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The analysis of variance, and mixed models in general, are popular tools for analyzing experimental
data in psychology. Bayesian inference for these models is gaining popularity as it allows to easily handle
complex experimental designs and data dependence structures. When working on the log of the response
variable, the use of standard priors for the variance parameters can create inferential problems and namely
the non-existence of posterior moments of parameters and predictive distributions in the original scale of the
data. The use of the generalized inverse Gaussian distributions with a careful choice of the hyper-parameters
is proposed as a general purpose option for priors on variance parameters. Theoretical and simulations
results motivate the proposal. A software package that implements the analysis is also discussed. As the
log-transformation of the response variable is often applied when modelling response times, an empirical
data analysis in this field is reported.

Key words: Generalized inverse Gaussian, Markov chain Monte Carlo, Log-normal distribution, Response
times.

1. Introduction

The analysis of variance (ANOVA) is a popular tool for analyzing experimental data in psy-
chology as in many other research fields. The assumptions underpinning the standard ANOVA are
rather restrictive as response variables may not be normally distributed (Micceri, 1989; Blanca et
al., 2017), sample sizes can be rather small (Button et al., 2013), and the assumption of indepen-
dence between observations may fail when data follow a multi-level structure (Gelman and Hill,
2007). The latter problem is often involved in the analysis of data from within subjects or mixed
(within and between subjects) experimental designs, whose popularity is increasing (Charness et
al., 2012; Wedel and Dong, 2020).

For these reasons, ANOVA analyses are often conducted in the more general framework of
mixed models, either linear, nonlinear or linear but specified on a transformation of the response
variable (Boisgontier and Cheval, 2016; Singmann and Kellen, 2019). In this paper, a special
attention is devoted to linear mixed models specified on the log of the response variable, a popular
solution to overcome non-normality which is often applied in psychology. A notable example in
this direction is provided by the analysis of response times (RT), a positive variable that turns
out to be skewed and with a variance that typically increases with the mean. Recent reviews
on RT modelling can be found in Lee and Chen (2011) and De Boeck and Jeon (2019). The
log-transformation of RT is considered in Thissen (1983); Van Breukelen (2005); van der Linden
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620 PSYCHOMETRIKA

(2006); Loeys et al. (2011); Rouder et al. (2015) among many others. The interest in modelling
RT is rising also in educational sciences (van der Linden, 2009) where it received an impetus from
the computerization of educational testing.

Of course, the log-transformation is not the only way to deal with data non normality, and it
does not always go without problems (Feng et al., 2013; Changyong et al., 2014). Nonetheless,
in this paper we assume that the transformed data are normally distributed and focus on specific
inferential problems related to linear mixed models on log-transformed data.

The back-transformation of the results to the original data scale is one of the major issues
faced by applied scientists when a model is estimated on transformed data. With reference to the
analysis of RT, it is often needed to compare RT across individuals, groups or items on the their
raw scale (Posner, 1978; Lo and Andrews, 2015).

The Bayesian approach to ANOVA offers several advantages with respect to standard fre-
quentist methods, including a flexible, unified treatment of linear and nonlinear mixed models,
the simpler interpretation of p-values and credible intervals, the possibility of making inference
not only for model parameters but also for their transformations (Kruschke, 2013; Wagenmakers
et al., 2018b). In particular, we can immediately carry out inference also for back-transformed
quantities, such as conditional means.

The need to specify priors incorporating subjective information often hinders the recourse to
Bayesian ANOVA by applied researchers (Rouder et al., 2012). For this reason, recently proposed
software packages such as BANOVA and JASP implement default priors that can be overlooked
by data analyzers that do not want to incorporate actual prior information (Dong and Wedel, 2017;
Wagenmakers et al., 2018a). Unfortunately, inference relying on the default priors considered by
these packages (and on most of those in the literature) for the variance components can run into
problems, when mixed models specified on the log of the response variable are used. Specifically,
if we let y > 0 be the variable we target, w = log(y) and we focus on the estimation of E(y) or
on the prediction of y values for a given set of observed covariates, it can easily be shown that
posterior distributions, although formally well defined, have no finite moments and can thereby
lead to wrong inferences as common posterior summaries such as posterior means and standard
deviations are undefined. Inferences on expectations on the data actual scale are not equivalent
to those conducted at the transformed scale. As a simple example, let us consider the case of the
comparison of two groups mean response values. The equality of the means on the log scale does
not implies the equality of the means on the raw scale as the latter are functions also of the scale
parameters (see Changyong et al., 2014 for further discussion).

The main contribution of this paper is to propose the Generalized Inverse Gaussian (GIG)
distribution as default prior for the variance components of linear mixed models. Endowed with
suitably selected hyper-parameters, GIG priors lead to results virtually equal to those obtained
adopting currently default choices when the problem of back-transforming quantities estimated
on the log-scale is not involved and guarantee correct inferences when it is. The GIG is a flexible
family of three parameters distributions with positive support that encompasses several well-
known special cases (Gamma and Inverse Gamma, among others). More importantly, they allow
for simple expressions of the conditions on prior parameters that guarantee the existence of
posterior moments; eventually, their conjugacy with the normal allows for the implementation of
fast Gibbs sampling algorithms to explore the posterior distributions of interest.

This work builds upon earlier contributions of Fabrizi and Trivisano (2012; 2016) but rep-
resents a significant addition to their results as deriving conditions for the existence of posterior
moments goes along different lines and is definitely more challenging in the context of mixed
models with respect to the fitting of a log-normal distribution and a linear regression model con-
sidered by these authors. The reason is that, when introducing random effects, relevant posterior
distributions are not available in a closed form anymore.
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The structure of the paper is as follows. Section 2 provides a theoretical background: we
first introduce our notation, some known results about the Bayesian analysis of the linear mixed
model and the GIG distribution. In Sect. 3, we introduce the main theoretical result, that is the
required conditions on the GIG parameters that allow for the existence of posterior moments for
functionals of the parameters such as E(y) or the predictive distribution; this Section contains
also a discussion on the properties of these posterior distributions when associated with other
classes of prior distributions for the variance components. In Sect. 4, we discuss how to set the
parameters of the GIG priors uninvolved in the existence of posterior moments and the Gibbs
sampling algorithms needed to explore posterior distributions. Section 5 reports some results
from the simulation studies we performed. In Sect. 6, we illustrate a real data application taken
from cognitive science literature. In Sect. 7, the obtained results, their scope and limitations are
discussed, along with some possible directions for further research. Eventually, Sect. 8 offers
some concluding remarks. More details on the simulation results and additional, complementary,
technical results can be found in the on-line supplementary material.

2. Notation and Preliminary Results

In this section, we first introduce a general specification for the linear mixed model on the
log-scale along with a basic result conditional on the variance components. Then, we shortly
describe the GIG distribution that will be considered in further analyses.

2.1. The Log-Normal Mixed Model

Let us consider a n-dimensional vector of strictly positive responses y; once defined w =
log y, a linear mixed model is assumed:

w = Xβ + Zu + ε,

where β ∈ R
p is a vector of fixed effects, u ∈ R

m is a vector of random effects and ε ∈ R
n is

the vector of residuals. The design matrices are X ∈ R
n×p, that is assumed to be full rank, and

Z ∈ R
n×m . The following Bayesian hierarchical model will be studied:

w|u,β, σ 2 ∼ Nn Xβ + Zu, Inσ 2 ;
u|τ 2

1 , ..., τ 2
q ∼ Nm (0,D) , D = ⊕q

s=1Ims τ
2
s .

(1)

Note that q ≥ 1 random factors are allowed, so that q different variances related to the random
components τ 2 = (τ 2

1 , ..., τ 2
q ) are included in the model. Therefore, it is possible to split the

vector of random effects in u = [uT1 , ...,uTs , ...,uTq ]T , where us ∈ R
ms with q

s=1 ms = m. The
design matrix of the random effects can be partitioned too: Z = [Z1 · · ·Zs · · ·Zq ]. We note that
the design matrix of the random effects is not necessarily non-singular. For an introduction to the
use of these models in the behavioral sciences framework, see, e.g., Jackman (2009, Chapter 7).

The introduced model is fairly general. All standard one and multi-ways ANOVA models as
well as mixed models suitable for the analysis of repeated measures with both nested and crossed
effects (Baayen et al., 2008) can be obtained as special cases. ANCOVA models, accounting for the
effect of possible covariates, are also encompassed by (1), including models that allow for possible
nonlinear effects of these covariates whose shape cannot be anticipated: in fact, spline regression
can be represented by means of mixed models (see Crainiceanu et al., 2005). Equation (1) covers
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situations in which the assumption of independence between random effects fails, provided no
additional parameter is involved: more specifically, if known positive matrices replace Ims , (1)
can be reparameterized to allow for correlated random effects (Hobert and Casella, 1996). On
the contrary, models involving additional parameters describing the correlation between random
effects are beyond the scope of (1) and thereby of our analysis. Nonetheless, a discussion of
models in which correlated random effects are specified within grouping factors can be found in
Sect. 7.

We now restate a known result on the posterior distribution of β in order to set notations and
define quantities that will be used later on.

Proposition 1. Considering the model (1) with a flat improper prior on β then:

β|σ 2, τ 2,w ∼ Np β̄,Vβ , (2)

where:

Vβ = XTX

σ 2 + XTMX

−1

, β̄ = Vβ

XTX
σ 2 β̂ + XTMXβ̃ ,

M = V−1
Z

σ 2 − PZ

σ 2 , β̂ = XTX
−1

XT y, β̃ = XTMX
−1

XTMy,

PZ = Z ZTZ
−
ZT , V−1

Z = Z ZTZ
−

ZTZ
− + D

σ 2

−1

ZTZ
−
ZT ,

and ZTZ
−
is the Moore–Penrose inverse of ZTZ.

As anticipated in the introduction, in this paper we focus on the estimation of the expectation
of y and on predictive distributions. Let the vectors x̃, z̃ represent a point in the covariates space
conditionally on which we can be interested in estimating the expectation of y. More specifically,
let us first consider:

E ỹ|β, σ 2, τ 2 = θm(x̃) = exp x̃Tβ + 1

2
σ 2 +

q

s=1

τ 2
s , (3)

where the random effects are integrated out. We use the notation ỹ instead of y to emphasize we
are working conditionally on x̃ and z̃. The expectation of y conditional on the random effects is
another quantity that can be relevant in prediction problems:

E ỹ|u,β, σ 2 = θc(x̃, z̃) = exp x̃Tβ + z̃Tu + σ 2

2
. (4)

Finally, the posterior predictive distribution p(ỹ|y) and its posterior moments are further quantities
to investigate. Note that:

p (ỹ|y) ∝
�

p (ỹ|θ) p (θ |y) dθ , (5)

where θ = (β,u, σ 2, τ 2) and � is the parameter space. In practice, the posterior expectation
E ỹ|y might be used to predict unobserved values like missing values or unsampled units.
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2.2. The Generalized Inverse Gaussian Distribution

In this paper, we assume a GIG prior for the variance components. In general, a random
variable V is GIG distributed, i.e., V ∼ GIG(λ, δ, γ ), if its density can be written as follows:

p(v) = γ

δ

λ 1

2Kλ(δγ )
vλ−1 exp −1

2
δ2v−1 + γ 2v 1R+ . (6)

If δ > 0, the permissible values for the other parameters are γ ≥ 0 when λ < 0, and γ > 0 if
λ = 0. If δ ≥ 0, then γ and λ should be strictly positive. The first reason to consider the GIG is
that many important distributions may be obtained as special cases. For λ > 0 and γ > 0, the
Gamma(λ, γ 2/2) distribution emerges as the limit when δ → 0. An inverse-gamma is obtained
when λ < 0, δ > 0 and γ → 0; an inverse Gaussian distribution is obtained when λ = − 1

2 .
A uniform distribution over the range (0, A) for

√
V implies that p(v) ∝ v−1/21(0,A), which

may approximated by the density of a GIG(0.5, δ, (2A2)−1) with δ → 0 and truncated at A2.
This special case is relevant to discuss the uniform prior on the standard deviation advocated by
Gelman (2006). For more details on the GIG distribution see Bibby and Sørensen (2003).

3. Theoretical Results

In this section, we study the existence of moments for the posterior distributions of θm(x̃)
and θc(x̃, z̃), defined in (3) and (4), and for the posterior predictive distribution p(ỹ|y) (5). As
anticipated in the introduction, we assume GIG distributions for the hyper-parameters:

σ 2 ∼ GIG (λσ , δσ , γσ ) , (7)

τ 2
s ∼ GIG λτ,s, δτ,s, γτ,s , ∀s. (8)

Before stating the main result of this section, let us defineLs ∈ R
p×p as a matrix whose entries are

all 0s with the exception of the first l× l square block Ls;1,1 where l = p−rank{XT (I − PZ)X}
is the rank deficiency of XT (I − PZ)X and it coincides with the number of columns of X that are
included inZ too. To simplify the statement of our result, it is useful to work with a modified design
matrixXo obtained by placing the columns included in bothX andZ as the first l columns, without
loss of generality. Consequently, we note that Ls;1,1 coincides with the inverse of upper left l × l
block on the diagonal of XT

o Z(ZTZ)−Cs(ZTZ)−ZT Xo, where Cs is the null matrix with the
exception of Ims as block on the diagonal in correspondence to the s-th variance component of the
random effect. Eventually, x̃o is the covariate pattern of the new observation ordered consistently
with Xo.

Theorem 1. If the normal linear mixed model in the log scale (1) is considered with the priors
(7), (8), then, in order to compute the r-th, with r > 0, posterior moment of θc(x̃, z̃), θm(x̃) and
of p(ỹ|y), the following constraints on the prior parameters must be observed:

(i) E θrc (x̃, z̃)|w exists if γ 2
σ > r + r2x̃T XTX

−1
x̃;

(ii) E θrm(x̃)|w exists if γ 2
σ > r + r2x̃T XTX

−1
x̃ and γ 2

τ,s > r + r2x̃To Ls x̃o, ∀s;
(iii) E ỹr |y exists if γ 2

σ > r2 + r2x̃T XTX
−1

x̃.

Proof. See appendix. 
�
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Few comments on Theorem 1 are in order. We first note that the conditions on the existence of
posterior moments depend only on constraints on the tail parameter γ . Moreover, θm(x̃) requires
a condition on the parameters of all variance components prior, while θc(x̃, z̃) and the posterior
predictive distribution need only a condition on p(σ 2), to ensure the finiteness of the posterior
moments.

Statement (i) parallels the result by Fabrizi and Trivisano (2016) for the log-normal linear
model: the square of the moment order r is multiplied by the leverage associated with x̃, i.e.,

x̃T XTX
−1

x̃. The same condition on γσ appears also for the moments of θm(x̃).
As far as the posterior predictive distribution, it concerns, i.e., case (i i i), the existence of its

posterior moments is related only to the term σ 2. It must be noted that, unlike case (i), the quantity
r2 enters the condition as a separate term, making the value on the right side of the constraint
rapidly increasing with the moment order. The result is in line with the higher variability that
characterizes the posterior predictive distribution with respect to the posteriors of θc(x̃, z̃) and
θm(x̃).

From Theorem 1 and its proof, it is apparent that, generally speaking, a prior containing an
exponential term in the form exp{−cω2} must be given as prior for the generic variance component
ω2, where c is set in order to have finite moments up to a pre-specified order. This helps us to
understand which special cases within the GIG family and which distributions outside this group
can be considered. Popular choices for priors on the variance components such as Jeffrey’s priors,
uniform (both on the variance and on the standard deviation), half-t (including half-Cauchy) do
not contain the exponential term in question. Other priors such as the inverse gamma (that is a
special case of the GIG distribution when γ → 0) or the log-normal, even if they contain an
exponential term, cannot be used as this term does not go to 0 when ω2 → +∞.

Other distributions, outside the GIG family, can be considered as prior for the variance com-
ponents, as for instance the half-normal HN (ζ ), mentioned as reasonable prior for the standard
deviation by Gelman (2006), provided that a small hyper-parameter ζ is chosen. In view of Theo-
rem 1, it can be shown that, for example, the prior σ ∼ HN (ζσ ) should be specified in compliance
with the following constraint:

ζσ <
1

r + r2x̃T XTX −1 x̃
.

Nonetheless, we note that to satisfy this constraint the tail decay of such a prior might be too rapid
and an excessive amount of prior information might be included in the model, whereas the GIG
distribution provides useful tools to control it and to specify a more suitable prior distribution.

3.1. The Random Intercepts Model

The constraints on γ 2
τ,s that appear in condition (i i) of Theorem 1 look rather complicated as

we assumed a general structure for Z. To better understand the meaning of the result, we can show
the results obtained when Z is simpler. Let us consider the following simple random intercept
model, that can be applied in the analysis of repeated measurement data where a random effect is
introduced to account for within individual correlation:

wi j = log yi j = xTi jβ + v j + εi j ; j = 1, ...,m; i = 1, ..., n j ;
εi j |σ 2 ind∼ N 0, σ 2 , v j |τ 2 ind∼ N 0, τ 2 .

(9)

In the random intercepts model, the number m of the columns of Z coincides with the
number of clusters observed in the data and each row contains a single 1, denoting that the
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correspondent unit belongs to the cluster (typically the subject in longitudinal data), and 0s
otherwise. Moreover, Xo is the simple design matrix, since the first column is the usual 1n vector
corresponding to the general intercept and the first element of xo,i is 1. Moreover, it is easy to
verify that l = p − rank{XT (I − PZ)X} = 1 and therefore the unique non-null entry of Ls

is the first element of the first column. Eventually, exploiting the particular structure of Z, after
some algebra, it is possible to verify that Ls;1,1 = m−1 (i.e., the inverse of the number of groups
determined by Z). Provided that priors (7) and (8) are adopted, the condition on γ 2

σ does not
change, whereas the eventual condition on γ 2

τ simplifies to:

γ 2
τ > r + r2

m
.

4. Practical Implementation Issues

In this section, we consider two issues related to practical implementation. In Sect. 4.1, we
consider how to set GIG priors’ hyper-parameters. Theorem 1 provides lower bounds for the
γ parameters; we complement this information offering some guidance on how to remove the
dependence on specific x̃ in the choice of γ and on how to choose values for λ and δ parameters.
The setting of these parameters can be relevant in the analysis of small samples. Specifically, we
devise a weakly informative strategy based on the uniform shrinkage principle that will lead us
to the specification of Gamma priors on the variance components.

In Section 4.2, we provide some details on how to generate samples from the posterior of
model parameters (and the random effects). We only need a direct Gibbs sampler where elementary
samplers can be used for each of the full conditionals: a nice feature that depends on the conjugacy
relationship between the normal and the GIG distributions. To encourage the use of the method
by practitioners and automatically set the advised priors, functions included in the BayesLN
package can be used (Gardini et al., 2020).

4.1. Hyper-Parameters Choice

The lower bounds in Theorem 1 depend on r , the order of posterior moments for which we
need to impose the existence. In principle, a priori we would set γ s to the lower bound allowing
the existence of moments up to the order r we are interested in, with the aim of avoiding priors
with exceedingly light tails. In practice, it is advisable to set γ parameters somewhat larger than
the existence lower bound to avoid numerical instability caused by dealing with integrals that
although finite are very large. We can achieve this, for instance, by choosing values of the γ s
allowing the existence of moments up to the order r +c, with c > 0. A discussion on the selection
of c can be found in Section S1 in the supplementary material. In short, choices of c ≥ 0.5 are
advisable. Throughout the simulations and applications of this paper, we will use c = 1.

The existence conditions stated in Theorem 1 also depend on x̃ through x̃T XTX
−1

x̃. Since
we want moments of order r to exist for all the x̃ included in the analysis, the dependence on x̃
can be removed by setting:

γσ = (r + c) + (r + c)2hm,

with hm = maxi∈sp x̃Ti XTX
−1

x̃i where sp is the set of points in the covariates’s space for which
we are interested in making predictions. If the moments of the posterior predictive distribution are
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required, then (r + c)2 must be included in the previous condition. In the same line, we propose
to set:

γτ,s = (r + c) + (r + c)2lm,

where lm = maxi∈sp x̃To,iLs x̃oi .
In general, the advice is to fix the parameter γ equal to the most restrictive condition (i.e.,

the greatest one) with respect to the quantities that are of interest in the analysis.
As expected, constraints on the existence of posterior moments lead to priors with light

tails for the variance components. In order to avoid excessively informative priors, we propose a
weakly informative strategy for the selection of remaining parameters. To illustrate our heuristic,
let us work on the notable special case where q = 1. Consequently, for simplicity, we denote
with τ 2 the variance component associated with the unique random effect. Some remarks on the
generalization to the case q > 1 are reported later. Let the intraclass correlation coefficient be
defined as:

ρ = τ 2

σ 2 + τ 2 . (10)

This quantity is of interest in the analysis of hierarchical model, both from a statistical viewpoint
and from the applied perspective. Chaloner (1987) proposes to specify ρ ∼ U(0, 1) to obtain good
frequentist properties for the parameters estimates. The uniform prior distribution for ρ has been
extensively studied and used (Daniels, 1999). If both variance components σ 2 and τ 2 are GIG
distributed, Favaro et al. (2012) show that ρ follows a normalized generalized inverse Gaussian
distribution, i.e., ρ ∼ N − GIG(λτ , δτ , γτ , λσ , δσ , γσ ). If we assume, for the time being, to
set the same hyper-parameters for both priors, i.e., σ 2 ∼ GIG(λ, δ, γ ) and τ 2 ∼ GIG(λ, δ, γ ),
then the normalized GIG density for ρ simplifies to:

p(ρ) =
K2λ γ 2δ2 1

ρ
+ 1

1−ρ

2 Kλ (γ δ)
[ρ(1 − ρ)]λ−1 , ρ ∈ (0, 1). (11)

Moreover, considering the target functionals of the analysis, the most restrictive threshold should
be chosen as the value of γ .

The resulting density is a function of the product δγ . To simplify the parameter specification,
we consider the special case δ → 0 that frees the distribution from the dependence on both
parameters and that makes the choice of different γ s due to different constraining equations
immaterial for p(ρ).

When δ → 0, the density (11) can be simplified further by using a small argument approxi-
mation to the Bessel K function:

p(ρ) 
 �(|2λ|)
�(|λ|)2 [ρ(1 − ρ)]|λ|−1 , ρ ∈ (0, 1).

Setting λ = 1 implies ρ ∼ U(0, 1). If we consider φ = τ 2

σ 2 , a one-to-one transformation of ρ, the

prior implied by the above choices is p(φ) = (1 + φ2)−1, that is the solution proposed for φ by
Ye (1994) within the reference prior framework (Berger and Bernardo, 1992).

The strategy can be summarized as:

σ 2 ∼ GIG (λ = 1, δ = ε, γm) , τ 2 ∼ GIG (λ = 1, δ = ε, γm) ;
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where γm is the most restrictive existence conditions for the considered quantities and ε is some
small constant close to 0 (e.g., 0.01). This proposal can be straightforwardly extended to the case
q > 1 assuming that a uniform prior is specified for every ρs = τs(τs + σ 2)−1. These marginal
priors are retrieved setting all the priors on τs as independent and equal GIG distributions with
parameters fixed according to the described strategy; i.e., τ 2

s ∼ GIG(λ = 1, δ = ε, γm), ∀s.
We note that under the described setting, if the λ parameter is set to be positive, a gamma

prior G λ, γ 2/2 for each variance component is approximately assumed. As a consequence, a
normal-gamma prior is specified marginally for the random effects vector u. This prior setting
is not new to the literature as it was introduced by Griffin and Brown (2010) as prior for the
coefficients of a linear model. Frühwirth-Schnatter and Wagner (2011) and Fabrizi et al. (2018)
already use this distribution as prior for random intercepts. They note that these priors encourage
shrinkage of the random intercepts toward the general intercept and more so as λ gets smaller. If
λ = 1, the gamma distribution degenerates to the exponential distribution, and in that case the
normal-gamma is a Laplace distribution. This particular prior is known also as Bayesian Lasso
and is characterized by a spike in 0. In general, the degree of shrinkage determined by the prior
can be increased setting λ near 0, whereas increasing this parameter has an opposite effect.

The main difference between Griffin and Brown (2010), Frühwirth-Schnatter and Wagner
(2011), and the present proposal is represented by the approach used to deal with the scale (or
rate) parameter of the gamma prior. In fact, the cited papers specify an hyper-prior on it. This
solution is not viable here because of the restrictions on the parameter space due to the posterior
moments existence condition.

4.2. Computational Algorithms

An appealing characteristic of the adoption of GIG priors (7) and (8) for the variance compo-
nents of model (1) is their conditional conjugacy. This can be exploited to derive easy to sample
full conditionals for the model parameters in order to implement a Gibbs sampler algorithm1 able
to generate random samples from their posterior distributions:

σ 2|β,u, τ 2,w ∼ GIG λσ − n

2
, (w − Xβ − Zu)T (w − Xβ − Zu) + δ2

σ , γσ ; (12)

τ 2
s |β,u, σ 2, τ 2−s,w ∼ GIG λτ,s − ms

2
, uTs us + δ2

τ,s, γτ,s , s = 1, ..., q; (13)

u|β, σ 2, τ 2,w ∼ Nm VuZT (w − Xβ) , σ 2Vu ; (14)

β|u, σ 2, τ 2,w ∼ Np XTX
−1

XT (w − Zu) , σ 2 XTX
−1 ; (15)

where Vu = ZTZ + σ 2D−1 −1
. The sampler has been implemented in C++ within the function

LN_hierarchical() in the R package BayesLN.

5. Simulations

In this section, we present two simulation exercises focused on simple models specified on the
logarithm of the response variable. In the first place, we consider a special case of (9) where xTi jβ =
μ, that is a one-way ANOVA model. The aim is to assess the frequentist properties of posterior

means as predictors of θm = exp μ + τ 2+σ 2

2 and θc(v j ) = exp{μ + v j + τ 2

2 } under different

1For an introduction to Bayesian computation and MCMC methods, see Robert (2007).
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choices for the priors p(σ 2), p(τ 2). We also include summaries of the posterior of θm and θc(v j )

conditional on the variance components, i.e., treating the variances as known, as benchmarks.
We devote special attention to the analysis of small samples, where the impact of the priors is
more apparent. A second simulation exercise, with a data generating process characterized by the
presence of a continuous covariate, aims at assessing the impact of alternative prior choices on
the posterior distribution of regression coefficients and posterior predictive distributions. Details
about this second simulation exercise are presented in Section S4 of the supplementary material.

In the first simulation exercise, we generate B = 2000 samples from model (9) assuming
xTi jβ = μ under 24 different scenarios obtained crossing the following choices for the parameters:

n j = (2, 5), m = 10, φ = τ 2/σ 2 = (0.5, 1, 2) and σ 2 = (0.05, 0.25, 0.5, 0.75). The general
mean in the logarithmic scale is set to 0, i.e., μ = 0. The considered grid of values for τ 2 and σ 2

is aimed at covering the range log-scale variances most common in applications. The estimates
that require Monte Carlo methods are based on 4000 iterations, after the first 1000 iterations are
discarded as burn-in. The point predictors we compare are:

(i) The posterior means of θm and θc(v j ) when priors are:

p(μ) ∝ 1, σ 2 ∼ GIG (1, 0.01, γm) , τ 2 ∼ GIG (1, 0.01, γm) , (16)

where γm = max{γσ , γτ,1} = √
3 + 32m−1, according to the suggestions provided

in Sect. 4.1 in order to assure the posterior variance existence. The predictors will
be denoted as θ̂GIG

m and θ̂GIG
c (v j ), and the function LN_hierarchical of the

BayesLN package is used to estimate the model;
(ii) The posterior means of θm and θc(v j ) when priors are:

p(μ) ∝ 1, σ 2 ∼ IG(1, 1), τ 2 ∼ IG(1, 1), (17)

that will be labeled as θ̂ IG
m and θ̂ IG

c (v j ). These priors for the variance components are
suggested as default choice in the BANOVA package (Wedel and Dong, 2020). The algo-
rithm for sampling from the posterior distributions is implemented in Stan (Carpenter
et al., 2017);

(iii) The posterior means of θm and θc(v j ) under small parameters inverse gamma (“Jeffreys
like”) priors (Carpenter et al., 2018a):

p(μ) ∝ 1, σ 2 ∼ IG(0.001, 0.001), τ 2 ∼ IG(0.001, 0.001), (18)

that will be labeled as θ̂ J
m and θ̂ J

c (v j ). The algorithm for sampling from the posterior
distributions is implemented in Stan. An alternative choice of the IG parameters and
namely σ 2 ∼ IG(1, 0.001) and τ 2 ∼ IG(1, 0.001) is also considered. For brevity,
results related to these latter alternatives are reported in section S3 of the supplementary
material;

(iv) A conditional Bayes predictors in which σ 2 and τ 2 are assumed to be known for the
case of θm prediction:

θ̂cm = exp w̄ + σ 2 + τ 2

2
− 3 σ 2 + ngτ 2

2n
. (19)
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In line with Zellner (1971), we can show that (19) reaches minimum frequentist MSE
among the predictors of θm having form k exp {w̄}. For benchmarking purposes, a mini-
mum MSE estimator conditioned to the variance components for the functional θc(ν j ) is
useful too. In this case, a decision to take is the estimator class, since the global sample
mean w̄ as the only argument of the exponential function appears to be not appropriated.
A heuristic strategy to obtain a conditioned estimator might be based on the derivation
of the Bayes estimator under relative quadratic loss, obtaining:

θ̂cc v j = exp
σ 2

σ 2 + ngτ 2

τ 2ng
σ 2 w̄. j − w̄ + σ 2

2
− 3

2

σ 2

σ 2 + ngτ 2 τ 2 + σ 2

n
.

(20)
The derivations of these estimators can be found in Section S2 of online supplementary
material2.

Bias, root mean square error (RMSE), frequentist coverage and average interval width are
reported for estimators of θm (for which we use the generic notation θ̂m ). Specifically, we calculate:

Bias θ̂m = 1

B

B

k=1

θ̂ (k)
m − θm ; RMSE(θ̂m) = 1

B

B

k=1

θ̂
(k)
m − θm

2;

Cov θ̂m = 1

B

B

k=1

1
L̂(k);Û (k) θ (k)

m ; Wid θ̂m = 1

B

B

k=1

Û (k) − L̂(k) ;

where L̂(k) and Û (k) are computed as the 0.025 and 0.975 quantiles of the posterior distributions
in question. In these formulas, θ̂

(k)
m is the estimate of the true overall expectation θm at Monte

Carlo iteration k and L̂(k) and Û (k) are the estimated lower bound and upper bound for the 95%
intervals.

To jointly evaluate the m different estimates for θc(v j ), j = 1, ...,m, an average evaluation

of the estimates, that we denote with ˆ̄θc, is required. Therefore, the relative absolute bias (RABias),
the relative RMSE (RRMSE), the average frequentist coverage (ACo.) and the average interval
width (AWi.) are studied.

More in detail we define the quantities:

RABias ˆ̄θc = 1

J

J

j=1

1

B

B

k=1

θ̂
(k)
c v j − θ

(k)
c v j

θ
(k)
c v j

;

RRMSE ˆ̄θc = 1

J

J

j=1

1

B

B

k=1

θ̂
(k)
c v j − θ

(k)
c v j

θ
(k)
c v j

2

;

ACo ˆ̄θc = 1

J

J

j=1

1

B

B

k=1

1
L̂(k)(v j);Û (k)(v j)

θ(k)
c v j ;

AWi ˆ̄θc = 1

J

J

j=1

1

B

B

k=1

Û (k) v j − L̂(k) v j ;

2The expressions (19) and (20) treat variances as known. They only provide a benchmark for comparing the perfor-
mances of the considered estimators. We expect that their efficiency level can be neared but not reached by estimators
that do not assume variances as known.
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Table 1.
Bias and RMSE for the considered estimators of θm in the different scenarios with ng = 2.

θcm θ IGm θ J
m θGIG

m

φ σ 2 θm Bias RMSE Bias RMSE Bias RMSE Bias RMSE

0.5 0.05 1.038 − 0.005 0.073 0.305 0.320 0.015 0.078 0.034 0.087
0.25 1.206 − 0.030 0.189 0.437 0.534 0.100 0.271 0.139 0.281
0.5 1.455 − 0.072 0.320 0.907 6.543 2.408 77.027 0.241 0.515
0.75 1.755 − 0.128 0.470 > 104 > 104 > 104 > 104 0.317 0.772

1 0.05 1.051 − 0.008 0.092 0.309 0.332 0.022 0.101 0.044 0.111
0.25 1.284 − 0.047 0.248 0.644 4.943 0.241 2.113 0.173 0.373
0.5 1.649 − 0.119 0.446 52.387 > 104 > 104 > 104 0.284 0.711
0.75 2.117 − 0.225 0.694 > 104 > 104 > 104 > 104 0.349 1.110

2 0.05 1.078 − 0.013 0.122 0.319 0.360 0.038 0.143 0.063 0.155
0.25 1.455 − 0.087 0.364 7.232 285.148 > 104 > 104 0.224 0.556
0.5 2.117 − 0.246 0.737 > 104 > 104 > 104 > 104 0.314 1.143
0.75 3.08 − 0.519 1.291 > 104 > 104 > 104 > 104 0.253 1.942

where L̂(k)(v j ) and L̂(k)(v j ) are calculated as the 0.025 and 0.975 percentiles of the posterior

distributions and θ̂
(k)
c (v j ) is the estimate of the j-th true group specific expectation θ

(k)
c (v j ) at

Monte Carlo iteration k.

In Tables 1 and S1 (the latter in Section S3 of the online supplementary material), we can see
the frequentist properties of the point estimators of θm : problems occurring to posterior means
under inverse gamma priors for variance components (θ IG

m and θ J
m ) are apparent. In fact, extremely

high values for bias and RMSE are detected. These anomalies can be considered as the numerical
equivalent of the analytical non-finiteness of posterior moments. On the other hand, under our
proposed prior, the estimators reach RMSE values that keep the same magnitude of the ones
obtained for the benchmark θcm , showing their reliability.

Moving to results about group means (Tables 2 and S2), we note that observing numeri-
cally the analytical problems proved for θ IG

c (v j ) and θ J
c (v j ) is harder. In these cases, explosive

numerical situations are not evident, even if we can say that our proposal θGIG
c (v j ) systematically

outperforms the other considered estimators.

In the supplementary material, results about the frequentist properties of credible intervals are
reported for θm (Table S3) and averaged for the group specific expectations (Table S4). Considering
both the inferential problems, we can summarize the results as follows: under all priors, systematic
deviations from the nominal coverage level of 0.95 are not evident. Considering the intervals width,
it emerges that the ones produced under GIG priors are almost always narrower than intervals
produced under inverse gamma priors. This is particularly evident in the case of θm . In particular,
larger intervals are obtained under IG(1, 1) prior for variance components: probably it is not an
appropriate choice in cases of variance components near to 0, as often happens in log-transformed
data.

In Section S3 of the supplementary material, results about this simulation setting under three
further prior settings are presented. The first two explore the sensitivity of posterior with respect to
different choices of the GIG scale parameter δ. Specifically, we consider the settings δ = 0.1 and
δ = 0.001. It is interesting to note that we obtain results extremely close to those under prior (16).
The third simulation setting involves the alternative choice for the IG hyper-parameters described
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Table 2.
RABias and RRMSE for the considered estimators of the group-specific expectations in the different scenarios with
ng = 2.

θcc (v j ) θ IGc (v j ) θ J
c (v j ) θGIG

c (v j )

φ σ 2 RABias RRMSE RABias RRMSE RABias RRMSE RABias RRMSE

0.5 0.05 0.014 0.117 0.132 0.196 0.019 0.128 0.024 0.128
0.25 0.067 0.257 0.192 0.391 0.113 0.349 0.109 0.329
0.5 0.130 0.357 0.282 0.601 0.260 0.629 0.198 0.529
0.75 0.188 0.430 0.394 0.836 0.458 1.002 0.273 0.712

1 0.05 0.018 0.131 0.136 0.204 0.027 0.151 0.030 0.144
0.25 0.085 0.288 0.217 0.433 0.163 0.446 0.143 0.394
0.5 0.163 0.398 0.348 0.714 0.395 0.892 0.272 0.668
0.75 0.233 0.476 0.525 1.074 0.798 2.787 0.394 0.951

2 0.05 0.021 0.141 0.144 0.218 0.035 0.169 0.038 0.160
0.25 0.099 0.309 0.258 0.499 0.214 0.542 0.183 0.464
0.5 0.188 0.426 0.452 0.895 0.564 1.320 0.364 0.844
0.75 0.268 0.509 0.757 1.593 1.739 19.881 0.550 1.286

below formula (18). Results point in the direction of non-existence of posterior moments showing
also issues in the estimation of the group means.

As far as the second simulation exercise, we mentioned above is concerned, the results
(reported in Section S4 of the supplementary material) show that different priors on the variance
components do not induce remarkable changes on the estimation of a regression coefficient,
whereas the problems affecting the moments of θm and θc(v j ) emerges also for the posterior
predictive distribution, in line with theoretical findings.

6. Real Data Application: Reading Times

Several applications in psychology and cognitive sciences have as central output the time
requested to perform some tasks. By definition, times are positive numbers and often show a
positively skewed distribution: for these reasons, it is common to analyze their logarithmic trans-
formations.

The data we use to apply our methodologies were originally collected by Gibson and Wu
(2013) in order to investigate the presence of a notable difference between times requested to
process a subject-extracted relative clause (SRC) and an object-extracted relative clause (ORC)
in Chinese language. In particular, times (in milliseconds) required to read the head noun of
a Chinese clause are registered under a repeated measure design characterized by two factors:
subject and reading item.

This dataset has been analyzed also by Sorensen and Vasishth (2015), that proposed a Bayesian
linear mixed model specified for the reading time logarithm. Here, we consider the model formu-
lation with two random intercepts related to the grouping factors:

wi jk = log yi jk = β0 + β1xi + u j + vk + εi jk,

where yi jk is the reading time observed for subject j = 1, ..., 37, reading item k = 1, ..., 15
and clause type i = 1, 2. More in detail, it is fixed xi = −1 in case of SRC, and xi = 1 for
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ORC. The random effects are aimed at accounting for the potential within subject and within
item correlation, and they are assumed to be independently distributed as u j |τ 2

u ∼ N 0, τ 2
u and

vk |τ 2
v ∼ N 0, τ 2

v . Both of them are assumed independent from the error εi jk |σ 2 ∼ N 0, σ 2 .
Beyond the usual inference on the model parameters that are related to times in the log-scale, to
have a clearer interpretation of the studied phenomenon the estimation and prediction of quantities
in the original data scale might be relevant. For example, the expectation conditioned on clause
type and marginalized with respect both the random effects:

θm (xi = ±1) = exp β0 ± β1 + τ 2
u + τ 2

v + σ 2

2
.

On the other hand, the expectation specific of a particular subject and item (individual) is:

θc xi , u j , vk = exp β0 + xiβ1 + u j + vk + σ 2

2
.

From an interpretative viewpoint, it can be useful to target the expected time conditioned to only
a particular random effect, e.g., integrating out only the subject and considering only a particular
item:

θc (xi , vk) = exp β0 + xiβ1 + vk + τ 2
u + σ 2

2
.

Obtaining posterior summaries of these functionals might help in understanding the phenomenon
and communicating results.

More technically, the design matrix Z for the random effects is constituted by two blocks,
in order to define two distinct random intercepts: Z = [Zv Zu]. The elements of Zv ∈ R

n×15

assume value 1 in column k if the observation is related to the item k and 0 otherwise; on the
other hand, Zu ∈ R

n×37 assume value 1 in column j if the observation is related to subject j and
0 otherwise.

As a consequence, the rank deficiency of X (I − PZ )X is l = 1 and it is due to the fixed
effect intercept, which is linearly dependent with respect to both Zv and Zu .

Hyper-parameters γ in priors (7) and (8) are set along the lines of Section 4.1 in order
to assure the existence of the first two posterior moments. For σ 2, we apply condition (i) in
Theorem 1 by setting r = 3 for numerical stability and calculating the maximum leverage:
we obtain γσ = 1.742. For the random effects variances, Lv ∈ R

2×2 and Lu ∈ R
2×2 must

be computed, whereas Xo coincides with X since the rank deficiency is due to the intercept.
Given that l = 1, the unique non-null elements coincide with the inverse of the first elements of
the matrices XT Z(ZTZ)−Cv(ZTZ)−ZT X and XT Z(ZTZ)−Cu(ZTZ)−ZT X, where Cv =
diag (I15, 037) and Cu = diag (015, I37). The deduced numerical conditions are γτ,v = 2.046
and γτ,v = 2.434; therefore, the latter value is chosen for all the GIG priors tail parameters
since it is the more restrictive condition. We stress that the available package BayesLN (Gardini
et al., 2020) automatically produces these computations to facilitate the usage by practitioners.
The code required to obtain the results presented in this section is available as supplementary
material, whereas details on the MCMC convergence diagnostics are reported in Section S5 of
the supplementary material.

In Table 3, the posterior means and standard deviations obtained for the complete dataset
(n = 547) under prior settings (16), (17) and (18) are reported. Posterior inference has been
carried out both on basic model parameters and some conditional expectations of reading times.
In particular, θm(xi = −1) represents the expected time requested to process a SRC estimated
by the model, whereas θm(xi = 1) is the time expected for an ORC. Another interesting output
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Table 3.
Posterior means and standard deviations obtained for the whole dataset (n = 547) under three considered prior specifica-
tions.

GIG(1, 0.01, γ ) IG(1, 1) IG(0.001, 0.001)

Mean SD Mean SD Mean SD

τ2
u 0.068 0.022 0.131 0.034 0.063 0.020

τ2
v 0.046 0.026 0.185 0.074 0.038 0.020

σ 2 0.270 0.017 0.271 0.017 0.270 0.017
β0 6.060 0.073 6.062 0.124 6.062 0.068
β1 − 0.036 0.022 − 0.035 0.022 − 0.036 0.022
θm(xi = −1) 539.351 43.168 601.487 81.673 536.936 39.894
θm(xi = 1) 502.195 40.032 560.208 75.651 499.748 36.931
θc(−1, u3) 514.441 48.332 530.301 57.406 513.261 47.800
θc(1, u3) 479.001 44.836 493.922 53.165 477.721 44.418

Table 4.
Posterior means and standard deviations obtained for a subset of the dataset (n = 110) under three considered prior
specifications.

GIG(1, 0.01, γ ) IG(1, 1) IG(0.001, 0.001)

Mean SD Mean SD Mean SD

τ2
u 0.062 0.024 0.154 0.043 0.064 0.030

τ2
v 0.024 0.027 1.063 1.96 0.046 0.611

σ 2 0.132 0.021 0.152 0.025 0.140 0.026
β0 5.958 0.103 5.954 0.639 5.953 0.121
β1 − 0.054 0.036 − 0.054 0.039 − 0.055 0.037
θm(xi = −1) 458.242 52.045 1.5 × 1011 1.4 × 1013 3.3 × 108 3.3 × 1010

θm(xi = 1) 411.008 46.569 1.4 × 1011 1.4 × 1013 3.7 × 108 3.7 × 1010

θc(−1, u3) 475.965 38.465 512.621 53.087 475.136 39.349
θc(1, u3) 426.903 34.289 460.308 47.627 425.531 34.472

for these kind of models is the estimation of the response variable expectation within a particular
group: for example, θc(−1, u3) represents the average reading time for item j = 3 in the SRC
case and θc(1, u3) in the ORC case.

We note that the issues that affect posterior moments of functionals in the original data scale
are masked by the moderately large sample size. In fact, there are no clear symptoms of the fact
that posterior results obtained under inverse gamma priors are theoretically meaningless, since
they are MCMC estimates of integrals that are analytically not finite, as already noted in the
simulation section. We also note that the inverse gamma prior with parameters both equal to 1
can be a largely informative prior for variances when their actual value is near to 0, as it often
happens in the analysis of log-transformed data. In this application, the variance components (τ 2

u
and τ 2

v ) posterior estimates are substantially higher than the ones obtained under the proposed
GIG priors and the small-parameters inverse gamma priors.

Finally, we fit the same model under the three prior settings on a subset of the original
dataset: we considered reading time observations from the first three clauses only (k = 1, 2, 3
and n = 110). In Table 4, posterior results are displayed. The aim of this second exercise is to
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Figure 1.
Posterior distributions of the marginal means θm(xi = −1) under different priors for the variance components. The results
obtained with the complete and the reduced data are shown.

stress again the mathematical inconsistency of the conditional expectations posterior summaries
in Table 3: we note that, in this case, the infiniteness of the target integrals is evident also from their
MCMC estimates. The cause of this feature appears in Fig. 1 where the boxplots representing the
posterior distribution of θm(xi = −1) highlight the heavy tails obtained under IG priors for the
reduced dataset. On the other hand, our prior specification allows to produce reliable estimates in
any case, improving the readability of the log-normal mixed model results.

7. Discussion

In this section, we discuss the scope of the methodology we introduced and its limitations. As
noted in Sect. 2.1, model (1) does not include special cases in which random effects are correlated
and the modelling of their dependence involves additional parameters.

Models with these features can be relevant in some applications, for instance when a random
intercept and a random slope are specified within a single grouping factor (Sorensen and Vasishth,
2015; Jackman, 2009, Chapter 7). A complete coverage of models with correlated random effects
is beyond the scope of this paper, in which we focused on analytically treatable models for which
relevant posteriors can be explored using direct Gibbs sampling.

Nonetheless, in this section we study a simple model in which a vector of random intercepts
u0 and random slopes u1 are included in the model (i.e., q = 2). We assume that pairwise elements
of these vectors refer to the same grouping factor with levels j = 1, . . .m. For the j-th component
u j = u0, j , u1, j

T , we assume the following distribution:

u j |ρ, τ 2
0 , τ 2

1 ∼ N2 0,
τ 2

0 ρτ0τ1

ρτ0τ1 τ 2
1

, (21)

where ρ is the correlation parameter. The study of this case allows us to show that the results of
Theorem 1 apply more generally than to model (1). We can state the following result:

Corollary 1. The normal linear mixed model in the log scale

w|u,β, σ 2 ∼ Nn Xβ + Zu, Inσ 2
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is considered with u = uT0 ,uT1
T
and

u|ρ, τ 2
0 , τ 2

0 ∼ N2m (0,D) , D = τ 2
0 Im ρτ0τ1Im

ρτ0τ1Im τ 2
1 Im

.

The priors (7) and (8) are assumed for the variance components, along with ρ ∼ U (−1, 1). In
order to compute the r-th, with r > 0, posterior moment of θc(x̃, z̃), θm(x̃) and of p(ỹ|y), the
same constraints on the prior parameters as those derived in Theorem 1 must be imposed.

Proof. See Section S6 in the Supplementary material. 
�
The previous result allows to extend the existing conditions for moments of functional studied in
Theorem 1 to models that considers several grouping factors determining this kind of correlated
random effects. However we note that, introducing additional parameters to account for the cor-
relation, a simple Gibbs sampler to draw from the parameters posterior cannot be used anymore.
Nonetheless, models of this type can be easily fitted through platforms for statistical computation
such as Stan. Specifically, as the GIG is not currently available among the pre-specified distribu-
tions in Stan, a function allowing the specification of such distribution as prior for the variance
parameters is provided in Section S6.

The log is a special case of the Box-Cox family of transformations (Box and Cox, 1964).
In many applications, the whole family is considered and the transformation ruling parameter,
�, is chosen on the basis of the available sample, while, under the Bayesian approach, a prior
distribution p(�) needs to be specified in order to account for the uncertainty associated with its
choice.

The log-transformation plays a central role among those of the Box-Cox family because of its
popularity, the well-known properties of the log-normal distribution, and the fact that linear models
on the log-scale are multiplicative on the original scale, a specification that is often appropriate
in applied problems. The extension of our results to linear mixed models specified on Box-Cox
transformed responses is beyond the scope of this paper since the inferential problem would be
substantially different. In fact, an additional parameter � would be involved and a prior distribution
must specified or, more appropriately, a joint prior distribution for �, the variance components,
and the slope coefficients, as suggested in Sweeting (1984).

Here, we simply note that, at least for predictive distributions, the non-existence of posterior
moments is still an issue: De Oliveira et al. (1997), studying a Gaussian random fields that
generalizes model (1) when q = 1, note that, once a ordinary inverse Gamma distribution for the
variance components is assumed, the expected value of the posterior predictive distribution is not
finite whenever −1 ≤ � ≤ (n − p)−1.

Obtaining general results similar to those in Theorem 1 for the general Box-Cox transfor-
mation is difficult because of the complicated expressions that functionals similar to (3) and (4)
have in the general case. Nonetheless, we note that the results stated for the suggested priors
hold whenever � > 0 as the implied underlying distribution would have lighter tails than the
log-normal.

8. Conclusions

The use of linear mixed models on log-transformed response variables is widespread in several
applied fields. In this paper, the model is investigated within the Bayesian framework. Inferential
problems that arise when predicting response variable values and estimating its expectation in
the original scale are pointed out. Specifically, the posterior distributions have not finite moments
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under the most common priors for the variance components. This would make simple posterior
summaries based on popular loss functions such as the quadratic one, not valid. Following the
results obtained in Theorem 1, the Generalized Inverse Gaussian distribution endowed with a
careful choice of hyper-parameters is proposed as prior for the variance components in the model,
to obtain posteriors with moments defined up to a pre-specified order.

We tried to provide all the tools needed by a practitioner to exploit the proposed method-
ology. In particular, the R package BayesLN contains the LN_hier_existence function
that computes the existence conditions for the posterior moments derived in Theorem 1 and
LN_hierarchical that allows to carry out posterior inference on model (1).

The paper covers the case of a linear mixed model multiple random effects assumed con-
ditionally independent. This latter assumption, that can be restrictive in some applications, is
motivated by the attempt to achieve a balance between model generality, analytical tractability,
and computational ease of implementation. However, since in the behavioral sciences literature
the need for specifying correlated random effects within a common grouping factor (e.g., random
intercept and random slopes) can emerge, the extension of the main results to this case is also
discussed. To help the practical implementation in this case, we provide Stan code useful to
specify the proposed GIG priors, allowing to fit models that include correlated random effects.

Supplementary material

In the supplementary material, the following information is reported. In Section S1, we com-
plement the discussion on the choice of prior specification for the hyper-parameters γ contained
in Sect. 4.1 of the main paper. In Section S2, the minimum MSE estimator conditioned to the vari-
ance components of the overall mean θm is derived and its connection to the Bayesian framework
is explained. This quantity is used as benchmark in the simulation study. In Section S3, some
additional tables concerning the results of the simulation discussed in Section 5 of the paper are
reported. Section S4 contains an additional simulation study in which covariates are included in
the model, and the frequentist properties of the posterior predictive distribution are investigated.
Section S5 reports the information about the convergence diagnostics of the MCMC algorithm
used to fit the models compared in the application of Section 6. Eventually, the proof of Corollary
1 and some software details useful to estimate models with dependent random effects are con-
tained in Section S6. All the R code used for the simulations and the application is available in a
zipped folder.
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Appendix: Proof of Theorem 1

(i) The r -th moment of θc(x̃, z̃) can be defined as:

E θrc (x̃, z̃) |w = E exp r x̃Tβ + r z̃Tu + r
σ 2

2
w

=
�

exp r x̃Tβ + r z̃Tu + r
σ 2

2
p(β,u, σ 2, τ 2|w)dθ .

Recalling the expression (4) and performing a simple change of variable, it is possible to solve the
integral, twice recognizing the moment generating function of a Gaussian distribution: the first
related to the N z̃TVuZT (z − Xβ) , σ 2z̃TVuz̃ and the second to Np q̃T β̄, q̃TVβ q̃ , where

q̃T = z̃TVuZTX − x̃T and Vu = ZTZ + σ 2D−1
−1

. Then, the following integral is obtained:

+∞

0
· · ·

+∞

0
g(σ 2, τ 2) exp −1

2
σ 2 γ 2

σ − r+

−r2 z̃TVuz̃ + q̃TVβ q̃
σ 2 dτ 2dσ 2,

where g(σ 2, τ 2) is a function that does not affect the finiteness of the integral. Therefore, the
integral is finite when:

lim
σ 2→+∞

γ 2
σ − r − r2 z̃TVuz̃ + q̃TVβ q̃

σ 2 > 0.

In order to compute this limit, lemma 1 by Hobert and Casella (1996) is useful. It states that, given
a scalar c and a non-negative definite matrix S, the limit:

lim
c→+∞ S + I

c

−1

(A1)

coincides with a generalized inverse of S. Moreover, it is immediate to extend the result to the
case in which any diagonal matrix substitutes I.
Considering the limit of the factor that multiplies r2 and focusing on the first addend, by applying
the previous result and doing some computations, it is possible to show that

lim
σ 2→+∞

z̃T ZTZ + σ 2D−1
−1

z̃ = lim
σ 2→+∞

1

σ 2 z̃
T ZTZ

σ 2 + D−1
−1

z̃ = 0. (A2)

Then, the limit of the second added must be computed. It is:

lim
σ 2→+∞

q̃TVβ q̃
σ 2 = lim

σ 2→+∞
q̃T XTX + σ 2XTMX

−1
q̃.
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Focusing on the structure of the matrix M:

σ 2XTMX = XT Z(ZTZ)− (ZTZ)− + D
σ 2

−1

(ZTZ)−ZT − Z(ZTZ)−ZT X,

and using the previous result on the limit:

lim
σ 2→+∞

Z(ZTZ)− (ZTZ)− + D
σ 2

−1

(ZTZ)−ZT = Z(ZTZ)−ZT ,

it is possible to conclude that the limit reduces to:

lim
σ 2→+∞

z̃TVuZTX − x̃T XTX
−1

z̃TVuZTX − x̃T
T

. (A3)

Hence, solving the deduced quadratic form and computing the limits similarly to (A2), it is finally
obtained the result:

lim
σ 2→+∞

q̃TVβ q̃
σ 2 = x̃T XTX

−1
x̃.

The concluding algebraic passages are straightforward.
(i i) In this case, the integral defining the r -th posterior moment of θm(x̃) might be decomposed
as:

E θrc (x̃, z̃) |w = E exp r x̃Tβ + r

2
σ 2 +

q

s=1

τ 2
s w

=
+∞

0
· · ·

+∞

0
g σ 2, τ 2 exp −1

2
σ 2(γ 2

σ − r)+

+
r

s=1

τ 2
s γ 2

τ,s − r − r2x̃TVβ x̃ dσ 2dτ 2.

In order to check for the finiteness of the previous integral, the term r2x̃TVβ x̃ must be checked
when all the variance components go to +∞. An upper bound of the integral is:

+∞

0
· · ·

+∞

0
g σ 2, τ 2 exp −1

2
σ 2 γ 2

σ − r − r2

σ 2 x̃
TVβ x̃ +

+
r

s=1

τ 2
s γ 2

τ,s − r − r2

τ 2
s
x̃TVβ x̃ dσ 2dτ 2.

The limit for σ 2 → +∞ gives the same result of point (i), whereas the limit for the generic term
τ 2
s can be written as:

lim
τ 2
s →+∞

σ 2x̃T τ 2
s X

T (I − PZ)X+

+σ 2XT Z(ZTZ)− σ 2 ZTZ
−

τ 2
s

+ D
τ 2
s

−1

(ZTZ)−ZT X

−1

x̃

Downloaded from https://www.cambridge.org/core. 09 Jan 2025 at 03:55:13, subject to the Cambridge Core terms of use.

https://www.cambridge.org/core


A. GARDINI ET AL. 639

By taking the limit τ 2
s → +∞ to the term σ 2 (ZTZ)−

τ 2
s

+ D
τ 2
s

, a matrix Cs is obtained. All its

elements are null with the exception of the presence of Ims as block on the diagonal in corre-
spondence to the s-th variance component of the random effect and its generalized inverse is the
matrix Cs itself. Therefore, the limit might be written as:

lim
τ 2
s →+∞

σ 2x̃To τ 2
s X

T
o (I − PZ)Xo + σ 2XT

o Z(ZTZ)−Cs(ZTZ)−ZT Xo
−1

x̃o, (A4)

where X and x̃ have been replaced, respectively, by Xo and x̃o without loss of generality. Thanks
to this ordered matrix, the first term A = XT

o (I − PZ)Xo can be written as:

τ 2
s A = 0l 0T

0 τ 2
s A2,2

,

where 0l is the null squared matrix of dimension l, that is the rank deficiency of A. This feature
is due to the ordering of Xo and the linear dependence of the first l columns of Xo to the columns
of Z. Denoting with Bs the second matrix, then their sum can be written as:

Bs;1,1 BT
s;1,2

Bs;1,2 τ 2A2,2 + Bs;2,2
.

To complete the proof, the result of the limit can be written as:

x̃To Ls x̃o,

where, exploiting the property of the block matrix:

Ls = Ls;1,1 0
0 0p−l

,

and Ls;1,1 = B−1
s;1,1 ∈ R

l×l .
(i i i) Recalling the definitions of the posterior predictive distribution (5) and noting that, once
defined w̃ = log ỹ, then w̃|β,u, σ 2 ∼ N x̃Tβ + z̃Tu, σ 2 , the moments of interest might be
defined as:

E ỹr |y =
�

+∞

−∞
exp {rw̃} p w̃|β,u, σ 2 dw̃ p u,β, σ 2, τ 2|y dθ .

Following algebraic passages similar to the proof of (i), the final result is obtained.
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