our empirical illustration. They define
an estimator for the loadings matrix B based on an eigenvalue–eigenvector decom-
position. In their empirical application, they estimate matrix C1 by the QMLE with
a single latent factor following linear autoregressive dynamics. In this paper, we
construct internal instruments and use a linear IV approach to estimate matrices
C1, . . ., Cp semiparametrically and in closed form. Besides the computational
appeal, the interest in the semiparametric approach is to conduct inference on the
contagion matrices beyond linear autoregressive or moving average specifications
for the latent factor process.

Our model with finite dimension n cannot be written as a generalized dynamic
factor model. Indeed, the process in (2.1) and (2.2) can be decomposed as
Yt = C(L)−1ut + C(L)−1B�(L)−1vt, namely as a sum of a VAR process with
innovations ut and a dynamic factor model with innovations vt. In general,
the components of VAR process C(L)−1ut are mutually correlated (unless C(L)

is diagonal) and the process defined in Assumptions M.1 and M.2 has not a
generalized dynamic factor model representation (see, e.g., Forni et al., 2000; Forni
and Lippi, 2001). For large n, the generalized dynamic factor representation yields
powerful implications for identification and estimation.

The state-space model in equations (2.1) and (2.2) admits a Markovian represen-
tation in which vector (Y′

t,f t)
′ follows a VAR(1) model in companion form, where

Yt := [Y ′
t, . . . ,Y

′
t−p+1]′ and f t := [f ′

t , . . . ,f
′
t−q+1]′ (see Appendix A.1). Moreover,

Assumption M.1(i)–(iii) implies that process (Y′
t,f

′
t)

′ is covariance stationary and
causal. Finally, we can rewrite equations (2.1) and (2.2) as Yt = CYt−1 + Bft + ut

and ft = �f t−1 +vt, where C := [C1 : . . . : Cp] and � = [�1 : . . . : �q]. We use
those compact notations for the analysis below.

3. IDENTIFICATION FROM THE AUTOCOVARIANCE FUNCTION

In this section, we study the global identification of the parameters in the
state-space model in equations (2.1) and (2.2). Some parameter transformations are
not identifiable simply because of the rotational invariance of the model induced
by the unobservability of the factors. Similarly as in the factor models literature,
we deal with this indeterminacy by introducing an identification restriction on the
factor loadings.

Assumption IR.1. Matrix B is such that B = [B′
1 : IK]′, where B1 is the upper

(n−K)×K block.
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The condition in Assumption IR.1 is important to find asymptotic results
in Section 4. However, this assumption is not invariant to the ordering of the
observable variables. A general discussion of this issue and a solution for tractable
inference on the parameter B in a Bayesian framework is provided by Chan,
Leon-Gonzalez, and Strachan (2018).4

Propositions 1–3 and Theorem 1 in this section provide conditions for the global
identification of the model parameters from a finite number of autocovariances of
the observable process {Yt}. More precisely, under the conditions detailed below,
we show that there exists an integer h∗ such that

�(h;θ) = �(h;θ0), ∀h ∈ N with |h| ≤ h∗ and for θ ∈ �p,q,K ⇒ θ = θ0,

where �(·;θ) denotes the autocovariance function of process {Yt} with
parameter θ . Our identification strategy is constructive in the sense that we
characterize explicitly the mapping

θ0 = τ(γ0), (3.1)

which links the true parameter vector θ0 to the vector γ0 of the different elements
in the autocovariance matrices of the observable process {Yt} up to order h∗.
The mapping τ only involves standard matrix operations (including spectral
decomposition). This mapping straightforwardly implies the estimators by the
analogy principle (see the next section). Sections 3.1–3.3 deal with the identifica-
tion of matrix parameters B, C, and �, respectively. We clarify which subvectors of
parameters are semiparametrically identifiable with unrestricted factor dynamics.
In Section 3.4, we illustrate the identification assumptions in an example. In
Section 3.5, we compare our findings with the implications of available results
in the literature on identification in linear state-space models.

3.1. Semiparametric Identification of the Factor Loadings Matrix B
from a Pseudo-Model

A key insight in Darolles et al. (2014) is the use of a pseudo-model for the
identification of the factor loadings in state-space specifications (2.1) and (2.2)
with p = q = 1. A similar argument applies for generic VAR orders p and q. Let
us consider the following VAR( p+1) pseudo-model:

Yt = A∗
1Yt−1 +·· ·+A∗

p+1Yt−p−1 +u∗
t , (3.2)

where error term u∗
t is orthogonal to lags Yt−1, Yt−2,. . .,Yt−p−1. The matrix

pseudo-true parameters A∗
1, . . . ,A

∗
p+1 are defined by the linear projection of Yt

onto Yt−1,Yt−2, . . . ,Yt−p−1, i.e., we have EL(Yt|Yt−1, . . . ,Yt−p−1) = ∑p+1
j=1 A∗

j Yt−j.

4The condition in Assumption IR.1 can be imposed by a one-to-one transformation of the latent factor vector and
possibly a reordering of the series, as long as matrix B is full column rank (Assumption M.1(iv)). Other identification
restrictions could be used to fix the rotational invariance. After normalization, the number of free parameters in �p,q,K

is K(n−K)+n2p+K2q+n(n+1)/2+K(K +1)/2.

https://doi.org/10.1017/S0266466622000536 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000536


712 FEDERICO CARLINI AND PATRICK GAGLIARDINI

To characterize the A∗
j , let EL( ft|Yt−1, . . . ,Yt−p−1) = ∑p+1

j=1 FjYt−j be the linear
projection of factor ft onto the lags Yt−1, . . . ,Yt−p−1, where the Fj are K ×n matrices
of projection coefficients. Then, from (2.1) and (3.2), we have A∗

p+1 = B0Fp+1 (see
equation (A.4)). This implies that R(A∗

p+1) ⊆ R(B0), where R(·) denotes the
range (i.e., the column space) of a matrix. This provides a kind of lower bound for
the range of matrix B0. The latter is identified under the following assumption.

Assumption ID.1. The rank of matrix A∗
p+1 is equal to K.

Under Assumption ID.1, we have R(B0) = R(A∗
p+1) because both linear spaces

have dimension K. Hence, the column space of B0 coincides with the eigenspace
of matrix A∗

p+1(A
∗
p+1)

′ associated with the K nonzero eigenvalues. Under the
normalization restriction IR.1, we get the next result.

Proposition 1. Under Assumptions M.1, IR.1, and ID.1, matrix B0 is semipara-
metrically identifiable from the autocovariances of process {Yt} up to order p+1.

Factor dynamics are irrelevant for the identification of matrix B0 as long as
the full-rank property in Assumption ID.1 holds. If the factor dynamics are
given by the VAR(q) model in state equation (2.2), we have A∗

p+1 = B0�0

Cov(f t−1,Ỹt−p−1)V(Ỹt−p−1)
−1, where Ỹt−p−1 = Yt−p−1 −EL(Yt−p−1|Yt−1, . . . ,Yt−p).

Hence, Assumption ID.1 is equivalent to the n × K matrix Cov(Ỹt−p−1,f t−1)�
′
0

being full column rank. In particular, a necessary condition for Assumption ID.1
is the full-rank condition of �0. In the case with K = p = q = 1, in Appendix C.5
of the Supplementary Material, we show that

A∗
2 = φ0σ

2
f,0B0B′

0(λ0In −�0)(In −φ0C′
0)

−1
(
�0(0)−�0(1)′�0(0)−1�0(1)

)−1
,

(3.3)

for �0 = (In −φ0C′
0)

−1�0(0)−1C0�0(0)(In −φ0C′
0) and λ0 =φ0

[
1−σ 2

f,0B′
0�0(0)−1

(In −φ0C0)
−1B0

]
, where �0(0) = V(Yt), �0(1) = Cov(Yt,Yt−1) = C0�0(0) +

φ0σ
2
f,0B0B′

0(In −φ0C′
0)

−1 and σ 2
f,0 = V( ft). Thus, Assumption ID.1 holds if φ0 �= 0

and vector B0 is not an eigenvector of matrix �0 to the eigenvalue λ0. We have
not been able to find an explicit characterization of matrix A∗

p+1 in terms of the
state-space parameters in the general case.

3.2. Semiparametric Identification of Matrix C from Instrumental
Variables Conditions

Let us define the identifiable matrices B̄0 = B0(B′
0B0)

−1 and B0⊥ = [In−K : −B1,0]′.
The columns of the n× (n−K) matrix B0⊥ span the linear space R(B0)

⊥, i.e., the
orthogonal complement of R(B0). The condition B′

0B0⊥ = 0 identifies matrix B0⊥
up to a nonsingular (n−K)× (n−K) transformation, and we normalize its upper
block to In−K in analogy with Assumption IR.1.5 Define the processes

5Our results are independent of the selected normalization restrictions for matrix B0⊥.
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ηt := B′
0⊥(Yt −C0Yt−1) = B′

0⊥ut and ξt := B̄′
0(Yt −C0Yt−1) = ft + B̄′

0ut. (3.4)

Vector (η′
t,ξ

′
t )

′ is a one-to-one linear transformation of Yt − C0Yt−1, such that the
first n−K components ηt are a White Noise process and the last K components ξt

are a serially persistent process corresponding to a noisy measurement of the factor.
Since B′

0⊥Yt = �0Yt−1 + ηt with �0 := B′
0⊥C0, and ηt is uncorrelated with the

lagged values Yt−1, we identify matrix �0 by the population regression of B′
0⊥Yt

onto Yt−1, i.e.,

�0 = B′
0⊥E(YtY′

t−1)E(Yt−1Y′
t−1)

−1. (3.5)

Hence, ηt = B′
0⊥Yt −�0Yt−1 is a function of observed variables and identifiable

parameters.
Let us write the measurement equation as Yt = C0Yt−1 +εt where εt = B0ft +ut.

From Assumption M.1(i) and (ii), for any integer j �= 0, variable ηt−j is uncorrelated
with the error term εt:

E(εtη
′
t−j) = 0, ∀j �= 0. (3.6)

These orthogonality conditions are equivalent to the White Noise property of ηt

and its noncorrelation with all nonzero leads and lags of ξt, i.e., E(ηtη
′
t−j) = 0

and E(ξtη
′
t−j) = 0, for all j �= 0. We use variables ηt−j as instruments to identify

matrix C. Indeed, equation (3.6) yields the IV condition

QYZ = CQY−1Z, (3.7)

for C = C0, where QYZ := E
[
YtZ′

t

]
and QY−1Z := E

[
Yt−1Z′

t

]
and the instrument

vector is Zt = [η′
t−1 : · · · : η′

t−M]′, for M ≥ 1.6 Equation (3.7) has a unique solution
for C if, and only if, matrix Q′

Y−1Z has full column rank. In Appendix A.4, we write
matrix QY−1Z in terms of the state-space parameters B0, C0, �u,0, which allows us
to get an identification condition in terms of the latter parameters.

Assumption ID.2. Let M ≥ p + 1 and define the n × n matrices Gm,i =∑
j Ci+j−1Cm−j, for i = 1, . . . ,p and m = 1,2, . . . ,M − p, where the sum extends

over all positive integers j, with Cj = 0, for j > p, and Cj, for j ≥ 0, is defined
by C(z)−1 = ∑∞

j=0Cjzj on disk |z| ≤ 1, and Cj = 0, for j < 0, with parameters
evaluated at their true values. The (M − p)(n − K) × pK matrix with blocks[
B′

0,⊥�u,0G′
m,i�

−1
u,0B0

]
m=1,...,M−p, i=1,...,p

has full column rank.

The necessary order condition is (M − p)(n − K) ≥ pK, i.e., M(n − K) ≥ pn,
which requires at least as many instruments as contagion parameters to estimate
for each series. We have the next proposition.

Proposition 2. (a) Matrix Q′
Y−1Z has full column rank if, and only if,

Assumption ID.2 holds. (b) Under Assumptions M.1, IR.1, ID.1, and ID.2, matrix

6We can also use leads ηt+j with j ≥ 1 as instruments.
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C0 = [C1,0 : · · · : Cp,0] is semiparametrically identifiable from the autocovariances
of process {Yt} up to order M +p.

We can elaborate on Assumption ID.2 to provide interpretations for this identi-
fication condition. First, the sum defining the matrices Gm,i extends over a finite
number of terms, G1,i = Ci,0, for i = 1, . . . ,p, and Gm,1 = Cm, for m ≥ 1. Second,
in the special case p = 1, we have Gm ≡ Gm,1 = Cm

1,0, and Assumption ID.2 is
equivalent to the following property: if y ∈ R

n is such that (�u,0C′
1,0�

−1
u,0)

my ∈
R(B0) for all integers m = 0,1, . . . ,M −1, then y = 0. In other words, the property
of a nonnull vector to be in the column space of matrix B0 cannot be maintained
under (M − 1)-fold application of matrix �u,0C′

1,0�
−1
u,0. In particular, a necessary

condition is that the column space of matrix B0 is not an eigenspace of matrix
�u,0C′

1,0�
−1
u,0. Furthermore, if p = K = 1, Assumption ID.2 is equivalent to B0 not

being an eigenvector of �u,0C′
1,0�

−1
u,0.

The instruments ηt−j are internal to the model. They differ from external
instruments used to identify dynamic causal effects in structural VAR models
(Stock and Watson, 2018). If some observed variables are available, which are
orthogonal to both the latent factor process { ft} and the idiosyncratic shocks {ut},
then they can be used to construct additional orthogonality restrictions. These
variables, however, are not necessary for identification under our assumptions.

Previous literature considered semiparametric identification in state-space
models. Shiu and Hu (2013), Schennach (2014), Gallant, Giacomini, and
Ragusa (2017), and Gagliardini and Gouriéroux (2019) study semiparametric
identification in models with unobserved components that are more general
than ours. In particular, Gagliardini and Gouriéroux (2019) consider nonlinear
panel models with unobserved dynamic components, such that the measurement
equation is exponentially affine in the latent factor and lagged endogenous
variables. The specification in this paper (when p = 1, process ut is i.i.d. and
factor ( ft) is Markovian) is a special case of those in Gagliardini and Gouriéroux
(2019). Their identification strategy relies on well-chosen moment restrictions
that are implied by the conditional moment generating function after “partialling
out” the infinite-dimensional parameters corresponding to the unknown density of
innovation ut and transition density of the latent factor. Their approach is general
and covers a broad class of nonlinear state-space models. In the general framework
considered by Gagliardini and Gouriéroux (2019), the identification strategies
rely on high-level assumptions that are more difficult to check from primitive
conditions on the DGP parameters, and are less simple to implement for estimation
purposes compared to the identification approach pursued in this paper.

3.3. Parametric Identification of Matrix � in Factor Dynamics and
Other Parameters

For the identification of the stacked autoregressive matrix � in the VAR(q) factor
dynamics, we use process ξt defined in equation (3.4). From Propositions 2 and 3,
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process ξt is a function of observable data and identifiable parameters. By plugging
ft = ξt − B̄′

0ut in the state equation (2.2), we get ξt =∑q
j=1 �jξt−j + et, where et =

B̄′
0ut −∑q

j=1 �jB̄′
0ut−j + vt. Since et ∼ MA(q), process ξt follows a VARMA(q,q)

dynamics. Define the instrument vector Wt = [ξ ′
t−q−1,ξ

′
t−q−2, . . . ,ξ

′
t−q−L]′, for

integer L ≥ q.7 Then, we get the IV condition

QξW = �Qξ−1W, (3.8)

where QξW = E[ξtW′
t] and Qξ−1W = E[ξ t−1W′

t] with ξ t−1 := [ξ ′
t−1, . . . ,ξ

′
t−q]′.

Equation (3.8) has the unique solution � = �0 if, and only if, the LK ×qK matrix
Q′

ξ−1W has full column rank.

Assumption ID.3. The matrix �q,0 is nonsingular.

Proposition 3. Let L ≥ q. (a) Matrix Q′
ξ−1W has full column rank if, and only

if, matrix �q,0 is nonsingular. (b) Under Assumptions M.1, M.2, IR.1, and ID.1–
ID.3, matrix �0 is identifiable from the autocovariances of process {Yt} up to order
max{ p+M,q+L}.

Our identification strategy for � builds on the literature using IV to obtain
orthogonality restrictions in models with lagged endogenous variables and serially
dependent errors (see, e.g., Hansen and Singleton, 1991). Other identification
approaches are proposed in the dynamic factor model literature for large n, which
do not require �q to be full rank (see Forni et al., 2009). In our case, with n finite,
we cannot follow the same identification strategy as Forni et al. (2009).

The condition in Assumption ID.3 is admittedly quite restrictive and is not met
by some simple DGP. For instance, let K = q = 2 and suppose that the two latent
factors are mutually uncorrelated AR(1) and AR(2) processes: f1t = φ1,11f1t−1 +
v1t and f2t = φ1,22f2t−1 + φ2,22f2t−2 + v2t. Then, we have �2,0 =

[
0 0
0 φ0

2,22

]
,

and Assumption ID.3 does not hold.8 To overcome the restrictive condition in
Assumption ID.3, we could consider an approach that combines our identification
strategy for B and C together with QMLE. In fact, once the values of process ξt

are identified by Assumptions ID.1 and ID.2, we can identify matrix � from the
linear state-space models

ξt = ft + B̄′
0ut, ft = �f t−1 + vt. (3.9)

7We could use lags of the observable process as instruments. However, variables Yt−q−j, j ≥ 1, are one-to-one
transformations of variables ξt−q−j,ηt−q−j, j ≥ 1, and the latter variables ηt−q−j, j ≥ 1, are uncorrelated with regressor
ξ t−1 and hence irrelevant for instrumentation purposes.
8In fact, there is a linear combination of the elements in (ξ ′

t−1,ξ
′
t−2)

′, namely ξ1t−1 − φ0
1,11ξ1t−2 that is a linear

combination of v1,t−1, ut−1, ut−2, and hence is uncorrelated with the lags ξt−3, ξt−4, . . .. Thus, matrix Q′
ξ−1W has not

full column rank. Note that, if φ0
1,11 �= 0, matrix �0 = [�1,0 : �2,0] is full rank, a necessary condition for Assumption

ID.1.
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We briefly consider the implied estimation approach in Section 8, but leave a
detailed analysis for future research. We conjecture that it provides a consistent
and asymptotically normal estimator of �, and we can apply a rank testing
methodology similar to that deployed in Section 5 to test the full-rank condition
for �q,0. Furthermore, we stress that, for q = 1, our model with singular matrix
�0 of rank r < K, say, corresponds to a model with r dynamic factors and K − r
static factors. The identification in this case is discussed in Appendix E.4 of the
Supplementary Material. Finally, we remark that, even for a DGP for which �q,0

has full rank, the use of lagged values of ξt prior to date t−q might induce a weak
instrument problem when (some linear transformations of) the factor process is
weakly serially correlated.

In Appendix E.2 of the Supplementary Material, we show that the variance–
covariance matrices �u and �v are identified under Assumptions ID.1–ID.3. This
result, together with Propositions 1–3, yields the next theorem.

Theorem 1. Under Assumptions M.1, M.2, IR.1, and ID.1–ID.3, the parameter
vector θ ∈ �p,q,K is globally identifiable from a finite number of autocovariances
of the observable process {Yt}.

The arguments in Sections 3.1–3.3 show that mapping τ in equation (3.1)
corresponds to computing the eigenvectors of matrix A∗

p+1(A
∗
p+1)

′, and solving the
linear IV systems (3.7) and (3.8).

3.4. An Example

As an illustration of the identification assumptions presented in the previous
subsections, we consider next a model with n = 2 observables, a single latent factor
(K = 1), and VAR orders p = q = 1. The DGP is such that

C1,0 =
(

c11,0 0
0 c22,0

)
, B0 =

(
b1,0

1

)
, �u,0 =

(
σ 2

u,1 0
0 σ 2

u,2

)
, (3.10)

and scalar φ0 is the autoregressive coefficient of the factor dynamics. In the
Supplementary Material, we show the next result.

Proposition 4. Let n = 2 and K = p = q = 1, and let the DGP parameters be
as in (3.10). Then, Assumptions ID.1–ID.3 hold if, and only if, φ0 �= 0, b1,0 �= 0,
and c11,0 �= c22,0.

From Sections 3.1 and 3.3, condition φ0 �= 0 is necessary for Assumptions ID.1
and ID.3 to hold. Condition b1,0 �= 0 implies that the latent factor impacts variable
Y1,t as well. Moreover, from Section 3.2, condition c11,0 �= c22,0 is necessary for
Assumption ID.2 to hold. Indeed, if c11,0 = c22,0, then matrix �u,0C′

1,0�
−1
u,0 =

c11,0I2 admits any nonzero vector as an eigenvector. Proposition 4 shows that the
aforementioned conditions are both necessary and sufficient for identification.
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3.5. Identification from Other Model Representations

It is instructive to contrast Propositions 1–4 and Theorem 1 with other
identification results obtained in the literature on linear state-space models.

3.5.1. VARMA Representation. The state-space model in (2.1) and (2.2)
admits a vector autoregressive moving average (VARMA) representation (Akaike,
1974). Darolles et al. (2014) show that, when p = q = 1, the VARMA
representation has two lags in the autoregressive part and one lag in the moving
average part. For generic orders p,q ≥ 1 in Appendix A.2, we prove the causal
VARMA(p+q,q) representation

A(L)Yt = �(L)wt, (3.11)

where the AR matrix polynomial A(L) = In −∑p+q
j=1 AjLj has order p + q and

coefficients Aj given in Lemma 1, the MA polynomial �(L) = In +∑q
j=1 �jLj

has order q, and wt ∼ WN(0,�w). It holds �j = Bν ′
j for some n × K matrices νj.

Matrices �w and νj are defined in terms of the state-space parameters by equations
(A.2) and (A.3), and are not in closed form.

Since Ap+q = −B�qB̄′Cp and �q = Bν ′
q, where B̄ = B(B′B)−1, the

VARMA(p+q,q) representation in (3.11) is such that Rank[Ap+q : �q] ≤ K < n.
Thus, the sufficient and necessary rank condition for identification of parameters
Aj, �j, and �w (see Hannan, 1969, 1971, 1975) is not met. The parameter
vector θ of the state-space model in (2.1) and (2.2) is not identifiable from the
VARMA representation (3.11) unless all structural restrictions are imposed.9 The
complexity of these structural restrictions motivates us to consider a different
approach to identification, estimation, and model selection presented in this paper.

3.5.2. Identification from ABCD Representation. In the statistical and econo-
metric literature, the identification of linear state-space systems is often analyzed
in the ABCD state-space representation. In this subsection, let the number of
autoregressive matrices in the measurement and state equations be p = q = 1 to
ease exposition. In this case, the state-space system in (2.1) and (2.2) admits an
ABC(D) representation:

Xt = A Xt−1 +BWt, (3.12)

Yt = C Xt,

where the state vector is Xt = (Y ′
t,f

′
t+1)

′, the innovation vector Wt follows a
WN(0,In+K) process, and

9In Appendix E.1 of the Supplementary Material, we show the unidentifiability of the parameters of the restricted
VARMA(p+q,q) representation, in which the AR matrices Aj are replaced with their expressions in terms of B, Cj,
and �j, and the MA matrices �j are written as Bν′

j without imposing the structural constraints from (A.2) and (A.3)
on matrices νj and �w.
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A =
[

C1 B
0 �1

]
, B =

[
�

1/2
u 0
0 �

1/2
v

]
, C = [In : 0].

The ABCD representation yields a map between matrices A ,B, and C and the
parameter vector θ ∈ �1,1,K of the state-space representation, for given K. The
results in Glover and Willems (1974) are among the most important ones to
find conditions of global identification for the parameters of linear state-space
systems in ABCD form. They study state-space systems in minimal represen-
tation, and consider global (and local) identification from the transfer function
G(s) = C (In+K − A s)−1Bs, where s is the complex argument of function G(·)
such that Yt = G(L)Wt, and from the spectral function G(s)G(s̄)′, where s̄ denotes
complex conjugate of s. By applying the results in Glover and Willems (1974) and
the references therein, in Appendix D of the Supplementary Material, we show
that the representation (3.12) is minimal and we prove the following proposition.

Proposition 5. Assume the Identification Restriction IR.1. (a) The state-space
parameter vector θ ∈ �1,1,K is globally identifiable from the transfer function
G(s), for given K. (b) The parameter vector is globally identifiable from the
spectral function G(s)G(s̄)′ if, and only if, the equation �u,0C′

1,0�
−1
u,0(B0Q22) =

(B0Q22)�
′
1,0, for a K ×K symmetric matrix Q22, implies Q22 = 0.

Global identification from the transfer function is a necessary condition for
consistency of the QMLE (Hannan and Deistler, 1988). From Proposition 5(a),
this condition does not require Assumptions ID.1–ID.3, once K is identified.
Furthermore, global identification from the spectral function, and identification
from the autocovariance function as in Theorem 1, are intimately connected.
Indeed, there is a one-to-one map between the spectral density function and the
autocovariance function of the process.10 From Proposition 5(b), we deduce that:
if the only linear subspace of the range R(B0) that is mapped by �u,0C′

1,0�
−1
u,0 into

R(B0) is the trivial subspace, then the parameter set is globally identified from
the spectral function. As we argue in Section 3.2, the latter sufficient condition
is implied by Assumption ID.2 when p = 1. In the example of Section 3.4, the
parameters are identifiable from the spectral density function under the same
conditions as those listed in Proposition 4.

We stress that Theorem 1 expands substantially the identification results in
the state-space literature along several directions. First, our identification strategy
presented in Sections 3.1–3.3 is constructive, in that it leads to a multistep
procedure to estimate separately and sequentially parameters B, C, and � in
closed form. This estimator is computationally more convenient and faster than
the QMLE based, e.g., on Kalman filter and numerical optimization in a high-
dimensional parameter space (see Section 6). Second, we identify parameters B

10Note, however, that Theorem 1 relies on a finite number of autocovariances for identification, while the spectral
density function involves autocovariances at all lags.
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and C semiparametrically, i.e., without specifying a parametric dynamics for the
latent factor process. Third, Theorem 1 applies for the general framework with
p,q ≥ 1. Moreover, the arguments in Proposition 1 yield the identification of K as
well.

Finally, other identification results for structural ABCD models are discussed
in Komunjer and Ng (2011). These authors find rank conditions for which the
parameters of a structural ABCD system are locally identified when the number
of the shocks is less or greater than the number of state variables.

4. ESTIMATION AND SPECIFICATION TESTING

In this section, we assume the number of latent factors K and the VAR orders p,
q known, and consider the estimation of model parameter vector θ0 ∈ �p,q,K and
testing of model specification.

4.1. A Three-Step Estimation Procedure

We estimate the parameters of the state-space model on a sample Yt, for
t = 1, . . . ,T , of the observable process by using the empirical counterpart of the
identification strategy presented in Section 3. The estimation procedure for the
matrix parameters B, C, and � consists of three steps and is in closed form up to
an eigendecomposition (the estimators of �u and �v are given in Appendix E.3 of
the Supplementary Material).

(i) Estimation of the factor loadings matrix B. We first estimate the matrix
pseudo-parameters Â∗

j , for j = 1, . . . ,p+1, by ordinary least squares (OLS) applied

to the VAR(p+1) pseudo-model (3.2). Let Û = [Û1 : · · · : ÛK] be the matrix having
for columns the standardized eigenvectors of Â∗

p+1(Â
∗
p+1)

′ associated with the K

largest eigenvalues. We partition this matrix as Û = [Û
′
1 : Û

′
2]′, where Û2 is the

lower K × K block. Then, we estimate B under the identification restriction in
Assumption IR.1 as

B̂ = [B̂′
1 : IK]′ = ÛÛ

−1
2 . (4.1)

(ii) Estimation of the stacked contagion matrix C. Let B̂⊥ = [In−K : −B̂1]′ be the
estimator of B0⊥ obtained using B̂1 from the first step under the normalization
restriction introduced in Section 3.2. Building on equation (3.5), we estimate �0

with OLS by �̂ = B̂′
⊥
(∑T

t=1 YtY′
t−1

)(∑T
t=1 Yt−1Y′

t−1

)−1
. Given B̂⊥ and �̂, we

estimate matrix Ĉ by a multivariate IV estimator built on the sample analog of
the moment condition (3.7). The instrument vector is Ẑt = (η̂′

t−1, . . . ,η̂
′
t−M)′ with

η̂t = B̂′
⊥Yt − �̂Yt−1. By vectorizing the moment equation, we get the estimator

vec(Ĉ) =
[
(Q̂Y−1Z ⊗ In)�̂c(Q̂ZY−1 ⊗ In)

]−1
(Q̂Y−1Z ⊗ In)�̂cvec(Q̂YZ), (4.2)
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where Q̂YZ = 1
T

∑T
t=1 YtẐ

′
t, Q̂Y−1Z = 1

T

∑T
t=1 Yt−1Ẑ

′
t = (Q̂ZY−1)

′, and �̂c is an
Mn(n − K) × Mn(n − K) positive definite weighting matrix. That matrix intro-
duces a weighting of the orthogonality restrictions across the M instruments and
the n series in the system. Since the IV criterion involves estimated parame-
ters B̂⊥ and �̂ in the instruments, the optimal weighting matrix differs from
that of a standard generalized method of moments (GMM) estimator (see the
next subsection). With the identity weighting matrix, the estimator becomes

Ĉ = Q̂YZQ̂ZY−1

(
Q̂Y−1ZQ̂ZY−1

)−1
.

(iii) Estimation of the stacked autoregressive matrix � in the factor dynamics.
We find a multivariate IV estimator based on the moment condition (3.8), which
yields

vec(�̂) =
[
(Q̂ξ−1W ⊗ IK)�̂φ(Q̂Wξ−1 ⊗ IK)

]−1
(Q̂ξ−1W ⊗ IK)�̂φvec(Q̂ξW), (4.3)

where Q̂ξW = 1
T

∑T
t=1 ξ̂tŴ

′
t and Q̂ξ−1W = 1

T

∑T
t=1 ξ̂ t−1Ŵ

′
t = (Q̂Wξ−1)

′, with ξ̂ t−1 =
(ξ̂ ′

t−1, . . . ,ξ̂
′
t−q)

′, Ŵt = (ξ̂ ′
t−q−1, . . . ,ξ̂

′
t−q−L)

′, and ξ̂t := (B̂′B̂)−1B̂′(Yt − ĈYt−1), and

�̂φ is a K2L×K2L positive definite weighting matrix.
Estimators Ĉ and �̂ involve two tuning parameters, which are the numbers of

lagged instruments M and L, subject to the order conditions M ≥ pn/(n−K) and
L ≥ q. Too large values of M and L for given sample size T may result in estimators
with poor finite-sample properties. In our Monte Carlo experiments and empirical
analysis, we implement ad hoc choices of M,L and check that the estimates are
stable in a range around the selected values of the tuning parameters.

4.2. Large Sample Properties

We derive the asymptotic properties of the estimators when the sample size T→∞.

Assumption LS.1. The error process zt = (u′
t,v

′
t)

′ is either (i) a conditionally
homoskedastic martingale difference sequence (m.d.s.), i.e., E[zt|zt−1] = 0 and

V(zt|zt−1) =
(

�u 0
0 �v

)
=: �z, or (ii) an i.i.d. sequence with mean 0 and variance

�z, and the density functions fu and fv of ut and vt are positive on R
n and R

K ,
respectively. Moreover, (iii) E(|ut|2β) < ∞, E(|vt|2β) < ∞ for β > 2, and (iv) the
K nonzero eigenvalues of matrix A∗

p+1(A
∗
p+1)

′ are distinct. Furthermore, (v) the

weighting matrices �̂c and �̂φ converge a.s. to positive definite matrices �c and
�φ , respectively.

Let b = vec(B1), c = vec(C) and φ = vec(�) denote the vectorized forms of
the matrix parameters, and let b̂, ĉ, and φ̂ be the corresponding estimators from
Section 4.1.11

11We focus on estimators b̂, ĉ, and φ̂ for conciseness. The large sample properties of estimators �̂u and �̂v defined
in Appendix E.3 of the Supplementary Material can be established along similar lines.
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Theorem 2. (a) Under Assumptions M.1, M.2, IR.1, ID.1–ID.3, and LS.1(i) and
(iii)–(v), the estimators b̂, ĉ, and φ̂ are strongly consistent: b̂

a.s.→ b0, ĉ
a.s.→ c0, and

φ̂
a.s.→ φ0, as T → ∞. (b) We have the asymptotic expansion

√
T

⎛
⎝ b̂−b0

ĉ− c0

φ̂ −φ0

⎞
⎠=

⎡
⎣ Sb1 0 0 0

Sc1 Sc2 Sc3 0
Sφ1 Sφ2 Sφ3 Sφ4

⎤
⎦ 1√

T

T∑
t=1

⎛
⎜⎜⎝

Ỹt−p−1 ⊗u∗
t

Yt−1 ⊗ηt

Zt ⊗ εt

Wt ⊗ et

⎞
⎟⎟⎠

+op(1) =: S
1√
T

T∑
t=1

ψt +op(1), (4.4)

where Ỹt−p−1 = Yt−p−1 − EL(Yt−p−1|Yt−1, . . . ,Yt−p), u∗
t = Yt − EL(Yt|Yt−1, . . . ,

Yt−p−1), εt = Yt − C0Yt−1,et = ξt − �0ξ t−1,Zt = (η′
t−1, . . . ,η

′
t−M)′, Wt =

(ξ ′
t−q−1, . . . ,ξ

′
t−q−L)

′, and ηt and ξt are defined in (3.4). The matrices Sak with
a = b,c,φ and k = 1,2,3,4 are continuous functions of the autocovariances of
process {Yt} and parameters b0, c0, and φ0, and their expressions are given in
(B.7) in Appendix B. (c) If Assumption LS.1(ii) holds instead of LS.1(i), we have

1√
T

T∑
t=1

ψt
d→ N(0,Vψ), (4.5)

as T → ∞, where Vψ =∑∞
j=−∞ Cov(ψt,ψt−j). In particular, the estimators b̂, ĉ,

and φ̂ are asymptotically normal
√

T
(
(b̂−b0)

′,(ĉ− c0)
′,(φ̂ −φ0)

′
)′ d→ N(0,�0),

as T → ∞, with �0 = SVψS′.

We establish the strong consistency of the estimators in Theorem 2(a) by using
the fact that b̂, ĉ, and φ̂ are continuous functions of the sample autocovariances
of process {Yt}, and the latter are strongly consistent under the conditions of
Proposition 4.1.1 of Hannan and Deistler (1988). To check those conditions,
we use the m.d.s. property of the errors in Assumption LS.1(i). The proof of
strong consistency also uses an adapted version of a perturbation theory result
in Izenman (1975) (Proposition 6 in Appendix B.1) to get the asymptotic expan-
sion of the eigenvectors of matrix Â∗

p+1(Â
∗
p+1)

′ needed to estimate b̂. To apply
this result, we need the condition of distinct nonzero eigenvalues for matrix
A∗

p+1(A
∗
p+1)

′ in Assumption LS.1(iv). Theorem 2(b) states that the estimators b̂,

ĉ, and φ̂ are asymptotically a linear transformation of the scaled sample average
of process {ψt}. This process is the orthogonality vector in the representation
of (b̂′,ĉ′,φ̂′)′ as a sequential GMM estimator (Newey and McFadden, 1994).
Specifically, (i) Ỹt−p−1 ⊗ u∗

t is the orthogonality vector for OLS estimation of
A∗

p+1 in the VAR(p + 1) pseudo-model (3.2), and similarly (ii) Yt−1 ⊗ηt for OLS
estimation of �0 in equation (3.5), (iii) Zt ⊗εt for IV estimation of C0 with equation
(3.7), and (iv) Wt ⊗et for IV estimation of �0 with equation (3.8). In matrix S, the
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blocks Scj, with j = 1,2, and Sφj, with j = 1,2,3, account for the multistep nature
of the estimation procedure.12

The asymptotic variance �0 of the estimator depends on the asymptotic weight-
ing matrices �c and �φ . In Appendix B.4, we show that the optimal weighting
matrix for estimating C, that is, the weighting matrix yielding the smallest
asymptotic variance for

√
T(ĉ−c0), is given by �∗

c = (DcVψD′
c)

−1, where matrix
Dc is defined in equation (B.9) and accounts for first-step estimation of B0 and �0.
Similarly, we can derive the optimal weighting matrix for estimating � once the
weighting matrix for estimating C is set, which is given in (B.11).13

The components of vector ψt, except Yt−1 ⊗ ηt under Assumption LS.1(ii),
are correlated across time; thus, the long-run matrix Vψ involves autocovari-
ances at all lags and leads. We can estimate the asymptotic variance �0 by
using a heteroskedasticity and autocorrelation consistent (HAC) estimator for
matrix Vψ . Specifically, let us write ψt = ψt(γ0,θ0) and S = S(γ0,θ0), where
θ0 = (b′

0,c
′
0,φ

′
0)

′ and vector γ0 consists of a finite number of (cross) autocovari-
ances of the components of process {Yt}. Then, an estimator of �0 is �̂ = ŜV̂ψ Ŝ′,
where Ŝ = S(γ̂ ,θ̂ ), vector γ̂ is obtained by the sample autocovariance function
of {Yt}, and V̂ψ =∑T−1

j=−(T−1) κ( j/mT)�̂ψ( j), with �̂ψ( j) = 1
T

∑T
t=j+1 ψ̂tψ̂

′
t−j, and

ψ̂t = ψt(γ̂ ,θ̂ ). The kernel function κ(·) and the bandwidth mT satisfy the next
assumption.

Assumption LS.2. Kernel function κ : R → R is such that (i) κ(0) = 1,
κ(−x) = κ(x) for all x ∈ R, (ii) κ is continuous at 0 and at almost all
x ∈ R,

∫∞
−∞ |κ(x)|dx < ∞, and (iv) κ̂(λ) ≥ 0, for all λ ∈ R, where κ̂(λ) =

1
2π

∫∞
−∞ κ(x)e−ixλdx. (vi) The bandwidth mT is a sequence of positive integers

such that mT → ∞ and mT = o(T1/2).

Theorem 3. Under Assumptions M.1, M.2, IR.1, ID.1–ID.3, LS.1, and LS.2, the
estimator �̂ is positive definite almost surely and converges in probability to �0.

We prove Theorem 3 in Appendix B.5 by applying the results in De Jong and
Davidson (2000), which require mild conditions on the bandwidth parameter mT .
Andrews and Monahan (1992) and Newey and West (1994) discuss methods for

12The asymptotic normality in (4.5) could possibly be proved under milder conditions than the i.i.d. property of
the errors in Assumption LS.1(ii) using versions of the central limit theorem (CLT) for the sample autocovariances
of linear processes as those in, e.g., Hannan and Heyde (1972) and Phillips and Solo (1992). However, those
results are stated for univariate processes and their extensions to a multivariate setting seem cumbersome. This
explains why instead we establish that {(Y ′

t,f
′
t )

′} is a geometrically strongly mixing process under Assumptions
M.1, M.2, and LS.1(ii) using Theorem 1 in Mokkadem (1988), and use the CLT for mixing processes in Herrndorf
(1984). Furthermore, we can show consistency and asymptotic normality of b̂ and ĉ in a semiparametric framework
without assuming linear factor dynamics, if we take the strong mixing property for process {(Y ′

t,f
′
t )

′} as a high-level
assumption instead of proving it from primitive conditions. For the sake of space, we do not detail this alternative
formulation.
13The definition of optimal weighting matrices for joint estimation of C and � is more involved, since the two matrix
parameters are estimated sequentially without cross-weighting of the corresponding sets of moment restrictions.
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Figure 1. This figure plots the ratios between the asymptotic standard deviations of our estimators
(4.1)–(4.3) computed with M = L = 10 and identity weighting matrix, and of the ML estimator of
parameters b11, c11, c22, and φ, for different values of DGP parameters c11 and c22. The DGP is a
model with n = 2 and K = p = q = 1 as in equation (3.10) with Gaussian errors. We fix b1,0 = 1.5,
φ0 = 0.9, σ 2

v,0 = 1, and �u,0 = I2.

automatic selection of mT . Estimators of C0 and �0 based on optimal weighting
matrices can be implemented with a two-step approach using HAC estimator V̂ψ

and first-step estimate of θ0 built with identity weighting matrices.
As an application of Theorem 2, in Figure 1, we display the ratio of the

asymptotic standard deviation of some components of the estimators b̂, ĉ, and
φ̂ to the asymptotic standard deviation of the corresponding ML estimators in a
simple example through heat maps. The DGP is the same as in Section 3.4 (see
equation (3.10)) with Gaussian innovations. We fix b1,0 = 1.5, φ0 = 0.9, �u,0 = I2,
and σ 2

v,0 = 1, and display the asymptotic standard deviation ratio as a function of
the parameters c11,0 and c22,0 in the DGP. We use a closed-form expression for
the asymptotic variance of our estimators b̂, ĉ, and φ̂ with Gaussian innovations
and identity weighting matrix that we obtain from Theorem 2, and an algorithm
based on the Kalman filter to compute numerically the asymptotic variance of
the maximum likelihood estimator (MLE; see Appendixes E.5 and E.6 of the
Supplementary Material). As expected, the asymptotic standard deviation ratios
are larger than 1 for any DGP parameter values. For the loading parameter b1,
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the asymptotic efficiency loss of our estimator compared to MLE is moderate,
with the asymptotic standard deviation ratio below 1.5 for the most part of
the DGP parameter space (see Panel (a) of Figure 1). The efficiency loss is
maximal for (c11,0,c22,0) near (−0.3, − 1). In Panels (b)–(d) of Figure 1, for
the autoregressive parameters c11, c22, and φ, the asymptotic standard deviation
ratio is large (unbounded) near the line c11,0 = c22,0. In fact, on this line, the
asymptotic variance of our estimator diverges since Assumption ID.2 is not met
(see Proposition 4).14 For parameters c11, c22, and φ, the minimal value of the
asymptotic standard deviation ratio is 1.23, 1.42, and 1.75, respectively. Overall,
Figure 1 shows that, in this example, the asymptotic standard deviation of our
estimator is larger than the standard deviation of the MLE (i.e., the parametric
efficiency bound) by a factor about 2, for DGP parameter values that are not close
to the ones for which Assumptions ID.1–ID.3 do not hold.

4.3. Model Specification Testing

We use the Sargan–Hansen statistic to test the validity of the moment restrictions
(3.6) underlying the identification of matrix C0. This is tantamount to testing
the correct specification of the measurement equation, namely the property
that Yt − C0Yt−1 is the sum of a transformation of K dynamic latent factors
plus a White Noise process. The Hansen J-statistic is J1 = Tvec[Q̂YZ −
ĈQ̂Y−1Z]′(D̂cV̂ψ D̂′

c)
−1vec[Q̂YZ − ĈQ̂Y−1Z], where Ĉ is obtained with a consistent

estimator (D̂cV̂ψ D̂′
c)

−1 of the optimal weighting matrix defined in Section 4.2.
Vector vec[Q̂YZ − ĈQ̂Y−1Z] is a one-to-one transformation of a vector whose
entries are sample autocovariances of the η̂t, and sample cross-covariances
of the η̂t and ξ̂t−j with j �= 0. In Appendix B.4, we show that, under the
assumptions of Theorems 2 and 3 and the null hypothesis of correct specification
of the moment restrictions (3.6), the statistic J1 is asymptotically distributed
as χ2[Mn(n − K) − pn2] when T → ∞. The null hypothesis is rejected at
the asymptotic level α when J1 is above the 1 − α quantile of that chi-square
distribution. We can use a similar approach to test the validity of the moment
restrictions (3.8) implied by the VAR(q) dynamics of the factor. The Hansen
statistic is J2 = Tvec[Q̂ξW − �̂Q̂ξ−1W]′(D̂φV̂ψ D̂′

φ)−1vec[Q̂ξW − �̂Q̂ξ−1W], where

�̂ is obtained with a consistent estimator (D̂φV̂ψ D̂′
φ)−1 of the optimal weighting

matrix defined in (B.11). The critical value is deduced from the asymptotic
χ2[K2(L−q)] distribution.

The degrees of freedom for test statistics J1 and J2 grow with the numbers of
instruments M and L. When those are large, the chi-square approximation may be
poor in small samples. To cope with that issue, one could consider testing for a
subset of the moment restrictions used for estimation.

14In the heat maps in Panels (b)–(d) of Figure 1, the maximal value on the diagonal blocks is set to 50, 70, and 20 to
improve the visualization.
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5. MODEL SELECTION

This section deals with determination of the factor space dimension K and the VAR
orders p and q.

5.1. Selection of the Number of Dynamic Latent Factors

We first develop a test for hypotheses on the number of latent factors K, assuming
that the number of lags p of process Yt is known. From Assumption ID.1, integer
K is equal to the rank of matrix A∗

p+1. Therefore, we can build on the extensive
literature on rank testing (see, e.g., Anderson, 1951b; Cragg and Donald, 1996;
Robin and Smith, 2000). Here, we follow more closely the F-test of Kleibergen
and Paap (2006) and its generalizations in Al-Sadoon (2017). For a given integer
r < n, we consider the null hypothesis H0(r) of K = r latent factors against the
alternative hypothesis H1(r) of more than r latent factors, i.e., K > r. The test
statistic is

F (r) = T · vec(PN̂r
Â∗

p+1PM̂r
)′
{
(PM̂r

⊗PN̂r
)�̂11(PM̂r

⊗PN̂r
)
}†

vec(PN̂r
Â∗

p+1PM̂r
),

(5.1)

where PM̂r
(resp. PN̂r

) denotes the orthogonal projection onto the right (resp. left)

null space of the rank-r approximation of matrix Â∗
p+1, and �† is the Moore–

Penrose inverse of matrix �. The rank-r approximation of matrix Â∗
p+1 can be

obtained by singular value decomposition (SVD) as in Kleibergen and Paap
(2006), or any other decomposition-based or norm-based approximations as in
Definitions 2 and 3 of Al-Sadoon (2017).15 Under the conditions of Theorem 2,

we have
√

Tvec(Â∗
p+1 −A∗

p+1)
d→ N(0,�11), where �11 = S11Vψ,11S′

11 with S11 =
(E[Ỹt−p−1Ỹ ′

t−p−1])−1 ⊗ In and Vψ,11 = ∑∞
j=−∞ cov(Ỹt−p−1 ⊗ u∗

t ,Ỹt−p−1−j ⊗ u∗
t−j)

(see Appendix B.2). Matrix �̂11 in (5.1) denotes a consistent HAC estimator of
�11 as in Theorem 3. Using Theorem 1 and Corollary 1 in Al-Sadoon (2017), in
Appendix B.6, we show that under the null hypothesis H0(K), the statistic F (K)

is asymptotically distributed as a χ2[(n − K)2] variate as T → ∞. The number
of degrees of freedom (n − K)2 is the product of the dimensions of the left and
right null spaces of A∗

p+1, both equal to n − K under the null of K latent factors.
We reject the null at the asymptotic significance level α ∈ (0,1) if F (K) is above
χ2

1−α[(n−K)2], i.e., the 1−α quantile of the χ2[(n−K)2] distribution.

15Let Â∗
p+1 = Û�̂V̂ ′ be the SVD of the n × n matrix Â∗

p+1, where �̂ = diag(σ̂1, . . . ,σ̂n) is the diagonal matrix of

singular values ranked in descending order, and Û and V̂ are orthogonal matrices of eigenvectors of Â∗
p+1(Â

∗
p+1)

′

and (Â∗
p+1)

′Â∗
p+1, respectively. The rank-r approximation of matrix Â∗

p+1 is Ûr�̂rV̂ ′
r , and the orthogonal projections

on the left and right null spaces are PN̂r
= Ûn−rÛ′

n−r and PM̂r
= V̂n−rV̂ ′

n−r , where �̂r = diag(σ̂1, . . . ,σ̂r) and Û =
[Ûr : Ûn−r] and V̂ = [V̂r : V̂n−r] are written in blocks of r and n− r columns. For r = 0, we have PN̂r

= PM̂r
= In.
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Theorem 4. Under Assumptions M.1, IR.1, ID.1–ID.3, LS.1, and LS.2:
(a) the test has asymptotic size α, i.e., lim

T→∞P
(
F (K) > χ2

1−α[(n−K)2]|
H0(K)) = α, for any α ∈ (0,1), and (b) is consistent, i.e., lim

T→∞P
(
F (K) > χ2

1−α

[(n−K)2]|H1(K)
)= 1.

Moreover, (c) let K̂ = min
k∈{0,...,n−1}

{
k : F (r) > χ2

1−αT
[(n− r)2] for r < k and

F (k) ≤ χ2
1−αT

[(n− k)2]
}

, where αT → 0 s.t. 1
T log(αT) → 0. Then, K̂ = K0 w.p.a.

1 as T → ∞, where K0 is the true number of factors.

In Theorem 4(c), as with other consistent rank tests (see, e.g., Robin and Smith,
2000), to estimate the number of factors K, we adopt a sequential testing procedure
for H0(r) against H1(r) for r = 0,1, . . . ,n − 1. The estimator K̂ is the smallest
integer k ≤ n − 1 for which the statistic F (k) is not above the critical value.
It is well known that such an estimator with fixed significance level α is not
consistent because of type-I error at the step of testing H0(K) against H1(K).
To recover consistency in Theorem 4, we let α = αT → 0 at a suitable rate implied
by Theorem 5.8 in Poetscher (1983).

In the sequential procedure, when testing H0(r) against H1(r) with 0 < r < n,
the null hypothesis contains DGPs with exactly K = r common factors but
not those with K < r common factors. Chen and Fang (2019) stresses some
potential shortcomings and investigates alternative procedures. In our Monte Carlo
experiments in Section 6.4, we find a good performance of the selection procedure.

In the literature on reduced rank regression (e.g., Anderson, 1951a; Robinson,
1973; Reinsel and Velu, 1998), the Likelihood Ratio statistic has a limiting
χ2[(n − K)2] distribution. In our case, the VAR(p + 1) regression in Section 3.1
is a pseudo-model and such results cannot be invoked. For the same reason, the
asymptotic variance matrix of vec(Â∗

p+1) does not admit a Kronecker product form
in general, even under conditionally homoskedastic DGP. Hence, we cannot use
the weighting in Corollary 3.1 of Robin and Smith (2000) to get a χ2[(n − K)2]
distribution for their test.

5.2. Selection of the Number of Lags p and q

In this subsection, we first provide a consistent selection method for the number
of lags p in the VAR dynamics of the endogenous vector Yt. Let p0 be the true
(unknown) number of lags. For a given integer p� ≥ p0 + 2, we consider the
VAR(p�) pseudo-model

Yt =
p�∑

j=1

A�
j Yt−j +u�

t , (5.2)

with pseudo-true matrix parameters A�
j = Cj,0 + B0F( p�)

j , for j ≤ p0, and

A�
j = B0F( p�)

j , for p0 + 1 ≤ j ≤ p�, where F( p�)

j is the matrix coefficient of Yt−j
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is the linear projection of ft onto Yt−1, . . . ,Yt−p� , namely EL( ft|Yt−1, . . . ,Yt−p� ) =∑p�

i=1 F( p�)

i Yt−i, and u�
t is the residual of the linear projection of Yt onto

Yt−1, . . . ,Yt−p� . The selection method is based on the fact that B′
0⊥[A�

p0+1 : · · · :
A�

p� ] = 0 for any p� ≥ p0 + 2, i.e., the matrices A�
j for j ≥ p0 + 1 share a common

left null space. We provide next the iterative algorithm for selecting p. We start the
procedure with p = 0.

(1) Estimate the pseudo-parameters Â�
i , for i = 1, . . . ,p�, in model (5.2) using

multivariate OLS.
(2) Estimate the VAR pseudo-model Yt =∑p+1

j=1 A∗
j Yt−j +u∗

t and select K̂( p) from

Â∗
p+1 with the method proposed in Section 5.1.16 If K̂( p) = n, then set Sp =

+∞, update p � p+1, and redo Step 2. If K̂( p) < n, proceed with Step 3.
(3) Estimate matrix B̂( p) from Â∗

p+1 with the procedure in Section 4.1, compute

B̂⊥( p), and construct the statistic Sp = T ·vec
(

B̂⊥( p)′[Â�
p+2 : · · · : Â�

p�]
)′

�̂−1
22

vec
(

B̂⊥( p)′[Â�
p+2 : · · · : Â�

p� ]
)

, where �̂22 is the consistent estimator of the

asymptotic covariance matrix of vector
√

Tvec
(

B̂⊥( p)′[Â�
p+2 : · · · : Â�

p� ]
)

defined in (B.14). Given an asymptotic significance level α ∈ (0,1) and the
critical value c1−α( p) := χ2

1−α[(n − K̂( p))n( p� − p − 1)], if Sp ≤ c1−α( p),
then p̂ = p is the selected number of lags. If Sp > c1−α( p), then update
p � p+1 and repeat Steps 2 and 3 until the condition Sp ≤ c1−α( p) is met.

Assumption SEL.1. The n×n matrix Di = [C′
i,0B̄0 +F( p�)′

i : C′
i,0B0⊥] is either

nonsingular, or such that the projection of its kernel on the first K0 components of
R

n is nonnull, for all i = 1, . . . ,p0.

In Appendix B.7, we show that Sp has a chi-square distribution under the null
hypothesis p = p0 and that Assumption SEL.1 is sufficient for the consistency of
the testing procedure. It ensures that the left null space of A∗

p+1 does not annihilate
all columns of matrix [A�

p+2 : · · · : A�
p� ] when p < p0.

Theorem 5. Under Assumptions M.1, IR.1, ID.1–ID.3, LS.1, LS.2, and SEL.1,
we have: (a) under the null hypothesis p = p0, the asymptotic distribution of the

statistic is Sp
d→ χ2[n(n−K0)( p� −p0 −1)] as T → ∞; (b) the test is consistent,

i.e., under the alternative hypothesis p < p0, we have Sp
p→ +∞; and (c) if αT is

such that αT = o(1) and T−1 logαT = o(1), the selection procedure is consistent:
P[p̂ = p0] → 1, as T → ∞.

The proposed selection procedure for p requires the knowledge of an upper
bound on p0. It does not require knowledge of the true number of latent factors K0.
The latter number is estimated along the selection procedure, and K̂(p̂) coincides
with the selection obtained in Theorem 4(c) based on p0 w.p.a. 1 and is consistent

16The notation K̂( p) and B̂⊥( p) highlights the fact that, in the proposed algorithm, K̂ and B̂⊥ are functions of p.
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for K0. The selection procedure for K and p is semiparametric, i.e., is valid with
unspecified factor dynamics. Furthermore, note that the algorithm starts with p = 0.
Hence, if p̂ > 0, we reject a model without contagion.

Finally, the selection for the number of autoregressive lags q in the factor
dynamics follows by the fact that ξt is a VARMA(q,q) process (see Section 3.3).
Given the results in Hannan and Deistler (1988, p. 205), the selection of q is
performed by using information criteria.

6. MONTE CARLO ANALYSIS

We conduct Monte Carlo experiments in order to investigate the finite-sample
properties of the parameter estimators of the state-space model, of the test on the
number of latent factors, and of the selection procedures for the model orders
K,p,q. The DGPs are defined in Section 6.1. The results for the estimators,
test statistics, and model selection procedure are described in Sections 6.2–6.4,
respectively.

6.1. Data Generating Processes

We consider the following DGPs.

(i) DGPs 1–2: We start with a specification with n = 4 observed variables and a
single dynamic latent factor, i.e., K = 1. The VAR orders are p = q = 1. In DGP 1,
the innovations are Gaussians ut ∼ iiN(0,I5) and vt ∼ iiN(0,1). In DGP 2, the
innovations are Student ui,t ∼ t4, independent across i, and vt ∼ t4. The values of
parameters in C0, B0, and φ0 are the same in DGPs 1 and 2, and are reported in the
second column of Table 2 in Appendix G of the Supplementary Material.

(ii) DGPs 3–7: We next turn to multifactor specifications. The number of observ-
ables and latent factors is n = 5 and K = 2, respectively, the innovations are
Gaussians ut ∼ iiN(0,I5) and vt ∼ iiN(0,σ 2

v I2), the VAR orders are p = q = 1,
and the state-space representation is

Yt = C0Yt−1 +B0ft +ut, ft =
[

φ0 0
0 −φ0

]
ft−1 +

√
1−φ2

0vt. (6.1)

The parameterization of DGPs 3–7 in (6.1) allows us to disentangle the effect
of the factor variance, controlled by parameter σ 2

v , from the effect of the factor
persistence, given by autocorrelation parameter φ0. The five DGPs differ in terms
of the values of parameters σ 2

v and φ0, as reported in Table 1.
The values of the other DGP parameters are provided in Tables 7–15 in

Appendix G.1 of the Supplementary Material. Matrices C0 and �0 have eigen-
values inside the unit circle, and matrix B0 meets the normalization restric-
tion in Assumption IR.1. We have checked (numerically) that the identification
Assumptions ID.1–ID.3 hold. The matrices B0 and C0 are kept constant across
DGPs 3–7 for comparability reasons and for focusing the Monte Carlo analysis on
the effects of variability and persistence of the common factor.
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Table 1. Parameter values of DGPs 3–7.

Parameter DGP 3 DGP 4 DGP 5 DGP 6 DGP 7

φ0 0.9 0.9 0.7 0.7 0.4

σv 1 0.6 1 0.6 0.6

(iii) DGP 8: We have n = 5, K = 2, ut ∼ iiN(0,I5), and vt ∼ iiN(0,I2), and
Yt = C0Yt−1 +B0ft +ut,[

f1,t
f2,t

]
=
[

φ0 0
0 −φ0

][
f1,t−1

f2,t−1

]
+
⎡
⎣ 0.6 ·

√
1+0.8 · f 2

1,t−1v1t

0.6 ·
√

1+0.8 · f 2
2,t−1v2t

⎤
⎦,

with φ0 = 0.7. The bivariate common factor ft in DGP 8 follows a VAR process
of order 1 with autoregressive conditionally heteroscedastic (ARCH) dynamics in
the errors. This specification is compatible with the state-space model in (2.1) and
(2.2) since the error terms are White Noise processes. The matrices B0 and C0 are
as in DGPs 3–7.

(iv) DGP 9: Finally, we consider a model with p = 2 lags in the VAR specification.
For the rest, n = 4, K = q = 1, ut ∼ iiN(0,I5), and vt ∼ iiN(0,1) as in DGP1.

6.2. Finite-Sample Properties of the Estimators

In this subsection, we describe the results for the finite-sample bias and standard
deviations of the estimators B̂, Ĉ, and �̂ defined in equations 4.1–4.3, with
M = L = 10 and identity weighting matrices. For each DGP, we consider sample
sizes T = 500, 1,000, and 5,000. In each setting, the number of Monte Carlo
replications is Nrep = 1,000. The results are shown in the tables provided in
Appendix G.1 of the Supplementary Material. We have checked that the results
are similar under moderate changes of tuning parameters M and L.

Let us start with the results for DGP 1 displayed in Table 2 in the Supplementary
Material. As expected, the bias and the standard deviation of the estimators
decrease as the sample size T increases. The bias is typically smaller for the
coefficients in loadings vector B. The estimator of the factor autoregressive coef-
ficient φ is negatively biased. As a comparison, in Table 3 in the Supplementary
Material, we provide the results for the ML estimator. As expected, the standard
deviations for the ML estimator in a model with Gaussian errors are smaller
than the standard errors of our estimator. The standard deviations differ by a
factor about 2. In Figures 3 and 4 in the Supplementary Material, we display the
distribution of execution times for computing the estimates with our procedure, and
with ML, respectively (T = 5,000).17 The former is in closed form and requires
about 1 second per simulated sample. For the latter, the median execution time is

17We use a server with 2.10 GHz processor and 512 GB of RAM.
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approximately 60 seconds. The difference is larger in specifications with a larger
number of parameters. In Table 4 in the Supplementary Material, we investigate
the impact of the initial value for computing the ML estimates. We compare bias
and standard deviation when the maximization algorithm is initialized at the true
parameter values versus the case when a random initial value is chosen.18 With
random initial values, the bias and standard deviation of MLE are substantially
larger, and larger than for our estimator.

The bias and standard deviation for our estimators and the Gaussian QMLE
in DGP 2 with Student innovations are provided in Tables 5 and 6 in the
Supplementary Material. The results are similar as those for DGP 1. Heavy tails
do not affect substantially the performance of the estimators in this DGP.

Let us now consider the results in the two-factor specifications DGPs 3–7 with
Gaussian errors. We observe that, for a given sample size, the accuracy of the esti-
mator B̂ is higher when the latent factors are persistent and/or sufficiently volatile
(relative to the idiosyncratic shocks). Indeed, the smallest standard deviations for
the elements of B̂ are found in DGP 3 (see Table 7 in the Supplementary Material).
In this DGP, the estimates of the coefficients in B̂ are rather accurate even for
sample sizes as small as T = 500, with root mean square error (RMSE) about
20% of the parameter absolute value. The standard deviations of the estimates
in B̂ increase as we move to DGPs 4–6 characterized by less volatile and/or less
persistent latent factors (Tables 9–11 in the Supplementary Material). In DGP 7
with small factor variance and low persistence, estimator B̂ features large bias and
standard deviation in our simulations for sample sizes T = 500 and T = 1,000,
while it works well for sample size T = 5,000 (see Table 12 in the Supplementary
Material). The poor performance for the smaller sample sizes is driven mostly
from some simulations with extreme estimates. For this reason, in Table 13 in
the Supplementary Material, we report the difference between the median of the
estimates and the true parameter value, and a standard deviation measure obtained
from the interquartile range. These findings show that the distribution of estimates
is more centered and less dispersed than what Table 12 in the Supplementary
Material suggests.

The performance of estimators Ĉ and �̂ is quite homogenous across DGPs
3–7, typically with smaller standard deviations when the latent factors are less
volatile (DGPs 4, 6, and 7). The RMSEs of the estimators in Ĉ are in the
range of 0.20–0.30 for the smaller sample size T = 500, and in the range of
0.10–0.20 for the intermediate sample size T = 1,000. The biases and standard
deviations of estimator �̂ are large for T = 500, and decrease with sample size.
For instance, in DGP 3 with a more volatile latent factor, the RMSEs of the
estimators of parameters φ11 and φ22 are close to 0.55 and 0.90, that are about
60% and 100% of the parameter absolute value, respectively (see Table 7 in the
Supplementary Material). In Table 8 in the Supplementary Material, we report

18In the second case, the initial value is the true parameter value plus a uniform random draw in interval (−0.5,0.5).
The maximum number of iterations is fixed to 10,000 in both cases.
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the results using the median and interquartile range to assess the distortion and
dispersion of the estimates. Distortion and dispersion are smaller when assessed
from the quantiles of the distribution especially for T = 1,000 and T = 5,000,
and the decrease of standard deviations with sample size is more evident and in
accordance with root-T scaling from asymptotic theory. In fact, the distributions
of the elements of �̂ with T = 500 are bimodal. This finding may appear quite
surprising. Bimodal distributions may result from, e.g., incorrect order selection,
or parameter values close to the region of identification failure. Because we use
the true orders K = 2 and p = q = 1 for estimation, the first explanation is ruled
out. To assess the possibility of being near to identification failure, we remark that
the second eigenvalue of matrix A∗

2(A
∗
2)

′ involved in Assumption ID.1 is one order
of magnitude smaller than the first eigenvalue in DGPs 3–7. A similar remark
applies to Assumption ID.2. This fact may explain the relatively low precision of
estimators B̂ and Ĉ for small sample size T = 500 in some DGPs. In turn, this
induces noisy estimates ξ̂t of ξt. In unreported simulations, we notice that, when
using the true values of ξt instead of the estimates ξ̂t, the infeasible estimator of �

performs well with unimodal distributions peaked near the true value. We deduce
that the estimation error of B̂ and Ĉ is mostly responsible for the poor performance
of the feasible estimator �̂ with T = 500.

Finally, we comment on the results for the last two DGPs. The Monte Carlo
results for the parameter estimators B̂ and Ĉ when data are generated from DGP 8
with ARCH errors (Tables 14 and 15 in the Supplementary Material) feature small
bias. Standard deviations are rather large for some elements of Ĉ with T = 1,000,
but generally decrease with the sample size, confirming that the methodology
works also when the errors are neither i.i.d. nor Gaussian. The estimator �̂ is
reliable for the larger sample size T = 5,000 only. Table 16 in the Supplementary
Material shows the results for DGP 9 with p = 2 lags. The bias and standard
deviations are small, and comparable with the results in DGP 1. Hence, the
inclusion of a second lag does not make the performance of the estimators worse
in this DGP.

Overall, in our Monte Carlo experiments, we find good results for estimators
B̂ and Ĉ with T = 1,000, if not already with T = 500, in most of the considered
DGPs. For estimator �̂, the larger sample size T = 5,000 is needed to get reliable
results in some multifactor models.

6.3. Finite-Sample Properties of the Rank Test for the Number of
Factors

We conduct a Monte Carlo analysis of the finite-sample size and power properties
of the test for the number of unobservable factors defined in Section 5.1. We
simulate the processes with the two-factor specifications in DGPs 3–8. The number
of Monte Carlo replications is Nrep = 1,000.

The results for the empirical size refer to the test of the null hypothesis of K = 2
unobservable factors, against the alternative with K > 2. We collect the results
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in Table 17 in Appendix G.2 in the Supplementary Material. Overall, the results
show that the empirical size is close to the nominal size α, for α = 10%,5%,1%, or
0.5%. Size distortions are smaller than 3% even for sample size T = 500 in DGPs
3–6 and 8. When data are drawn from DGP 7, size distortions are bigger and the
empirical and nominal sizes are close only for the largest considered sample size
T = 5,000. This finding is in line with the relatively poor performance of the factor
loading estimators in small samples reported in Section 6.2 for this DGP with low
persistency and small volatility of the latent factors.19

The results for the empirical power displayed in Table 18 in the Supplementary
Material refer to the test of the null hypothesis of K = 1 unobservable factors,
against the alternative K > 1, when data are generated from DGPs 3–8 with K = 2.
The test features overall good power properties. For nominal size 5%, the power
is approximately 70% or more for most DGPs, already with sample size T = 500.
Again, for DGP 7, the power is satisfactory only for the largest sample size.

6.4. Finite-Sample Properties of the Selection Procedure for Model
Orders

In Table 19 in the Supplementary Material, we report the percentages of selected
model orders combinations ( p,K). Orders ( p,K) are selected according to the
procedure in Section 5.2 with different nominal levels α = 5%,1%,0.5%, and
0.1%. Data are generated according to DGP 1 with sample sizes T = 500,
T = 1,000, and T = 5,000. For T = 1,000 and T = 5,000, the proportion of
times we select the correct model (1,1) is the largest and above 99%, when the
smallest nominal size α = 0.1% is adopted. For T = 500, the best performance is
obtained with α = 0.5%, with the correct model selected in approximately 85%
of the repetitions. With the smallest size α = 0.1%, the performance deteriorates,
because a model with no factors, i.e., K = 0, is selected approximately 30% of
the time given the large critical value. The results are in line with the theoretical
analysis requiring the size α to shrink to 0 with growing sample size.

In order to expand the analysis and include the selection of q, in Table 20 in
the Supplementary Material, we report the percentages of selected model orders
combinations ( p,K,q). Orders ( p,K) are selected according to the procedure
presented in Section 5.2 with α = 0.01, and q is selected using the Bayesian
information criterium (BIC). Due to the numerical burden in the selection of q,
in this exercise, we focus on DGP 1 with sample size T = 1,000. In 66% of
our simulations, we select the correct model orders combination p = q = K = 1.
In approximately 20% of our simulations, we overestimate the order q of the
factor dynamics. The selection of ( p,K) is correct in approximately 90% of
the simulations in line with the results found in Table 19 in the Supplementary
Material.

19We consider DGPs with a number of observables n ≤ 5 because the finite-sample properties of the rank test when
n > 5 are rather poor.
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7. EMPIRICAL APPLICATION

In this section, we conduct an empirical analysis on the interconnectedness among
the realized volatility series of four European stock market indices. We use our
state-space model to separate the effects of systematic volatility shocks from
volatility spillovers across markets.

7.1. Data and State-Space Model

We collect the daily 5-minute realized volatilities of four European stock market
indices, which are the French CAC 40, the OMX Stockholm 30, the Spanish
IBEX 35, and the German DAX 30, from June 1, 2009 to November 19, 2021,
i.e., T = 3,160 observations.20 Figure 2 displays the four realized volatility series.
The series feature substantial co-movements, and one observes the generalized
increase of volatilities during the pandemics. We transform the series by taking the
log for the rest of the analysis. In Appendix F of the Supplementary Material, we
provide summary statistics (Table 1) and auto- and cross-correlation functions of
the four time series (Figure 1). In all markets, realized volatilities display positive
autocorrelations slowly decaying with the lag, and the cross-correlation is positive
and long-lasting for all pairs of markets. Moreover, the stationary distribution of
the individual series display non-Gaussianity features with negative skewness and
kurtosis larger than 3.21
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0.5

1
1.5

2
2.5

3
3.5

4
4.5

×10–3

×10–3 ×10–3

CAC 5 min RV

0

0.002

0.004

0.006

0.008

0.01

0.012
OMX Stockholm 5 min RV

01 Jun 2009 18 Aug 2015 19 Nov 2021 01 Jun 2009 18 Aug 2015 19 Nov 2021

01 Jun 2009 18 Aug 2015 19 Nov 2021 01 Jun 2009 18 Aug 2015 19 Nov 2021

0

1

2

3

4

5

6
IBEX 5 min RV

0

0.5

1

1.5

2

2.5

3

3.5
DAX 5 min RV

Figure 2. This figure plots the daily series of 5-minute realized volatilities of CAC 40, OMX 30,
IBEX 35, and DAX 30 market indices from June 1, 2009 to November 19, 2021.

20The data can be downloaded from the website https://realized.oxford-man.ox.ac.uk/data.
21The Jarque–Bera test rejects the normality assumption at the 5% level for all series of log realized volatilities. For
each series, the Dickey–Fuller test rejects the null of unit root.
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We estimate the state-space model in equations (2.1) and (2.2), where the vector
of observables Yt = (Y1t,Y2t,Y3t,Y4t)

′ contains the demeaned values of the log
realized volatilities of the French, Swedish, Spanish, and German stock market
indices. First, the autoregressive matrices C1, . . . ,Cp represent volatility spillover
effects among the European financial markets. The reaction of a given stock market
volatility to shocks in volatilities of other markets can be due to either financial
or macroeconomic linkages, or correlation in assets and strategies of the firms in
these markets. Second, the K-dimensional unobservable common factors vector ft
represents variables that have a pervasive impact on the European stock market
volatility. This systematic source of uncertainty has a differentiated impact across
countries as a function of the loadings in matrix B.

7.2. Model Selection and Parameter Estimates

The first empirical task that we tackle is the joint selection of the number of
lags p and the number of unobservable factors K. For the estimation of these
quantities, we adopt a VAR pseudo-model with p� = 8 lags (see Section 5.2). The
procedure outlined in Theorem 5 with α = 0.01 selects two unobservable factors
and four contagion lags, i.e., K̂ = 2 and p̂ = 4. The data-driven selection procedure
finds evidence of the necessity of both contagion and latent factors to explain co-
movements in the log volatilities series. Once orders p and K are selected, we
estimate the loadings matrix B and the contagion matrices Cj with the procedure
in Section 4.1. The estimates are

B̂ =

⎡
⎢⎢⎢⎢⎢⎣

−0.5417
(0.1695)

0.4457
(0.2367)

−0.1594
(0.1497)

0.6040
(0.2171)

1.0000
(−)

0.0000
(−)

0.0000
(−)

1.0000
(−)

⎤
⎥⎥⎥⎥⎥⎦,

Ĉ1 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.3736
(0.0458)

0.0151
(0.0462)

0.2235
(0.0471)

0.0502
(0.0493)

−0.0090
(0.0415)

0.2457
(0.0408)

−0.1402
(0.0361)

−0.1061
(0.0370)

0.1655
(0.0394)

0.0452
(0.0406)

0.1122
(0.0404)

−0.0187
(0.0483)

0.0214
(0.0418)

−0.0155
(0.0413)

−0.1227
(0.0453)

0.2437
(0.0440)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Ĉ2 =

⎡
⎢⎢⎢⎢⎢⎣

0.1229
(0.0622)

0.0136
(0.0625)

0.0693
(0.0548)

0.0964
(0.0700)

0.0118
(0.0541)

0.2493
(0.0552)

0.0820
(0.0474)

0.1066
(0.0517)

0.0343
(0.0495)

0.0760
(0.0533)

0.1677
(0.0452)

0.1363
(0.0559)

0.0418
(0.0588)

0.0909
(0.0569)

0.1345
(0.0501)

0.3639
(0.0612)

⎤
⎥⎥⎥⎥⎥⎦,
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Ĉ3 =

⎡
⎢⎢⎢⎢⎢⎢⎣

0.1332
(0.0440)

−0.0105
(0.0454)

−0.0690
(0.0422)

−0.0032
(0.0444)

0.0603
(0.0525)

0.2085
(0.0482)

0.0517
(0.0484)

0.1672
(0.0549)

0.1754
(0.0483)

−0.0029
(0.0524)

−0.0687
(0.0442)

−0.0420
(0.0432)

0.0706
(0.0428)

0.0805
(0.0447)

0.0012
(0.0431)

0.2955
(0.0522)

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Ĉ4 =

⎡
⎢⎢⎢⎢⎢⎢⎣

−0.0045
(0.0949)

0.0283
(0.1094)

0.0001
(0.0898)

−0.0169
(0.1098)

−0.0338
(0.0876)

−0.0416
(0.0911)

0.0190
(0.0811)

−0.0945
(0.0830)

0.3831
(0.0784)

0.0132
(0.0877)

0.0621
(0.0779)

0.0457
(0.0950)

−0.0425
(0.1007)

−0.0696
(0.1022)

−0.0027
(0.0836)

−0.0836
(0.1040)

⎤
⎥⎥⎥⎥⎥⎥⎦

.

Below each estimate, we display the standard errors from Theorem 3.22 The
coefficient estimates displayed in bold are statistically significant at the 5% level.
The standard errors for the elements of B are rather large (greater than 0.10) despite
the sample consisting of more than 3,000 observations. In our normalization, the
dynamic latent factors are rotated such that the first factor impacts on the IBEX 35
index (with unit loading), but not on the DAX 30 index, and vice versa for the
second factor. From the estimated loadings matrix B̂, the first factor has opposite
effects on the French and Spanish stock market volatilities, whereas the second
factor impacts positively on both the German and Swedish indices (as well as on
the French one, although the loading coefficient is significant at the 10% level
only). Focusing on the contagion matrix at lag one Ĉ1, the third column displays
statistically significant volatility spillover effects from the Spanish index to all the
other stock markets over 1-day horizon. That spillover coefficient is positive for
the French CAC 40, but negative for the Swedish OMX 30 and the German DAX
30 indices. We find also a positive spillover effect from the French stock market
to the Spanish market index, and a negative effect from the German market to the
Swedish one. Overall, these estimates suggest a certain geographic segmentation,
with the German and Swedish stock markets loading positively on the second latent
factor, and the Spanish and French markets loading on the first factor with opposite
signs while featuring positive volatility spillover effects among each other, as
well as negative spillover effects from the Spanish index toward the German and
Swedish stock markets.

For a preliminary analysis of the volatility spillover effects at horizons longer
than 1 day, we consider the matrices Ch for h ≥ 1, i.e., the matrix coefficients
in the series expansion C(L)−1 = ∑∞

h=0ChLh. Indeed, (Ch)i,j yields the linear
response of Yi,t+h to a unit change in Yj,t holding fixed the path of the latent factor,

22For the HAC estimator V̂ψ , we use the Bartlett kernel with 10 lags. For the estimation of matrix C, we use M = 25
lags of η̂t in the instrument vector Ẑt and implement the optimal weighting matrix. This choice is dictated by the
necessity of having a condition number for matrix Q̂Y−1Z smaller than 20, say. The estimates are rather stable to
changes in M, when M is greater than 25.

https://doi.org/10.1017/S0266466622000536 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000536


736 FEDERICO CARLINI AND PATRICK GAGLIARDINI

0

0.05

0.1

0.15

0.2

0.25
IBEX --> CAC

–0.15

–0.1

–0.05

0

0.05
IBEX --> OMX Stockholm

–0.05

0

0.05

0.1

0.15

0.2
IBEX --> IBEX

0 50 100 150 200 250 300 0 50 100 150 200 250 300

0 50 100 150 200 250 300 0 50 100 150 200 250 300
–0.15

–0.1

–0.05

0

0.05

0.1

0.15
IBEX --> DAX

Figure 3. The panels of this figure plot the IRFs to shocks in realized volatility of IBEX 35 index,
for the DAX, OMX Stockholm, IBEX, and DAX indices. The dynamic latent factor is held fixed in the
definition of the impulse responses.

namely (Ch)i,j = ∂EL[Yi,t+h|�t]
∂Yj,t

, where the information set �t contains Yt,Yt−1, . . .

and . . . ,ft+1,ft,ft−1, . . .. In Figure 3, we display the coefficients (Ch)i,3 as a function
of lag h, for i = 1, . . . ,4, i.e., the percentage increase in realized volatility of market
i at horizon h in response to 1% increase in the realized volatility of IBEX 35. The
four panels show long-lasting positive volatility spillover effects from the Spanish
stock market index to the other ones. In fact, the largest estimated eigenvalue of
the companion matrix corresponding to the VAR(4) dynamics is equal to 0.98.
The definition of IRFs for idiosyncratic shocks and systematic shocks separately
is beyond the scope of this paper and is left for future research.

We now deal with model selection and parameter estimation for the VAR factor
dynamics. The BIC criterion selects q̂ = 6 lags. The estimates of the autoregressive
matrix coefficients and their standard errors are23

�̂1 =
⎡
⎣0.5189

(0.2448)
−0.0557

(0.2909)

0.5427
(0.3672)

0.5137
(0.3344)

⎤
⎦, �̂2 =

⎡
⎣−0.2294

(0.2437)
−0.0823

(0.2758)

−0.5029
(0.1517)

−0.3128
(0.2376)

⎤
⎦,

23We use L = 50 lagged instruments. Choices of L smaller than 45 lead to unstable estimates, whereas larger values
of L may result in poorer finite-sample properties.
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�̂3 =
⎡
⎣0.1630

(0.3247)
−0.0828

(0.2804)

0.0367
(0.2545)

−0.0642
(0.2619)

⎤
⎦, �̂4 =

⎡
⎣ 0.1268

(0.2288)
0.0317
(0.2630)

−0.3393
(0.2395)

0.0202
(0.2424)

⎤
⎦,

�̂5 =
⎡
⎣0.3522

(0.4334)
−0.0803

(0.5198)

0.0647
(0.1665)

−0.0815
(0.3119)

⎤
⎦, �̂6 =

⎡
⎣−0.0040

(0.2824)
0.0409
(0.3349)

0.0810
(0.1793)

0.0345
(0.1651)

⎤
⎦ .

The interpretation of the elements of matrices �j is not straightforward because the
factors are latent and their dynamic parameters are conditional on the chosen nor-
malization for B. The estimated autoregressive matrix at lag one displays positive
coefficients among the numerically large entries, although only one is statistically
significant at the 5% level—the AR coefficient for the factor with opposite effects
on the French and Spanish stock markets. The moduli of the eigenvalues of the
estimated companion matrix �̃ in the FAVAR representation (Appendix A.1),
which are invariant to the chosen factor normalization, range between 0.3050 and
0.9867, matching the stationarity condition and highlighting the persistence in the
latent factor process. Moreover, the estimate of the unconditional variance V( ft)

of the latent factor vector is

[
0.3055 −0.1154

−0.1154 0.6994

]
. The two latent factors have a

similar scale, and are weakly correlated unconditionally.

7.3. Model Specification Testing

In this subsection, we deal with specification testing for the state-space model.
In Figure 2 in Appendix F of the Supplementary Material, we plot the auto-
and cross-correlograms of the bivariate serially dependent component ξ̂t, and
the two-dimensional White Noise component η̂t. We use the estimated processes
obtained from B̂ and Ĉ. The estimated autocorrelation functions of the White Noise
components ηit, i = 1,2, are almost flat and close to zero, consistently with the
population properties. Moreover, we observe almost zero correlation between ξ̂jt,
for j = 1,2, and lags and leads of η̂it, for i = 1,2. These findings provide evidence
that the bivariate latent factor ft is able to capture most of the long-range persistence
displayed by the individual volatility series in Figure 2. Standard confidence bands
on the sample autocorrelation function (ACF) are invalid since they do not account
for the statistical error in estimating B and C when obtaining ξ̂jt and η̂it. Therefore,
for a formal specification test, we use the Hansen statistic introduced in Section 4.3.
The statistic value is J1 = 73.64, which is below the asymptotic critical value at the
5% level 119.87. This result corroborates the evidence of correct semiparametric
specification of the measurement equation in our state-space model. Finally, the
Hansen statistic value J2 = 216.75 is below the critical value at 5% (equal to
233.99), suggesting correct specification of the VAR(6) dynamics for the bivariate
latent factor process.
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8. CONCLUDING REMARKS

In this paper, we study identification and statistical inference in a small-
dimensional VAR model with dynamic unobservable factors. The novelty in
our approach consists in the use of internal instrumental variables, which are
(parameter-dependent) linear transformations of the observable variables and
their lags, instead of large cross sections of data. The constructive identification
approach leads to a multistep estimation procedure which does not require numer-
ical optimization. We establish asymptotic normality of the estimators with a large
number of serial observations T and finite number of series n. In some numerical
examples, we show that the efficiency loss with respect to Gaussian QMLE is
moderate, except for DGPs near the parameter values that are not identified (a zero-
measure subset of the parameter space). We complete our theoretical analysis with
consistent methods for selecting the number of latent factors and the VAR orders,
and J-tests for correct model specification. In an empirical illustration, we use our
state-space specification to disentangle dynamic common factors from spillover
effects in the daily realized volatility series of four European stock markets.

Our analysis can be extended along several directions. First, we could combine
our estimator and QMLE. Indeed, the estimates from our procedure can serve
as consistent initial values for likelihood maximization. Moreover, the results in
Section 3.3 imply that process ξt follows a state-space model (see (3.9)). Hence, we
could use ξ̂t and QMLE to estimate the parameters � of the VAR factor dynamics.
While requiring numerical optimization, compared to QMLE on the full model,
it would have the advantage to reduce substantially the number of parameters.
This estimator does not require the invertibility condition for �q,0 and might
have better finite-sample properties compared to the estimator of � studied in
this paper. Second, we could extend the model specification to include lags of the
latent factor, as well as external observable factors, in the measurement equation.
Third, we could investigate the IRFs in our state-space model, by distinguishing
the responses to idiosyncratic volatility shocks from responses to shocks in the
latent common factor. These and other extensions are beyond the scope of this
paper, and we leave them for future research.

APPENDIX A. FAVAR and VARMA Representations and Proofs
of Identification

A.1. FAVAR Representation

Let Yt = [Y ′
t, . . . ,Y

′
t−p+1]′ and f t = [ f ′

t , . . . ,f
′
t−q+1]′. Then, equations (2.1) and (2.2) can

be written as a VAR(1) model:[
Yt
f t

]
=
[

C̃ B̃�̃

0 �̃

][
Yt−1
f t−1

]
+
[

wt
vt

]
, (A.1)

where wt = [(ut +Bvt)
′,0′, . . . ,0′]′ and vt = [v′

t,0
′, . . . ,0′]′. The parameters C̃, B̃, and �̃ are

np×np, np×Kq, and Kq×Kq matrices, respectively, defined in companion form as
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C̃ =

⎡
⎢⎢⎢⎣

C1 · · · Cp−1 Cp
In 0 0 0

0
. . .

...
...

0 · · · In 0

⎤
⎥⎥⎥⎦, �̃ =

⎡
⎢⎢⎢⎣

�1 · · · �q−1 �q
IK 0 0 0

0
. . .

...
...

0 · · · IK 0

⎤
⎥⎥⎥⎦, B̃ =

⎡
⎢⎢⎢⎣

B 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0

⎤
⎥⎥⎥⎦ .

The eigenvalues of matrices C̃ and �̃ are the roots of polynomials det[zpC(z−1)] and
det[zq�(z−1)] with complex argument z. Hence, these eigenvalues are smaller than 1 in
modulus under Assumptions M.1(iii) and M.2(ii).

A.2. VARMA Representation

The VARMA representation for observable process Yt is given in the next lemma, which is
proved in the Supplementary Material.

Lemma 1. The vector Yt in the state-space model in equations (2.1) and (2.2) admits the
VARMA(p + q,q) representation A(L)Yt = �(L)wt with wt ∼ WN(0,�w). The AR
polynomial A(L) = In −∑p+q

j=1 AjL
j has order p + q, and the matrix coefficients are

Aj = Cj +B�jB̄
′−∑j−1

i=1 B�iB̄
′Cj−i, j = 1, . . . ,p+q, where B̄ = B(B′B)−1, Cj ≡ 0 for j > p,

and �j ≡ 0 for j > q. The coefficients �j of the MA polynomial �(L) = In +∑q
j=1 �jL

j

and the variance �w of the innovation satisfy

�w +
q∑

j=1

�j�w� ′
j = B�vB′ +�u +

q∑
j=1

B�jB̄
′�uB̄�′

jB
′, (A.2)

�i�w +
q∑

j=i+1

�j�w� ′
j−i = −B�iB̄

′�u +
q∑

j=i+1

B�jB̄
′�uB̄�′

j−iB
′, i = 1, . . . ,q. (A.3)

Moreover, under Assumptions M.1(iii) and M.2(ii), the roots of polynomial detA(z) are
outside the unit circle.

A.3. Proof of Proposition 1

From measurement equation (2.1), we have EL(Yt|Yt−1, . . . ,Yt−p−1) =∑p
j=1 Cj,0Yt−j +

B0EL( ft|Yt−1, . . . ,Yt−p−1) =∑p
j=1(Cj,0 +B0Fj)Yt−j +B0Fp+1Yt−p−1. Thus,

A∗
p+1 = B0Fp+1. (A.4)

Then, under Assumption ID.1, matrix Fp+1 has full rank and Fp+1F′
p+1 is nonsingular.

Thus, we identify the column space of B0 from the eigenvectors of matrix (A∗
p+1)(A∗

p+1)′ =
B0(Fp+1F′

p+1)B′
0 associated with the K nonzero eigenvalues.

A.4. Proof of Proposition 2

Let us first prove Part (a). Let us write matrix QY−1Z in terms of the structural
parameters. Matrix QY−1Z = E[Yt−1η′

t−1 : · · · : Yt−1η′
t−M] has blocks E[Yt−1η′

t−j] =
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E[Yt−1u′
t−j]B0⊥. From the FAVAR representation (A.1), we have E[Yt−1u′

t−j]B0⊥ =
C̃j−1

0 E[Yt−ju
′
t−j]B0⊥ = C̃j−1

0 E[wt−ju
′
t−j]B0⊥ = C̃j−1

0 �̃u,0B0⊥for j = 1, . . . ,M, where

�̃u,0 = [�u,0,0n×n, . . . ,0n×n]′. By denoting (A)[1] the first n columns of an np × np
matrix A, we get

QY−1Z =
[
(Inp)[1]�u,0B0⊥ : (C̃0)[1]�u,0B0⊥ : · · · : (C̃M−1

0 )[1]�u,0B0⊥
]

=
[
(Inp)[1] : (C̃0)[1] : · · · : (C̃M−1

0 )[1]

][
IM ⊗ (�u,0B0⊥)

]
. (A.5)

We have (C̃m
0 )[1] = C̃0(C̃m−1

0 )[1], and the upper n × n block of matrix (C̃m
0 )[1] is Cm, for

any m ≥ 1. Thus, we have
[
(Inp)[1] : (C̃0)[1] : · · · : (C̃M−1

0 )[1]

]
= [H : O], where

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

In C1 C2 · · · Cp−1
In C1 · · · Cp−2

In
. . .

...
. . . C1

In

⎤
⎥⎥⎥⎥⎥⎥⎦

, O =

⎡
⎢⎢⎢⎢⎢⎣

Cp Cp+1 Cp+2 · · · CM−1
Cp−1 Cp Cp+1 · · · CM−2

...
...

...
C2 C3 CM−p+1
C1 C2 · · · CM−p

⎤
⎥⎥⎥⎥⎥⎦ .

The matrix coefficients Cj satisfy the recursive relations Cm =∑
j CjCm−j, m ≥ 1, where

the summation extends over j = 1,2, . . ., with C0 = In, Cj = 0, for j < 0, and Cj = 0, for
j > p. Hence, from (A.5), the matrix QY−1Z written in terms of the structural parameters is
QY−1Z = [H : O]

[
IM ⊗ (�u,0B0⊥)

]
.

Let us now characterize the rank of matrix QY−1Z. Let us left-multiply it by the

nonsingular matrix
[
Ip ⊗ (Q′�−1

u,0)
]

H−1, where Q = [B0 : B0,⊥]. We get

[
Ip ⊗ (Q′�−1

u,0)
]

H−1QY−1Z =
[
Ip ⊗ (Q′�−1

u,0)
][

Inp : H−1O
][

IM ⊗ (�u,0B0⊥)
]

=
(

Ip ⊗ (Q′B0,⊥) :
[
Ip ⊗ (Q′�−1

u,0)
]

H−1O
[
IM−p ⊗ (�u,0B0⊥)

])
.

By writing this matrix explicitly, we have

[
Ip ⊗ (Q′�−1

u,0)
]

H−1QY−1Z

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0K×(n−K) B′
0�−1

u,0[H−1O]11�u,0B0,⊥ · · · B′
0�−1

u,0[H−1O]1,M−p�u,0B0,⊥
In−K B′

0,⊥�−1
u,0[H−1O]11�u,0B0,⊥ B′

0,⊥�−1
u,0[H−1O]1,M−p�u,0B0,⊥

0K×(n−K) B′
0�−1

u,0[H−1O]21�u,0B0,⊥ · · · B′
0�−1

u,0[H−1O]2,M−p�u,0B0,⊥
In−K B′

0,⊥�−1
u,0[H−1O]21�u,0B0,⊥ B′

0,⊥�−1
u,0[H−1O]2,M−p�u,0B0,⊥

. . .
.
.
.

.

.

.

0K×(n−K) B′
0�−1

u,0[H−1O]p,1�u,0B0,⊥ · · · B′
0�−1

u,0[H−1O]p,M−p�u,0B0,⊥
In−K B′

0,⊥�−1
u,0[H−1O]p,1�u,0B0,⊥ B′

0,⊥�−1
u,0[H−1O]p,M−p�u,0B0,⊥

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,
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where [A]i,j denotes the n × n block in position (i,j) of the np × n(M − p) matrix A. We
deduce that matrix QY−1Z has full row rank if, and only if, the matrix

� =

⎡
⎢⎢⎢⎢⎢⎣

B′
0�−1

u,0[H−1O]11�u,0B0,⊥ ·· · B′
0�−1

u,0[H−1O]1,M−p�u,0B0,⊥
B′

0�−1
u,0[H−1O]21�u,0B0,⊥ ·· · B′

0�−1
u,0[H−1O]2,M−p�u,0B0,⊥

...
...

B′
0�−1

u,0[H−1O]p,1�u,0B0,⊥ ·· · B′
0�−1

u,0[H−1O]p,M−p�u,0B0,⊥

⎤
⎥⎥⎥⎥⎥⎦ (A.6)

has full row rank. Let us write explicitly matrix H−1O. We have

H−1 =

⎡
⎢⎢⎢⎢⎢⎣

In −C1 −C2 · · · −Cp−1
In −C1 · · · −Cp−2

. . .
...

In −C1
In

⎤
⎥⎥⎥⎥⎥⎦ and

H−1O =

⎡
⎢⎢⎢⎢⎢⎣

G1,p G2,p · · · GM−p,p
G1,p−1 G2,p−1 · · · GM−p,p−1

...
...

...
G1,2 G2,2 GM−p,2
G1,1 G2,1 · · · GM−p,1

⎤
⎥⎥⎥⎥⎥⎦, (A.7)

where Gm,i = Cm+i−1 −C1Cm+i−2 −·· ·−Ci−2Cm+1 −Ci−1Cm =∑
j≥1 CjCm+i−1−j −∑

j<i CjCm+i−1−j = ∑
j≥i CjCm+i−1−j = ∑

j≥1 Cj+i−1Cm−j. By plugging (A.7) into
(A.6), transposing the matrix � and interchanging the order of the columns, the statement
in Part (a) follows. Finally, the proof of Part (b) follows from equation (3.7) and Part (a).

A.5. Proof of Proposition 3

We have QWξ−1
= E(Wtξ

′
t−1), where Wt = (ξ ′

t−q−1, . . . ,ξ
′
t−q−L)′ and ξ ′

t−1 = (ξ ′
t−1, . . . ,

ξ ′
t−q)′, with ξt = B̄′

0(Yt −C0Yt−1) = ft + B̄′
0ut. Thus, QWξ−1

= E( f t−q−1:t−q−L f ′
t−1) =

E( f t−q−1:t−q−L f ′
t−q−1)(�̃′

0)q, where �̃0 is the matrix in the FAVAR representation in

companion form (Appendix A.1) and f t−q−1:t−q−L = ( f ′
t−q−1, . . . ,f

′
t−q−L)′. If L ≥ q, the

upper qK ×qK block of matrix QWξ−1
is equal to V(f t−q−1)(�̃′

0)q. Therefore, we deduce

that QWξ−1
is full column rank if, and only if, �̃0 is nonsingular. By using that �̃0 is

nonsingular if and only if �q,0 is nonsingular, the statement in Part (a) follows. Part (b)
follows from equation (3.8).

APPENDIX B. Proofs of Asymptotic Results

B.1. Consistency of Estimators b̂, ĉ, φ̂: Proof of Theorem 2(a)

In the proof, we use repeatedly the consistency of sample autocovariances. The next lemma
is proved in the Supplementary Material using Theorem 4.1.1 in Hannan and Deistler
(1988).
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Lemma 2. Under Assumptions M.1, M.2, and LS.1(i) and (iii), we have 1
T
∑T

t=1 YtY ′
t−i

a.s.→
�(i), as T → ∞, for any i ≥ 0, where �(i) = E(YtY ′

t−i).

(i) Consistency of b̂. Estimator b̂ = vec(B̂1) is obtained from the eigendecomposition
of matrix R̂ = Â∗

p+1Â∗′
p+1, which is an estimator of R = A∗

p+1A∗′
p+1. So let us first find

the spectrum of matrix R. We recall that A∗
p+1 = B0Fp+1 where Fp+1 is full rank under

Assumption ID.1 (see equation (A.4)). The normalized eigenvectors of matrix R associated
with the K nonzero eigenvalues λ1, . . . ,λK are the columns of the matrix

U = [U1 : · · · : UK ] = B0Q, (B.1)

where Q is the matrix such that Q′(B′
0B0)Q = IK . Under Assumption LS.1(iv), the nonzero

eigenvalues are distinct, so that they are ranked as λ1 > λ2 > · · · > λK > 0. Furthermore,
matrix R has eigenvalue λ0 = 0 with multiplicity n − K. The corresponding eigenspace is
spanned by the columns of B0⊥.

Now, Â∗
p+1

a.s.→ A∗
p+1, since Â∗

p+1 is a continuous function of sample autocovariances and

the latter are strongly consistent from Lemma 2. Then, R̂
a.s.→ R. The strong consistency of

estimator B̂ is proved by perturbation theory methods. Here, we use a version of Theorem 3
of Izenman (1975) adapted to prove almost sure convergence of the spectrum.

Proposition 6. Let R be an n×n symmetric positive-semidefinite matrix of rank K ≤ n,
and let its K strictly positive eigenvalues be distinct: λ1 > · · · > λK > 0. Let Uj, for

j = 1, . . . ,K, be the corresponding normalized eigenvectors. Let matrix R̂ be a strongly

consistent estimator of R, namely R̂
a.s.→ R, and let λ̂j and Ûj, for j = 1, . . . ,K, be its K

largest eigenvalues and associated normalized eigenvectors. Then, λ̂j = λj +U′
j(R̂−R)Uj +

Oa.s.(|R̂−R|2) and

Ûj = Uj +
K∑

i=0,i �=j

1

λj −λi
Pi(R̂−R)Uj +Oa.s.(|R̂−R|2) j = 1, . . . ,K, (B.2)

where matrix Pi = UiU
′
i is the orthogonal projector onto the eigenspace associated with

eigenvalue λi, for i = 1, . . . ,K, matrix P0 is the eigenprojector on the null space associated
with eigenvalue λ0 = 0, and X = Oa.s.(1) means X = O(1) a.s.

Under Assumptions M.1 and LS.1(i), (iii), and (iv), Proposition 6 applies in our case.
Note that the sum in the r.h.s. of (B.2) extends also to include the zero eigenvalue λ0 = 0
with eigenprojector given by P0 = B0⊥(B′

0⊥B0⊥)−1B′
0⊥ = In −B0(B′

0B0)−1B′
0. Given that

R̂
a.s.→ R, then Ûj

a.s.→ Uj, for j = 1, . . . ,K. This means that Û = [Û1 : · · · : ÛK ] =
[
Û

′
1 : Û

′
2

]′
converges a.s. to U = B0Q = [

(B1,0Q)′ : Q′]′ (see equation (B.1)). It then follows that

B̂ = ÛÛ
−1
2 converges a.s. to B0 =

[
B′

1,0 : IK

]′
.

(ii) Consistency of ĉ. From equation (4.2), estimator ĉ is function of matrices Q̂Y−1Z, Q̂YZ

and �̂c. The first two matrices depend on a set of estimated autocovariances of process
{Yt}, whose elements we gather in vector γ̂ with true values γ0, and on estimators �̂

and B̂⊥. Thus, we have ĉ = c(γ̂ ,�̂,B̂⊥,�̂c), where c(·, · , · ,·) is a continuous function
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such that c0 = c(γ0,�0,B0⊥,�c). Then, the strong consistency of estimator ĉ follows,

if we show that γ̂ , B̂⊥, and �̂ are strongly consistent (�̂c
a.s.→ �c from Assumption

LS.1(v)). We have γ̂
a.s.→ γ0 from Lemma 2. From B̂⊥ = [In−K : −B̂1]′ and the strong

consistency of B̂1 proved in Subsection (i), we get B̂⊥
a.s.→ B0⊥. From equation �̂ =

B̂′⊥
(

1
T
∑

t YtY′
t−1

)(
1
T
∑

t Yt−1Y′
t−1

)−1
, the strong consistency of B̂⊥, and Lemma 2, we

get �̂
a.s.→ �0. Then, the conclusion follows.

(iii) Consistency of φ̂. From equation (4.3), we can write φ̂ = φ(γ̂ ,b̂,ĉ,�̂φ), where
φ(·, ·, ·,·) is a continuous function such that φ0 = φ(γ0,b0,c0,�c) and γ̂ denotes a vector
whose elements are sample (cross-)autocovariances of components of process {Yt} with
true value γ0. By the strong consistency of γ̂ in Lemma 2, that of estimators b̂ and ĉ proved

in Subsections (i) and (ii), respectively, and the convergence �̂φ
a.s.→ �φ from Assumption

LS.1(v), we get φ̂
a.s.→ φ0.

B.2. Asymptotic Expansions for Estimators b̂, ĉ, φ̂: Proof of
Theorem 2(b)

Let us first provide the asymptotic expansion of estimator b̂ = vec(B̂1).

Proposition 7. Under Assumptions M.1, IR.1, ID.1–ID.3, and LS.1(i), (iii), and (iv), the
asymptotic expansion of estimator b̂ = vec(B̂1) is

√
T(b̂−b0) = {

Q⊗B′
0⊥
}√

T
[

(Û1 −U1)′ : · · · : (ÛK −UK)′
]′ +op(1), (B.3)

where

√
T(Ûj −Uj) =

K∑
i=0,i �=j

1

λj −λi
(U′

j ⊗Pi)
√

Tvec(R̂−R)+op(1), j = 1, . . . ,K,

√
Tvec(R̂−R) = (In2 +Kn,n)(A∗

p+1 ⊗ In)
√

Tvec(Â∗
p+1 −A∗

p+1)+op(1),

√
Tvec(Â∗

p+1 −A∗
p+1) =

[(
E(Ỹt−p−1Ỹ ′

t−p−1)
)−1 ⊗ In

]⎛⎝ 1√
T

T∑
t=1

(Ỹt−p−1 ⊗u∗
t )

⎞
⎠+op(1).

(B.4)

Matrix Km,n is the commutation matrix such that vec(M′) = Km,nvec(M) for an
m × n matrix M and the vector Ỹt−p−1 = Yt−p−1 − EL(Yt−p−1|Yt−1, . . . ,Yt−p) =
Yt−p−1 − �̃( p)′�(0)−1Yt−1is the population residual of the regression of Yt−p−1 onto

Yt−1, . . . ,Yt−p, and E(Ỹt−p−1Ỹ ′
t−p−1) = �(0)− �̃( p)′�(0)−1�̃( p), with �(0) = E(YtY′

t)

and �̃( p) = E(YtY ′
t−p).

In Proposition 7, the asymptotic expansion of estimator b̂ follows from that of the
eigenvectors of matrix R̂ using Proposition 6. In turn, the asymptotic expansion of R̂ follows
from that of the OLS estimator Â∗

p+1 on the VAR(p+1) pseudo-model.
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Let us now derive the asymptotic expansion for estimator d̂ = vec(�̂) of parameter vector
d0 = vec(�0).

Proposition 8. Under Assumptions M.1, IR.1, ID.1–ID.3, and LS.1(i), (iii), and (iv), the
asymptotic expansion for estimator d̂ is given by

√
T(d̂ −d0) =

[
�(0)−1 ⊗ In−K

] 1√
T

T∑
t=1

Yt−1 ⊗ηt

−
[
�(0)−1�̃[K](−1)⊗ In−K

]√
T(b̂−b0)+op(1),

where �̃[K]( j) = E[YtY ′
[K],t−j] and Y[K],t = (Yn−K+1,t, . . . ,Yn,t)

′.

We give the asymptotic expansions for estimators ĉ = vec(Ĉ) and φ̂ = vec(�̂) in the next
propositions.

Proposition 9. Under Assumptions M.1, IR.1, ID.1–ID.3, and LS.1(i), (iii), and (v),
estimator ĉ = vec(Ĉ) admits the asymptotic expansion

√
T(ĉ− c0) = −(J′

c�cJc)
−1J′

c�c

⎧⎨
⎩ 1√

T

T∑
t=1

ht + Jd
√

T(d̂ −d0)+ Jb
√

T(b̂−b0)

⎫⎬
⎭+op(1),

(B.5)

where ht = vec
[
(Yt −C0Yt−1)Z′

t
]= Zt ⊗ εt and Jc = −Q′

Y−1Z ⊗ In,

Jd = −(IM ⊗Kn−K,n)

⎡
⎢⎣
⎛
⎜⎝

E(εtY′
t−2)

...
E(εtY′

t−M−1)

⎞
⎟⎠⊗ In−K

⎤
⎥⎦,

Jb = −(IM ⊗Kn−K,n)

⎡
⎢⎢⎣
⎛
⎜⎜⎝

E(εtY ′
[K],t−1)

...
E(εtY ′

[K],t−M)

⎞
⎟⎟⎠⊗ In−K

⎤
⎥⎥⎦,

where QY−1Z = E(Yt−1Zt), Kn−K,n is the commutation matrix for orders n − K,n, and
εt = Yt −C0Yt−1.

Proposition 10. Under Assumptions M.1, M.2, IR.1, ID.1–ID.3, and LS.1(i), (iii), and
(v), the asymptotic expansion for estimator φ̂ is

√
T(φ̂ −φ0) = −(J ′

φ�φJφ)−1J ′
φ�φ

×
⎧⎨
⎩ 1√

T

T∑
t=1

lt +Jb
√

T(b̂−b0)+Jc
√

T(ĉ− c0)

⎫⎬
⎭+op(1), (B.6)
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where lt = vec
[
(ξt −�0ξ t−1)W′

t
] = Wt ⊗ et, Wt = (ξ ′

t−q−1, . . . ,ξ
′
t−q−L)′, and Jφ =

−QWξ−1
⊗ IK,

Jb =

⎧⎪⎪⎨
⎪⎪⎩

⎡
⎢⎢⎣

E(etε
′
t−q−1)

...
E(etε

′
t−q−L)

⎤
⎥⎥⎦⊗ IK +E(Wtε

′
t)⊗ IK −

q∑
i=1

E(Wtε
′
t−i)⊗�i,0

⎫⎪⎪⎬
⎪⎪⎭D0,

Jc = −

⎡
⎢⎢⎣

E(etY′
t−q−2)

...
E(etY′

t−q−L−1)

⎤
⎥⎥⎦⊗ B̄′

0 −E(WtY′
t−1)⊗ B̄′

0 +
q∑

i=1

E(WtY′
t−i−1)⊗ (�i,0B̄′

0),

et := ξt − �0ξ t−1, and D0 = ∂vec(B̄0)/∂b′
0 =

(
P0,[n−K] ⊗ (B′

0B0)−1
)
Kn−K,K − B̄0 ⊗(

(B′
0B0)−1B′

1,0

)
and P0,[n−K] denotes the first n−K columns of matrix P0.

By combining the results in Propositions 7–10, we get the asymptotic expansions in (4.4)
where the blocks of matrix S are given by

Sb1 = [
Q⊗B′

0⊥
]⎡⎣ K∑

i=0,i �=1

1

λ1 −λi
(U1 ⊗Pi) : · · · :

K∑
i=0,i �=K

1

λK −λi
(UK ⊗Pi)

⎤
⎦

′

× (In2 +Kn,n)(A∗
p+1 ⊗ In)

[(
�(0)− �̃( p)′�(0)−1�̃( p)

)−1 ⊗ In

]
,

[
Sc1 : Sc2 : Sc3

]= −(J′
c�cJc)

−1J′
c�c

[(
Jb − Jd

(
�(0)−1�̃[K](−1)⊗ In−K

))
×Sb1 : Jd

(
�(0)−1 ⊗ In−K

)
: In(n−K)M

]
,[

Sφ1 : Sφ2 : Sφ3 : Sφ4
]= −(J ′

φ�φJφ)−1J ′
φ�φ

× [(JbSb1 +JcSc1
)

: JcSc2 : JcSc3 : IK2L
]
,

(B.7)

and all matrices are defined in Propositions 7–10.

B.3. Asymptotic Normality of Estimators b̂, ĉ, φ̂: Proof of Theorem 2(c)

The asymptotic normality of vector 1√
T

∑T
t=1 ψt follows from a multivariate version of

Corollary 1 in Herrndorf (1984) and the next lemma proved in the Supplementary Material.

Lemma 3. Under Assumptions M.1, M.2, and LS.1(ii) and (iii), we have:
(a) E(|ψt|β) < ∞, for β > 2; (b) the process ψt is α-mixing, and the α-mixing coefficients

are such that
∑∞

j=1 α( j)
β−2
β < ∞; and (c) 1

T V
(∑T

t=1 ψt

)
→ Vψ as T → ∞, where

Vψ =∑∞
j=−∞ Cov(ψt,ψt−j).

https://doi.org/10.1017/S0266466622000536 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000536


746 FEDERICO CARLINI AND PATRICK GAGLIARDINI

The asymptotic expansions in Theorem 2(b), and the distributional convergence of vector
1√
T

∑T
t=1 ψt, imply that the estimators b̂, ĉ, and φ̂ are asymptotically normal and yield

Theorem 2(c).

B.4. Optimal Weighting Matrix and Specification Test

Let us first derive the optimal weighting matrix for the estimation of C. From Proposition
9, we have

√
T(ĉ− c0) = −(J′

c�cJc)
−1J′

c�cDc
1√
T

T∑
t=1

ψt, where (B.8)

Dc =
[(

Jb − Jd

(
�(0)−1�̃[K](−1)⊗ In−K

))
× Sb1 : Jd

[
�(0)−1 ⊗ In−K

]
: In(n−K)M : 0n(n−K)M×K2S

]
. (B.9)

Moreover, from Section B.3, vector Dc
1√
T

∑T
t=1 ψt is asymptotically normal with asymp-

totic variance DcVψD′
c. From standard theory of GMM, we deduce that the optimal

weighting matrix of estimator ĉ is

�∗
c = (DcVψD′

c)
−1. (B.10)

Let us now show the asymptotic distribution of the Hansen statistic under the null hypothesis
of correct specification of the orthogonality restrictions for identification of C. The

Hansen statistic is J1 = T
(

1
T
∑T

t=1 ĥt

)′
�̂∗

c

(
1
T
∑T

t=1 ĥt

)
, where ĥt = vec[(Yt − ĈYt−1)Ẑ

′
t]

and �̂∗
c = (D̂cV̂ψ D̂′

c)
−1 is a consistent estimator of �∗

c . By standard arguments as

in the proof of Proposition 9, we have 1√
T

∑T
t=1 ĥt = 1√

T

∑T
t=1 ht + Jc

√
T(ĉ − c0) +

Jd
√

T(d̂ − d0) + Jb
√

T(b̂ − b0) + op(1) = Dc
1√
T

∑T
t=1 ψt + Jc

√
T(ĉ − c0) + op(1).

By plugging the asymptotic expansion (B.8) with optimal weighting matrix �∗
c , we

get 1√
T

∑T
t=1 ĥt =

[
In(n−K)M − Jc(J′

c�
∗
c Jc)

−1J′
c�

∗
c

]
Dc

1√
T

∑T
t=1 ψt + op(1). Since

Dc
1√
T

∑T
t=1 ψt is asymptotically normal with asymptotic variance (�∗

c )−1, from

standard arguments in GMM theory, we get that J1 is asymptotically distributed as
χ2[n(n−K)M −n2p]. Finally, by using that 1

T
∑T

t=1 ĥt = vec[Q̂YZ − ĈQ̂Y−1Z], the
expression for the J-statistic in Section 4.3 follows.

Given the optimal choice �∗
c for estimating C, the optimal weighting matrix

for estimating � is the one minimizing the asymptotic variance of φ̂. We have√
T(φ̂ −φ0) = −(J ′

φ�φJφ)−1J ′
φ�φDφ

1√
T

∑
t ψt from Proposition 10, where Dφ =[

JbSb1 +JcSc1 : JcSc2 : JcSc3 : IK2S
]
, and the Sc,i, for i = 1,2,3, are evaluated with

�∗
c . Then, the optimal weighting matrix for φ̂ is

�∗
φ = (DφVψD′

φ)−1. (B.11)

The Hansen statistic for testing the validity of the moment restrictions (3.8) is J2 =
T
(

1
T
∑

t l̂t
)′

�̂∗
φ

(
1
T
∑

t l̂t
)

, where l̂t = vec[(ξ̂t − �̂ξ̂ t−1)Ŵ
′
t] and �̂∗

φ = (D̂φ V̂ψ D̂′
φ)−1.

Under the null hypothesis, J2 admits a χ2[K2(S −p)] distribution.
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B.5. Proof of Theorem 3

We have Ŝ
a.s.→ S because function S(γ,θ) is continuous w.r.t. γ and θ , γ̂

a.s.→ γ0 from

Lemma 2, and θ̂
a.s.→ θ0 from Theorem 2(a). We show V̂ψ

p→ Vψ using the results in
De Jong and Davidson (2000). Let us check the regularity conditions. We can write
ψt = ψt(γ0,θ0) = �1(γ0,θ0)Xt, where vectors Xt and γ0 have elements like Yi,tYj,t−h
(resp. E[Yi,tYj,t−h]), for i,j = 1, . . . ,n and |h| ≤ h∗, vector θ0 contains elements of matrices
B̄0, C0, and �0, and matrix function �1(·) is differentiable. Process {Xt} is geometrically
strong mixing and E[|ψt|β ] < ∞ for β > 2 by the arguments in Appendix B.3, and similarly

supt≥1 E[ sup
θ,γ∈�̃

| ∂ψt(γ,θ)
∂(γ ′,θ ′)′ |2] < ∞. Estimators γ̂ and θ̂ are root-T consistent by Theorem 2.

Finally, κ(·) and mT satisfy the regularity conditions in Assumption LS.2. Then, the results

in De Jong and Davidson (2000) imply that V̂ψ
p→ Vψ . Moreover, matrix V̂ψ is positive

definite a.s. because of Assumption LS.2(iv).

B.6. Proof of Theorem 4

Let us first prove Part (a). When the rank-K approximation of Â∗
p+1 is based on SVD, the

result follows from Theorem 1 and Corollary 1 in Kleibergen and Paap (2006). Indeed, from

(B.4), we have
√

Tvec(Â∗
p+1 −A∗

p+1)
p→ N(0,�11), which yields their Assumption 1. Note

that their Assumption 2 is equivalent to (PMK ⊗PNK )�11(PMK ⊗PNK ) being of rank (n−
K)2, which is satisfied in our framework since matrix �11 is positive definite. Moreover,
the HAC estimator �̂11 is consistent for �11 under Theorem 3.

In the case of other reduced-rank approximations, we use Theorem 1 and Corollary 1
in Al-Sadoon (2017). We keep as maintained hypothesis that the rank-r approximation
of Â∗

p+1 to obtain left and right null-space projections PM̂r
and PN̂r

for r ≤ K, and of

A∗
p+1 to obtain PMr and PNr for r < K, are either decomposition-based approximations

(DBA) or Cragg Donald approximations (CDA) in the sense of Definitions 2 and 3 of
Al-Sadoon (2017). Let us write the test statistic as F (r) = T · τ(Â∗

p+1,�̂11,PN̂r
,PM̂r

)

where τ(Â∗
p+1,�̂11,PN̂r

,PM̂r
) = vec(PN̂r

Â∗
p+1PM̂r

)′
[
(PM̂r

⊗PN̂r
)�̂11(PM̂r

⊗PN̂r
)
]†

vec(PN̂r
Â∗

p+1PM̂r
), and let F̃ (r) = T · τ(Â∗

p+1,�̂11,PNr,PMr ) be the infeasible version
of the statistic based on the null-space projections associated with the true matrix value
A∗

p+1. Assumption A in Al-Sadoon (2017) is satisfied by estimators Â∗
p+1 and �̂11 under

the conditions of Theorems 2 and 3. The functional form of τ satisfies Assumption K in
Al-Sadoon (2017). Then, by Theorem 1 in Al-Sadoon (2017) statistic F (r) satisfies the
(weak) plug-in principle:

F (r) = F̃ (r)+Op(T−1/2), if r = K, (B.12)

τ(Â∗
p+1,�̂11,PNr,PMr )

−1 = Op(1) ⇒ τ(Â∗
p+1,�̂11,PN̂r

,PM̂r
)−1 = Op(1), if r < K,

(B.13)

that is, the feasible and infeasible statistics are asymptotically equivalent at order Op(T−1/2)

under the null hypothesis, and if the unscaled infeasible statistic is bounded away from
zero under the alternative hypothesis so is the unscaled feasible statistic. Then, along the
lines of Corollary 1 in Al-Sadoon (2017), under the null hypothesis using (B.12) and
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F̃ (K) = T · vec(PNr Â∗
p+1PMr )

′ [(PMr ⊗PNr )�̂11(PMr ⊗PNr )
]†

vec(PNr Â∗
p+1PMr )

d→
χ2[(n−K)2]we get F (K)

d→ χ2[(n−K)2], which yields Part (a).
Let us now prove the consistency of the test in Part (b) of Theorem 4. Under the alternative

hypothesis (r < K), vector vec(PNr Â∗
p+1PMr ) converges in probability to a nonnull vector

and τ(Â∗
p+1,�̂11,PNr,PMr ) converges in probability to a strictly positive constant. Then,

from the plug-in principle (B.13), the statistic F (r) diverges in probability at rate T, which
yields Part (b). Finally, Part (c) follows by paralleling the argument in the proof of Theorem
5.2 in Robin and Smith (2000).

B.7. Proof of Theorem 5

We start with Part (a). Under the null hypothesis, p = p0. Then, vec(B′
0⊥A�

0) = 0, where

A�
0 := [A�

p+2 : · · · : A�
p� ]. Similarly, Â

�
:= [Â�

p+2 : · · · : Â�
p� ]. By using the asymptotic

expansions of the estimators, in the Supplementary Material, we show the next lemma.

Lemma 4. Under the Assumptions of Theorem 2, we have
√

Tvec(B̂⊥( p)′Â�
)

d→
N(0,�22) as T → ∞, where �22 =MVψ,22M′ with Vψ,22 =∑∞

j=−∞ Cov(ψ2,t,ψ2,t−j)

for ψ2,t = [(Ỹt−p−1 ⊗ u∗
t )′,(X̃t−p−2 ⊗ u�

t )
′]′, X̃t−p−2 = Xt−p−2 − EL(Xt−p−2|Yt−1, . . . ,

Yt−p−1), Xt−p−2 = (Y ′
t−p−2, . . . ,Y

′
t−p� )

′ and M = [M1 : M2] for M1 = −(Ã
�′
0 ⊗

In−K0)Sb1 and M2 = (I( p�−p−1)n ⊗ B′
0⊥){E(X̃t−p−2X̃′

t−p−2)−1 ⊗ In}, and Ã
�
0 =

[A�
p+2,0,[K0] : · · · : A�

p�,0,[K0]] and A�
i,0,[K0] is the matrix with the last K0 columns of

A�
i,0.

Let

�̂22 = M̂V̂ψ,22M̂′ (B.14)

be a consistent estimator of �22, where V̂ψ,22 is an HAC estimator of Vψ,22, and M̂ is
obtained by replacing unknown quantities in M with the sample analogs, as in the proof of
Theorem 3. Then, under the null hypothesis, the asymptotic distribution of the test statistic

is given by Tvec(B̂⊥( p)′Â�
)′�̂−1

22 vec(B̂⊥( p)′Â�
)

d→ χ2[(n−K0)n( p�−p−1)] as T → ∞.
Let us now prove Part (b). Under the alternative hypothesis, p < p0. First, we note that

K̂( p) = K( p) w.p.a. 1 as T → ∞, where K( p) is the rank of matrix A∗
p+1. Indeed, the

arguments in the proof of Theorem 4 applies also to matrix A∗
p+1 for p < p0. If matrix

A�
p+1 is nonsingular, then w.p.a. 1 we have K̂( p) = n and Sp = +∞ by definition. If

matrix A�
p+1 is singular, with rank K( p) < n, let us denote B⊥( p) the n × (n − K( p))

full-rank matrix, whose columns span the orthogonal complement of the range R(A�
p+1)

with the normalization in Section 3. Then, we have Sp ≥ CT , w.p.a. 1, for a constant
C > 0 and T large, if B⊥( p)′A�

0( p) �= 0, where A�
0( p) = [A�

p+2 : · · · : A�
p+2]. Since

A�
p+1 = Cp+1,0 + B0F( p�)

p+1 , and one of the blocks in A�
0 is A�

p0+1 = B0F( p�)
p0+1, a sufficient

condition for B⊥( p)′A�
0(0) �= 0 to hold is that the kernel of matrix (Cp+1,0 +B0F( p�)

p+1 )′ is

not a subset of the kernel of B′
0. Since under the alternative hypothesis the possible values
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of p are p = 0,1, . . . ,p0 −1, we deduce that a sufficient condition for consistency of the test

statistic is the following: the kernel of matrix (Ci,0 +B0F( p�)
i )′ is either (i) empty, or (ii) not

a subset of the kernel of B′
0, for any i = 1, . . . ,p0. By using (Ci,0 +B0F( p�)

i )′[B̄0 : B̄0⊥] =
[C′

0,iB̄0 +F( p�)′
i : C′

i,0B0⊥] and B′
0[B̄0 : B̄0⊥] = [IK : 0K×(n−K)], the above condition

for consistency is equivalent to: the kernel of matrix [C′
0,iB̄0 +F( p�)′

i : C′
i,0B0⊥] either (i)

is empty, or (ii) has a nontrivial projection on the linear space {(v′,0′
(n−K0)×1)′ : v ∈ R

K0},
for any i = 1, . . . ,p0. This is the condition in Assumption SEL.1. Finally, the proof of Part
(c) parallels that of Theorem 5.2 in Robin and Smith (2000) with some adjustments for the
randomness of K̂(n); it is provided in the the Supplementary Material for completeness.

SUPPLEMENTARY MATERIAL
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