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Abstract-High-resolution transmission electron microscopy (HRTEM) has been used to examine illite/ 
smectite from the Mancos Shale; rectorite from Garland County, Arkansas; illite from Silver Hill, Mon
tana; Na-smectite from Crook County, Wyoming; corrensite from Packwood, Washington; and diagenetic 
chlorite from the Tuscaloosa Formation. Thin specimens were prepared by ion milling, ultramicrotome 
sectioning, and/or grain dispersal on a holey carbon substrate. Some smectite-bearing clays were also 
examined after intercalation with dodecylamine hydrochloride (DH). Intercalation of smectite with DH 
proved to be a reliable method for HRTEM imaging of expanded smectite (d(OOI) = 16 A) which could 
then be distinguished from unexpanded illite (d(OOI) = 10 A). Lattice fringes of basal spacings of DH
intercalated rectorite and illite/smectite showed a 26-A periodicity. These data support X-ray powder 
diffraction (XRD) studies which suggest that these samples are ordered, interstratified varieties of illite and 
smectite. The ion-thinned, unexpanded corrensite sample showed discrete crystallites containing 10-A 
and 14-A basal spacings corresponding to collapsed smectite and chlorite, respectively. Regions containing 
disordered layers of chlorite and smectite were also noted. Crystallites containing regular alternations of 
smectite and chlorite layers were not common. These HRTEM observations of corrensite did not cor
roborate XRD data. Particle sizes parallel to the c axis ranged widely for each sample studied, and many 
particles showed basal dimensions equivalent to more than five layers. For all illite, smectite, and illite/ 
smectite particles examined, crystallite sizes of about 20 A in the basal dimension were not observed. 

Key Words-Chlorite, Corrensite, High-resolution transmission electron microscopy, mite, Lattice im
aging, Mixed layer, Particle size, Rectorite, Smectite. 

INTRODUCTION 

Until recently, X-ray powder diffraction (XRD) has 
been the major technique used to understand the struc
tural arrangements of mixed-layer clay minerals. Even 
though XRD allows precise, routine measurements of 
atomic spacings, values derived are averaged over ex
tremely large volumes relative to atomic spacings. In 
contrast, selected-area electron diffraction (SAD), con
ventional transmission electron microscopy (TEM), and 
high-resolution transmission electron microscopy 
(HRTEM) sample smaller regions (e.g., -1000 A for 
SAD and < 5 A for phase-contrast imaging) and can 
provide complementary data on the particle sizes, unit
cell dimensions, and localized atomic arrangements of 
individual clay grains. 

In recent years, acquisition of structural and chem
ical data from specimen areas as small as 200 A in 
diameter has become possible with the development 
of HRTEM coupled with energy-dispersive X-ray 
spectroscopy (EDX) for elemental analysis. Under ide
al conditions, image resolution of about 3 A (point-to
point) can be routinely obtained on mineral specimens. 

1 Present address: Department of Geology, University of 
New Mexico, Albuquerque, New Mexico 87131. 

The combined structural and chemical capability of 
the analytical electron microscope (AEM) represents a 
powerful new tool for the investigation of complex, 
fine-grained minerals such as mixed-layer clays. 

Mixed-layer clays are abundant in sedimentary rocks 
and are considered important indicators of diagenetic 
alteration (Hower et al., 1976; Hower, 1981a, 1981b). 
The most common and well-studied mixed-layer clay 
minerals are members of the illite/smectite (liS) group. 
Numerous studies on the identification, kinetics, and 
synthesis of IIS can be found in the literature (e.g., 
Eberl and Hower, 1976; Eberl, 1978; Roberson and 
Lahann, 1981; Garrels, 1984); however, the mecha
nism of the smectite-to-illite transition during burial 
is not well understood. 

Models of layer arrangements in mixed-layer clays 
have been developed based on XRD and Monte Carlo 
numerical simulation studies. Models based on XRD 
data were extensively illustrated by Reynolds and 
Hower (1970), Reynolds (1967), and Brindley and 
Brown (1980). Recently, Bethke and Altaner (1986) 
modeled the formation of l/S clays based on a Monte 
Carlo numerical simulation using a nearest-neighbor 
illitization scheme. Their work, which adequately ex
plained XRD patterns for many naturally occurring 
liS clays, suggests that the liS transformation mech-
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Table 1. X-ray powder diffraction data for oriented sample mounts of reference clays. 

Illite/smectite (ISMt·I)' Rectorite (RAr.I)· Corrensite (CorWa-l)' 
Smectite (SWy-I)' Illite 

(IMt-l), Ethylene 
Air dried DH' Air dried glycol Air dried 

<2f.trn <2,um Air dried <0.2 ~m <0.2 ~m <0.2/Lm 
(Mg-sat)' (Mg-sat) <0.2:(,m (Mg-sat) (Mg-sat) (Na-sat) 

d(A) d(A) d( ) d(A) d(A) d(A) 

14.98 16.51 10.16 12.08 31.0 22.6 
8.51 8.71 7.24 9.21 14.09 11.2 
5.54 5.90 5.45 7.27 9.51 7.25 
4.77 4.44 5.03 5.08 5.30 5.50 
3.32 3.32 4.52 4.52 4.52 4.90 
2.88 3.36 4.30 4.31 4.46 

3.37 3.36 4.16 
3.24 2.30 3.56 
2.90 2.22 3.34 

1 SWy-1. Na-Montmorillonite, Crook County, Wyoming. 
2 IMt-1. Illite, Silver Hill, Montana (Cambrian shale). 
3 ISMt-l. Illite/smectite, Mancos Shale (Ordovician). 
4 RAr-l. Rectorite, Garland County, Arkansas. 
5 CorWa-1. Corrensite, Packwood, Washington (Eocene). 

Ethylene Ethylene 
glycol Air dried Glycerol glycol 550·C 
<2/Lffi <2,um <2.um <2Jlm <2JLm DH' 

(Mg-sat) 
d(A) 

(Mg-sat) 
d(A) 

(Mg-sat) 
d(A) 

(Mg-sat) 
d (A) 

(Mg-sat) 
d (A) 

<2,llm 
d(A.) 

27.67 29.1 31.5 29.45 23.9 29.45 
13.56 14.5 15.8 14.25 12.3 15.24 
10.13 9.61 14.4 9.31 7.8 7.79 
9.01 7.14 8.04 7.08 
7.24 5.27 7.3 
6.72 4.77 4.62 
6.29 3.56 
5.37 3.21 
5.03 2.85 

All above samples are from the Source Clay Repository offered by The Clay Minerals Society. 
6 DH = dodecylamine hydrochloride. 
7 Mg-sat = Mg-saturated mount. 

anism involves a number of individual rate laws or 
reaction steps which may vary throughout the illiti
zation process. Sub-unit-cell imaging in real space us
ing HR TEM can provide the necessary experimental 
control for both types of mixed-layer modeling pro
cedures. The present paper reports an AEM study of 
well-known mixed-layer clays combined with comple
mentary XRD in order to provide a basis for verifi
cation of current mixed-layer stacking models and/or 
a more detailed understanding of mixed-layer clay for
mation. 

EXPERIMENTAL 

Samples 

Individual samples of illite, smectite, chlorite, and 
ordered mixed-layer clays, such as illite/smectite (rec
torite) and chlorite/smectite (corrensite), were selected 
for study. All samples, except the chlorite from the 
Tuscaloosa Formation, are from the Source Clays Re
pository of The Clay Minerals Society. A compilation 
ofXRD data collected on specimens used in this study 
is given in Table 1. 

Sample SWy-1 is a sodium smectite from the Cre
taceous Newcastle bentonite formation, Crook County, 
Wyoming. Characterization data for this smectite were 
summarized by van Olphen and Fripiat (1979). Our 
XRD data for sample SWy-1 revealed a d(OOl) value 
of 14.98 A for the air-dried, Mg-saturated material 
which expanded to 16.51 A upon intercalation with 
dodecylamine hydrochloride (DH). This value agrees 
reasonably well with the d(OOl) value of 15.67 A re
ported by Ruehlicke and Kohler (1981) for the DH
intercalate of this smectite. 

Sample IMt-1 is an illite from a Cambrian shale in 
the Silver Hill Formation, Jefferson Canyon, Montana, 
and was described as a 1Md polytype by Hower and 
Mowatt (1966). XRD revealed at 1O-A basal spacing 
in air. Intercalation with DH caused no expansion of 
the basal spacing. 

Sample ISMt-1 is a mixed-layer liS and is the pri
mary clay type in the Cretaceous Mancos Shale in Mon
tana (Nadeau and Reynolds, 1981). Our interpretation 
of XRD data using the methods of Reynolds (1967) 
and Reynolds and Hower (1970) and subsequent mod
ifications by Srodon (1980,1981,1984) indicates that 
the sample is an ordered (R = 1) liS with about 80% 
illite layers. 

Sample RAr-1, a rectorite from Garland County, 
Arkansas, was described by Miser and Milton (1964). 
Our comparison of XRD data for this sample with 
those reported by Reynolds and Hower (1970) indi
cates that this mineral is a regularly interstratified liS 
with R = 1 ordering and 50% illite layers. Srodon's (1980) 
data also indicate about 50% illite layers. The XRD 
pattern of the sample heated at 550°C showed a re
flection at 9.93 A, which corresponds to the spacing of 
collapsed smectite layers. Minor amounts of discrete 
illite and koalinite were also detected. 

Corrensite sample CorWa-1 is from the Ohanape
cosh Formation, an altered late-Eocene tuff, in Pack
wood, Washington. This sample satisfies the diagnostic 
XRD criteria for an ordered chlorite/smectite (Brind
ley and Brown, 1980), including a Mg-saturated d(OOl) 
value of 30.4 A, which expands to about 32.7 A with 
glycerol solvation and collapses to 23.8 A on heating 
to 500°C (David R. Pevear, Exxon Production Re
search Company, Houston, Texas, and Phoebe L. Hauff, 
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The Clayschool, Conifer, Colorado, personal com
munication, 1985). Minor amounts of discrete chlorite 
were detected in the XRD trace of the Mg-saturated, 
glycerol-solvated sample (peaks at 14.4 and 7.3 A). 

The chlorite specimen used in this study is from the 
late Cretaceous Tuscaloosa Formation, Louisiana. 
Electron microprobe analyses showed it to be Fe-rich 
and to contain about 33% FeO and 6% MgO. XRD 
gave typical basal reflections for pure chlorite: d(OO 1) = 

14.oA,d(002) = 7.03A,andd(003) = 3.52A. HRTEM 
images showed typical two-dimensional structure such 
as observed by Spinnler et al. (1984) on a clinochlore 
chlorite from West Chester, Pennsylvania. 

Sample preparation 

Three standard specimen preparation techniques were 
used: ion-beam thinning, ultramicrotomy, and particle 
dispersion. For bulk samples, where material avail
ability or purity was not a concern (e.g., samples ISMt-1 
and IMt-1), ultrathin sections were prepared by ion 
milling (Barber, 1970; Phakey et al., 1972; Paulus et 
aI., 1975) 3-mm diameter regions after they were re
moved from petrographic thin sections of standard 
thickness (30 ~m). This method allowed correlation 
between optical thin-section petrography, scanning 
electron microscopy (SEM), and HR TEM. In addition, 
this approach preserved the natural assemblage of all 
constituents of a sediment and readily provided im
portant microtextural data (e.g., grain shape and size). 

Clay powders of size-fractionated clays (e.g., <0.2 
~m) from a bulk specimen were particularly difficult 
to image along the c axis. In some samples, particles 
dispersed on a holey carbon substrate were imaged 
along c at the particle edges, if these edges curled or 
were fortuitously oriented. Aspects of this technique, 
including limitations of HRTEM interpretation, were 
described by McKee and Brown (1977). For the present 
study, only smectites produced well-oriented c axes at 
the edges of particles (see Figures 2a and 2b). An al
ternative preparation of clay powders involved epoxy 
embedding and ultramicrotomy. An oriented clay-lay
er mount was obtained by air drying droplets of a sam
ple suspension between beds of cured epoxy (Spurr, 
1969). The resulting cured epoxy-clay sandwich was 
then sectioned perpendicular to the basal direction fol
lowing the procedures outlined by Eberhart and Triki 
(1972), Tchoubar et al. (1973), and Brown and Jackson 
(1973). 

As shown in Figure 2a, and implied in a previous 
HRTEM study by Kohyama et al. (1982), smectitic 
clays may collapse under vacuum. This phenomenon 
precludes reliable interpretation of untreated liS clays, 
inasmuch as illite layers and collapsed smectite layers 
may be dimensionally similar in a HRTEM image. To 
overcome this problem, samples SWy-l, ISMt-1, and 
RAr-l were intercalated with DH using a simplified 

version of the procedure outlined by Ruehlicke and 
Kohler (1981). 

Lagaly and Weiss (1969) used XRD to show that for 
small inorganic ions in the interlayer site (Na+, Mg2+, 
Ca2+), the basal spacings of dried, DH-intercalated clays 
are not markedly influenced by changes in the layer 
charge. Expansion of the intercalated clay persists for 
a few months at atmospheric pressure (Lagaly and 
Weiss, 1969) and also for several weeks in the AEM 
sample chamber. Upon intercalation with DH, the bas
al spacings for <2-~m size, Mg2+-saturated smectite 
SWy-l expanded from 14.98 to 16.51 A (see Table 1). 
This basal expansion of sample SWy-1 with DH in
tercalation was also confirmed by HR TEM imaging. 
Both XRD and HRTEM imaging ofDH-treated illite 
(sample 1M t-l) showed no expansion ofthe basal spac
ing. 

An alternative method in which low-viscosity epoxy 
(Spurr, 1969) is used to expand smectites (Tessier and 
Pedro, 1982) was also investigated for sample SWY-i. 
Preliminary data suggest that smectite layers consis
tently expanded to 15 A. 

Microscopy 

All samples were studied at an accelerating voltage 
of200 kY. Selected samples were also analyzed at 100, 
120, 300, and 400 kY. The transmission electron mi
croscopes used for this study were side-entry goni
ometer versions ofthe JEOL 1 OOCX, Philips EM 420T, 
JEOL 200CX, JEOL 2000FX, Philips EM300T, and 
JEOL 4000EX instruments. Some of the variation in 
quality of the data presented in Figures 1-5 is related 
to both imaging resolution and operating voltage, as 
well as to the nature of the specimen (i.e., rate of elec
tron beam damage) and the preparation technique. 
Nevertheless, basal spacings of the clays were readily 
observed and were interpretable in all images. Mea
surements of lattice fringes were calibrated for each 
microscope using standard imaging specimens (usually 
graphitized carbon, where d(002) = 3.4 A or beryl, 
where d(OOI) = 9.2 A) and by calibrating the appro
priate SAD patterns using a thin Au coating on each 
sample for each particular operating condition. The 
error in lattice image measurements and SAD patterns 
was estimated to be ±2% relative. In some experi
ments, relative lattice fringe spacings were confirmed 
by calibrated optical scans of the TEM negative using 
a Joyce Loebl Model 3CS microdensitometer. 

In all experiments, the basal spacing of interest was 
considerably greater than the nominal point-to-point 
resolution of any microscope used. Our interpretation 
of these HRTEM images was restricted to measure
ments of basal spacings and, where possible, cross
fringes if a crystallite was appropriately oriented. In
asmuch as optimal imaging conditions were not always 
possible, a relatively stable sample of chlorite (Tus
caloosa Formation) was used to confirm general im-
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Figure I. High-resolution lattice images of illite (IMt-l) from an ion-thinned section: (a) lattice fringes showing typical lO-A 
spacing. Note layer termination and " pinch and swell" (solid arrows) in this relatively large (- 30 layers) crystallite; sub
lattice fringes of -S A occur where imaging conditions are favorable (open arrows); (b) two-dimensional image of well
oriented crystallites (-10 layers) showing 10- and 4.S-A lattice fringes; selected area electron diffraction pattern (insert) shows 
intense streaking in higher order reflections suggesting layer-stacking disorder. 

aging principles (Spence, 1981) for lattice fringes from 
layer silicates. Many of these principles have been sup
ported by extensive model calculations on silicates 
(Iijima and Buseck, 1978; O'Keefe et al., 1978; Spinn
ler et aI. , 1984). For example, O'Keefe et al. (1978) 
showed that fringe contrast reversal can be observed 
over a relatively large range of defocus for silicate min
erals. This particular feature was verified in the present 
study using the Tuscaloosa chlorite. Although the de
tailed relationship of image contrast to the atomic 
structure is not known with certainty, the 14-A basal 
repeat distance (calibrated with SAD patterns) re
mained constant throughout this optimum defocus 
range. 

The understanding that an array of lattice fringes 
shows the minimum particle dimension (or crystallite 
size) normal to the direction of the fringes is implicit 
in all interpretations in this paper. This dimension is 
a minimum value because a particular crystallite or 
particle may bend or curve away from the electron 
optic axis. Under such circumstances, lattice fringes 
would not necessarily be apparent. This aspect oflattice 
imaging is germane to randomly oriented clay particles 
such as the ion-milled specimens shown in Figures 1, 
3a, and 5. This characteristic of basal lattice fringes is 
a fundamental advantage offered by HRTEM imaging 
and can be used even when particle sizes are too small 

to provide reliable SAD data (see e.g., Mackinnon and 
Buseck, 1979). 

The rapid rate of electron beam damage for all clays 
(except the Tuscaloosa chlorite) precluded optimal ori
entation of specimens using conventional tilting meth
ods. Perfect orientation for basal spacings was assumed 
if two-dimensional structure images were obtained (i.e., 
-4.5-A cross-fringes, corresponding to d(020» or if 
basal spacings were observed through a large range of 
defocus (- 1000 A). These observations were support
ed by SAD patterns where possible. In general, the rate 
of electron beam damage decreased with increased op
erating voltage. Beam damage also decreased for in
dividual clay specimens in the order: smectite, illite, 
illite/smectite, chlorite/ smectite, chlorite. The rate of 
beam damage decreased by about a factor of2 between 
200 and 400 kV accelerating voltages. Further details 
ofHRTEM imaging were given by Spence (1981) and 
Eberhart (1981). 

OBSERVATIONS 

A range oftextures and slightly different orientations 
of the basal plane in two ion-thinned sections of illite 
IMt-1 are shown in Figures 1 a and 1 b. In Figure 1 a, 
the c axis for most of the crystallite was normal to the 
electron optic axis, and, thus, lattice fringes corre
sponding to 1 a-A basal repeats were produced. For this . 
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particular microscope (lEOL 2000FX), sub-unit-cell 
periodicity (- 5 A) was also observed in suitable parts 
of the crystal (open arrows, Figure I a). Figure 1 b is 
also an RR TEM image ofthe illite c axis perpendicular 
to the electron optic axis, as shown by the SAD pattern 
of this general region of the section (insert, Figure 1 b). 
This orientation and phase-contrast imaging gave a 
two-dimensional structure image of the crystallite. Thus, 
relatively well-ordered, 1 o-A periodicity was observed. 
Stacking disorder in a*, however, is also shown in the 
SAD pattern and the RRTEM image (Figure Ib). Fig
ures la and 1 b indicate that crystallites of sample IMt-l 
contain periodicity in more than one dimension (i.e., 
directions normal to c) and that no 20-A, "fundamen
tal" illite crystals were present in this sample. The crys
tallite size (i.e., the number of coherently diffracting 
lattice planes) ranged from 70 to 500 A for this illite. 

Dispersed particle mounts of smectite SWy-l were 
examined before and after intercalation with DR. Fig
ure 2a is a RRTEM image of a particle without DR 
intercalation. The characteristic IO-A basal repeat for 
collapsed smectite can be seen at the edge ofthe particle 
where imaging conditions were favorable. The rapid 
rate of electron beam damage and the predominant 
particle orientation made it difficult to image many 
grains with basal spacings or to estimate the average 
particle size in this sample; however, Figure 2a indi
cates that some particles of sample SWy-l are at least 
a few layers thick. Isolated examples of particles in
tercalated with DR showed an expanded basal spacing 
of 16 A, in accord with the XRD data. Figure 2b shows 
lattice fringes of particles of sample SWy-l intercalated 
with DR and then impregnated with Spurr epoxy prior 
to sectioning with an ultramicrotome. Particle size in 
the basal direction (-150 A), as well as expansion of 
the smectite lattice to 15 A, is apparent. 

A RRTEM image of an ion-thinned sample of 
ISMt-l, an interstratified liS containing 80% illite lay
ers, is shown in Figure 3a. This image, obtained at an 
operating voltage of 400 kV, exhibits considerable de
tail within the IO-A basal spacings. Regions in Figure 
3a without lattice (or structure) images may be areas 
in which the clay was not well oriented, i.e., where zone 
axes were not parallel to the electron optic axis. In
asmuch as this sample was prepared without interca
lation or epoxy embedding, basal spacings for illite and 
collapsed smectite could not be distinguished. Never
theless, the crystallite size shown is typical for this 
sample (whether liS or discrete smectite andlor illite) 
and is as large as 90 A in the basal direction. 

Figure 3b shows basal spacings of dispersed particles 
of sample ISMt-l after intercalation with DR. A rel
atively large region of the field of view shows a con
sistent 26-A basal spacing. Moreover, because this 
sample was sufficiently stable in the electron beam we 
were able to obtain a SAD pattern (insert; Figure 3b), 
where the 26-A basal spacing reflections were con-

Figure 2. High-resolution lattice images of smectite (SWy-
1): (a) prepared as dispersed particles, showing collapsed 10-A 
basal spacings at curled edge of grain; (b) prepared by embed
ding and ultramicrotomy; note greater number of (expanded) 
basal spacings and consistency of expansion for each layer; 
crystallite size is > 15 layers in c axis direction. 

firmed. Therefore, the RRTEM image and SAD pattern 
are due to an ordered arrangement of illite (10 A) and 
expanded smectite (16 A) layers. Sub-lattice fringes 
(e.g., 10 A and/or 16 A) were not observed because 
imaging conditions such as orientation and defocus 
could not be optimized for this sample. Nevertheless, 
the basal spacing could be measured, and this sample 
shows a regular arrangement of 8 mixed layers. Figure 
3 shows an example of a clay similar to that studied 
by Nadeau et al. (1984a, 1984b); however "funda
mental" 20-A (illite) particles are not present. XRD 
data (Table 1) confirmed that sample ISMt-1 is an 
ordered (R=l) liS clay. Discrete illite particles were 
not recognized in this sample, perhaps due to a small 
tendency for grain edges to curl or roll as in smectite 
and halloysite (McKee et at., 1973). 

Images from two dispersed samples of rectorite 
(RAr-l) are shown in Figure 4. In untreated sample 
RAr-l, IO-A basal spacings from the edges of a dis
persed grain were common (Figure 4a). Upon inter
calating the sample with DR, a range of basal spacings 
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Figure 3. High-resolution lattice images of illite/smectite 
(ISMt-l): (a) ion-thinned sample showing consistent lo-A 
basal spacing which corresponds to either illite or collapsed 
smectite; each crystallite is -9 layers thick along c axis with 
sub-parallel orientation; (b) dispersed particle intercalated with 
dodecylamine hydrochloride showing extensive regions (-10 
layers) of expanded 26-A basal spacings; SAD pattern (insert, 
top) also shows weak 26-A spacing, corresponding to regularly 
alternating layers of illite and expanded smectite. 

from 26 to 40 A were observed in dispersed grains 
(Figure 4b). Spacings of 26 A were the most common, 
and, here also, these basal spacings are likely due to a 
regular arrangement of illite and expanded smectite 
layers. Larger basal spacings in this sample may have 
been due to variations in layer charge (Yoshida and 
Suito, 1972). As with sample ISMt-l , the XRD data 
for sample RAr-1 indicate that the sample is an ordered 
(R = I), mixed-layer liS clay. 

Corrensite CorWa-1 was considered by David R. 
Pevear (Exxon Production Research Company, Hous
ton, Texas) and Phoebe Hauff (The Clayschool, Co
nifer, Colorado, personal communication) to be a well
ordered chlorite/smectite (C/S). Thus, HRTEM images 
along the c axis direction of crystallites in untreated 
sample CorWa-1 should have shown basal spacings of 
14 and lOA, corresponding to chlorite and collapsed 
smectite, respectively. Figure 5 shows the four pre
dominant types of basal spacings observed in this cor
rensite. Most crystallites contained only 10- or 14-A 
basal spacings. Figure Sa is a typical example of chlorite 
and shows 14-A fringes throughout a single crystallite. 
Identification of this grain as a chlorite has been con
firmed with SAD and thin-film EDX analyses. Other 
commonly observed crystallites show regular arrange
ments of 14-A basal spacings with randomly inter
spersed IO-A spacings (Figure Sb). A few reverse ar
rangements of 14-A fringes interspersed among 
predominantly lo-A basal spacings were also noted. 
Figure Sc shows two adjacent crystallites no more than 
10 layers wide in which the basal spacings of 10 and 
14 A are perpendicular to the electron optic axis. The 
image contrast and fine-scale variations in the lo-A 
basal spacings ofthe collapsed smectite indicate a higher 
degree of structural disorder compared with the adja
cent chlorite crystallite. Crystallite sizes for a variety 
of CIS layer arrangements ranged from 98 to 210 A. 

A few uncommon examples of regular mixed-layer 
CIS are shown in the HRTEM images in Figure Sd. 
Here, approximately two layers of the crystallite show 
a consistent 24-A basal spacing which are probably 
regular alternations of 10- and 14-A layer spacings. 
This layer stacking is an excellent example of a regu
larly alternating ordered CIS clay, but basal spacings 
of particles on either side of the mixed-layer structure 
are predominantly 14 A. Examination of three ion
thinned sections from separate mounts of sample 
CorWa-1 indicates that arrangements of alternating 
chlorite and (collapsed) smectite layers are uncommon. 
These data are not in general agreement with inter
pretations of XRD data obtained in this study. 

DISCUSSION 

Interpretation of one- and two-dimensional layer sil
icate images has been extensively treated in the liter
ature (Iijima and Buseck, 1978; Eggleton and Buseck, 
1980; Amouric et aI., 1981; Spinnler et aI., 1984). These 
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Figure 4. High-resolution lattice images of dispersed particles of rectorite (RAr-1): (a) without intercalation, showing alter
nating layers of illite and collapsed smectite; (b) after intercalation with dodecylamine hydrochloride, showing regions of 
expanded 26-A (and larger) basal spacings; note edge-terminated layer spacings in Figure 4a (arrowed). 

studies have shown that experimental and computed 
image contrast for each set of operating conditions must 
be compared in order to interpret the details of two
dimensional, sub-unit-cell images. Interpretation of 
basal spacings and relative interlayer distances is re
liable under multiple-beam, bright-field imaging con
ditions if fringes show optimum contrast (Veblen, 1983). 
These conditions have been employed for all experi
ments reported in the present study. 

The interpretation of mixed-layer lattice fringes may 
be ambiguous under certain circumstances, such as in 
the examination of untreated IIS clays using HRTEM. 
The ambiguity in interpretation depends, in part, upon 
the degree of collapse of a smectite layer in the high 
vacuum of the microscope. Page and Wenk (1979) and 
Ahn and Peacor (1986) indicated that untreated smec
tites show a range of basal spacings> 10 A, averaging 
about 13 A. Eggleton's (1984) data on an altered olivine 
and our example in Figure 2a, show that untreated 
smectites also collapse to a lo-A basal spacing. Col
lapse of smectite layers may be caused by specimen 
preparation of ion-thinned samples, as noted by Eg
gleton (1984), or, as was inferred above for dispersed 
particles of sample SWy-l, by exposure to a high vac
uum during TEM operation. Both expanded and col
lapsed layers therefore can be found in untreated smec
tites, but the degree oflayer collapse is a highly variable 
function of specific composition and/or degree of order 
of each smectite crystal, length of time in vacuum or 

under the electron beam, cleanliness and level of vac
uum, operating voltage, etc. In addition, disordered 
liS may show layer-collapse characteristics quite dif
ferent from that of discrete smectite or well-ordered 
liS (i.e., rectorite). Thus, the presence ofa basal spacing 
> loA may not be sufficient to distinguish all smectites 
from illites within a mixed-layer liS clay. 

Ahn and Peacor (1985) and Lee et al. (1985) indi
cated that illite and untreated smectite may be distin
guished by common structural and crystallinity fea
tures within specific sedimentary sequences. For 
example, Ahn and Peacor (1986) suggested that illites 
in Gulf Coast argillaceous sediments contain lattice 
fringes which are continuous and straight for greater 
distances (i.e., larger crystallites) than smectites and 
that they are relatively defect-free. Although these cri
teria appear valid for this particular sequence of clays, 
the illite shown in Figures Ia and Ib include lattice 
fringes of variable width (> 15 layers, Figure I a; 4 lay
ers, Figure 1 b), as well as a number of intra layer defects 
(arrowed, Figure Ia), layer pinch and swell, and layer 
terminations. By comparison, the basal spacings for 
DR-treated smectite (Figure 2b) are relatively contin
uous and defect-free. 

The RRTEM imaging and SAD ofI/S clays in this 
study confirm the conventional interpretation ofXRD 
data for well-ordered (R = 1) mixed-layer clays. Regular 
alternations of illite and expanded smectite producing 
sequences of ISIS IS ... , were observed for crystallite 
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Figure 5. High-resolution lattice images of untreated bulk corrensite showing typical layer arrangements for chlorite (Ch) 
and collapsed smectite (Sm): (a) large crystals of well-ordered chlorite; (b) smaller crystallites of chlorite with layers of collapsed 
smectite; (c) chlorite crystallite (-10 layers) adjacent to, and oriented with collapsed smectite crystallite; (d) chlorite crystallites 
adjacent to layers of regularly alternating chlorite and collapsed smectite. 

sizes as large as 200 A along the basal direction in 
sample ISMt-1. Because of the difficulty in obtaining 
a representative data set of basal spacings from dis
persed particles, we were not able to determine whether 
large crystallites (Ne > 5, where N. is the number of 
layers in a particle) of well-ordered, expanded, R=I 
liS predominate in samples ISMt-1 or RAr-1. Col
lecting such data requires a more tractable technique 
of specimen preparation, such as embedding and 
ultramicrotomy. Expanded layers in both samples were 
observed, although not always recorded because of ex
perimental difficulties. Images ofthese expanded layers 
suggest that ordered mixed-layer structures of illite and 
smectite do indeed occur. In addition, for all illite, 
smectite, and li S samples examined, particle sizes on 
the order of 20 A in the basal direction were not ob
served. 

The data from the present study on the corrensite 

from Washington are less definitive than those from 
sample ISMt-1. Extended crystallites (N. > 5) with 
regularly alternating layers of chlorite and smectite were 
not observed. Zones of discrete chlorite, discrete col
lapsed smectite, and randomly interstratified CIS were 
common in the bulk sample. Difficulties in image in
terpretation may arise from the possibility that uncol
lapsed smectite (-14 A) may be abundant and unusu
ally stable. This possibility would make the distinction 
of chlorite from smectite very difficult on the basis of 
lattice periodicity alone. Under the experimental con
ditions used in the present investigation, however, 
smectite in these corrensite samples should have col
lapsed to 10 A, a spacing commonly observed. Never
theless, the proportion of discrete chlorite and (col
lapsed) smectite, as well as randomly interstratified 
chlorite and smectite, noted by HRTEM was consid
erably higher than was indicated by bulk XRD analysis. 
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We cannot fully reconcile the apparent discrepancy 
between XRD and HRTEM results obtained on sample 
CorWa-l. 

Our observations and those of Yoshida (1973) and 
McKee and Buseck (1978) do not completely agree 
with recent TEM studies of a regular I/S (52% illite 
layers) with R=1 ordering reported by Nadeau et at. 
(1984a, 1984b). Nadeau et at. (1984a) estimated that 
79% of the particles are only 20 A thick along the c 
axis direction. In addition, they suggested that this reg
ular liS consisted of elementary "illite" particles whose 
interfaces are capable offorming complexes with water 
and organic molecules. Nadeau et at. (1984a, 1984b) 
argued that these complexes, and thin, parallel particles 
of illite, showed interparticle diffraction effects which 
produced XRD patterns similar to those of mixed
layer clays. We have shown here that ordered liS clays 
may have particle thicknesses> 50 A, and that regular 
alternations of illite and expanded smectite layers do 
indeed occur in some crystals. The basic observations 
from this study and those of Nadeau et al. (1984a, 
1984b) provide complementary data on the nature of 
mixed-layer clay structures. 

Two important differences in these studies are ap
parent in sample preparation and data interpretation. 
Nadeau et al. (1984a, 1984b) used an indirect, less 
accurate basal spacing determination on a statistically 
significant data set, whereas our study was based upon 
fewer significant observations but used a more precise 
direct-layer measurement technique. Both experimen
tal approaches have merit, and the data on corrensite 
indicate that interpretations of clay structures may be 
difficult even when well-ordered interstratification is 
present. 

Finally, XRD profiles derived from a variety of cal
culated Monte Carlo sequences of illite, smectite, and 
liS layers agree well with published XRD patterns from 
natural samples (Bethke and Altaner, 1986). The Monte 
Carlo layer sequences (which are based upon an as
sumed "illitization" mechanism) tend to develop clus
ters of segregated illite and/or smectite layers, as well 
as mixed-layer structures. This theoretical description 
of illite/smectite layer sequences agrees well with ex
perimentally observed layer sequences in some illite/ 
smectite(Leeetal., 1985; AhnandPeacor, 1985, 1986) 
and corrensite (sample CorWa-l, this study). Direct 
calibration of these theoretical studies with both 
HRTEM and XRD data may provide an accurate de
scription of the mechanism of the illitization reaction 
for smectite in major sedimentary environments. 
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