
FACTORING A GROUP AS AN AMALGAMATED FREE PRODUCT

EDWARD T. ORDMAN*

(Received 26 October 1971)

Communicated by G. E. Wall

Even if in a decomposition of a group

G = n*({Ai,ieI};B)

the A( are completely indecomposable, there may be another decomposition

with each C,- properly contained in some At and D a proper subgroup of B. The
example of Bryce ([1], p. 636) may be modified, at the cost of having one At = B,
so that I = J and C, < A, for all i. It is our object to study this relationship
between decompositions of a group.

In section 1 notation is introduced and an example of Stallings is expanded.
In section 2 machinery motivated by the Van Kampen Theorem is constructed to
show that the problems arising in section 1 may not be insurmountable. Section 3
contains an application of this machinery to extend a theorem of Holmes concern-
ing lattices of subgroups.

1. Decompositions of a group

All results here apply to free products of arbitrarily many groups with a
single amalgamated subgroup. To simplify notation, results are stated for a
product with only two factors. The extension to more factors is immediate except
for Theorems 5 and 6, which require slight rephrasing.

Let G be a group and suppose G is the free product of its subgroups^ and B
with the subgroup C amalgamated. Then we write G = (A*B;C). The subgroup
of G generated by sets R,S,T, ••• and elements a,b,c,--- will be denoted (R,S,T, ••-,
a,Z>, c, •••)• The group generated by elements x,y,--- with relations u = »,•••, will
be denoted (x,y,---\u = u, • • •)• Whether (x,y) is the free group, or a subgroup of
a group G, will be clear by the context.
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DEFINITION 1. Suppose G = (A*B;Q and G = (A'*B';C), with A ^ A',
B rg B', C rg C. Then the first decomposition is called finer than the second,
and the second coarser than the first. Among the immediate questions are: When
can a decomposition be made finer? Are there minimal decompositions?

LEMMA 1. Let G = {A*B;Q = (A'*B';C) with A^ A',B ^ B',C ^ C.
If A ^ A' or B ^ B', then C =£ C, and conversely.

PROOF. Since C = A nB and C = A' nB', it is clear that C # C implies
A 7̂  A' or B =fi B'. In the forward direction, suppose

AnB = C = C = A' nB',

and suppose xeB'\B. Now x$A' (otherwise xeC = C c B) so x $ A. Thus x may
be written as

x = c ^ ^ . .#„, n ^ 2

by the well known theorem of Schreier (cf. [3], p. 205), with ceC and gt alternately
in A ^ A' and B ^ B', no ^ E C . But in G = (A'*B';C) this word is reducible
to xeB'; hence some gteC, contradicting C = C.

COROLLARY 1. Let G = (A*B;{1}) be a free product. Then there is no strict-
ly finer factorization of G.

COROLLARY 2. Let G = (A*B;Q and suppose C is the center of G. Then
there is no strictly finer factorization of G.

PROOF. If G = (A'*B';C) with C ^ C, we have C^C since the amalgama-
ted subgroup must contain the center.

Unfortunately, it is not true that G = (A*B;{1}) is finer than any other
decomposition of G, or even that any decomposition of a free product can be
refined to be a free decomposition. This fact was pointed out by Stallings in [5]
with the following example.

EXAMPLE 1. (Stallihgs). Letting (x,y) denote the free group on x and y,

(x,y) = ((x,y2x2yx-2y-2)*(x2,y2y,(x2,y2x2y2x-2y-2)).

Further, no decomposition of (x,y) finer than this one is free.
Stallings proves the second assertion by observing that if {x,y) = (A*B;{1})

with A ^ (x,y2x2yx~2y-2) and B ^ (x2 ,y2), AnB = {1} and the subgroup
generated by A U B cannot contain y. He produces an isomorphism to show
that the amalgamated free product in question is actually (x,y); this may be
done more routinely using Tietze transformations ([3], pp. 48ff). Denoting x,
y2x2yx~2y~2, x2, y2 by x,b,c,d, the given decomposition may be written
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G = ((x,b) * (c,d);(x2 = c,b2 1 1

= {x,b,d,y
= {x,b,d,y

2 = dx2dx-2d-\ b = dx2yx-2d~i)
= dx2yx-2d-\ dx2dx-zd-i = dx2y2

X-2d-1)
= (x,d,y\d=y2)
= (x,y).

This shows that (x,y) has a decomposition which fails in an essential way to
be free. Can such a decomposition of a free group be minimal? For example,
can any refinement of Stallings' decomposition be minimal? I am unable to settle
this question, but the following example seems to argue for the negative:

EXAMPLE 2. Let At = (x,y2x2yx-2y-2), B = (x2,y2), Ct = i ^ B . If
Au=*(an,bJ, let An+l = {b2anb~2, a2

nbna;2) and Cn+1=Aa+lnB. Then
(x,y) = (An * B;CJ for all n, and An+1 < An, Cn+1 < Cn for all n ^ 1.

The fact that An+1 < An is immediate, by consideration of word length.
Cn+1 g Cn follows since Cn = An(~\B, and Cn ^ Cn+1 will follow from Lemma 1
once we have shown (x,y) = (An * B;Cn) for all n. To do this, we apply an induction
to the following statement:

Whenever a group G is the free product of free subgroups (a,b) and (c,d)
with amalgamated subgroup (a,b) n (c,d) generated by a2 = W{c,d) and b2 =
V(c,d) (where Wand V are words in c and d), then G is also the free product of its
free subgroups (b2ab~2, a2ba~2) and (c,d) with amalgamated subgroup (b2ab~2,
a2ba~2) n(c,d) generated by b2a2b~2 = VWV'1 and a2b2a~2 = WVW'1.

That the intersection is correct may be proven by counting exponents. That
the second amalgamated free product is in fact G may be proven by using Tietze
transformations:

G = (r,s,c,d\r2 = VWV-\ s2 = WVW~1) W=W(c,d), V=V(c,d)
= (r,s,c,d,a,b\r2 =VWV~\ s2 = WVW'1, a = V~xrV, fc= W~lsW)
= (r,s,c,d,a,b\r=VaV-1,s=WbW-l,a2 = W,b2 = V)
= (a,b,c,d\a2 = W,b2 = V)
= ((a,b)*(c,d);(a2 = W,b2 = V)).

This establishes the assertion of Example 2. It is worth noting that the intersec-
tion of all the An is {1}, and that B alone does not generate (x,y). Thus, we have
constructed a descending chain with no lower bound in the set of decompositions
of (x,y).

2. General theorems

The following theorem, motivated by the Van Kampen Theorem by way of
[5], and proven in [4] (Theorem 3.2.2), gives a way of going from a finer to
a coarser decomposition.
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THEOREM 1. Let G - (A* B;Q. Let S be a well ordered subset of G such
that if seS,

se(A,{r eS\ r < s}) u {B,{r eS\ r < s}).

In particular, the first element ofS lies in A\J B. Then G = ((A,S) * (B,S); (C, S)).
The basic result of this section is a converse of Theorem 1; namely that any

decomposition coarser than a given one may be obtained by adjoining such a
set S to each factor.

LEMMA 2. Let G = (A* B;C) = (A' * B', C'),A ^ A',B g B', C < C. Then
either A C\(C'\C) or Bn(C'\C) is nonempty.

PROOF. Let he C'\C, so that h = cgy---gn with the gx alternately in A \ C and
B\C. The gx are alternately in A' and B', and heC so some gteC. Since this
gt is in A \ C or in B \ C, we are done.

THEOREM 2. Let G = (A*B;Q = (A' * B'; C), A g A', B ^ B', C < C.

Then there is a well-ordered subset S of C such that if seS,

se(A,{reS\r<s})U(B,{reS\<s}\

and such that A' is generated by AKJ S,B' by B U S and C'byCKJ S.

PROOF. Lemma 2 yields a first element st for S. Using it, write

G = (04,Sl) * (B,Sl); (C,Sl))

by Theorem 1. Apply Lemma 2 to this decomposition to find s2. Continue by
transfinite induction to build up S = {s1,s2>---} (The limit steps are routine,
since each intermediate S satisfies the hypotheses for Theorem 1) until (C,S) = C,
which happens after a number of steps not exceeding the cardinality of C'\C.
Now by Theorem 1,

G = ((A,S) * (B,S); (C,S)).

Since A ^ A' and S ^ C g A', (A,S) ^ A'; similarly (B,S) ^ B'. Hence by
Lemma 1, (A,S) = A' and (B,S) = B'.

As previously noted, the structure of the set of decompositions of G is unpleas-
ant; there are descending chains with no lower bounds, and pairs of decomposi-
tions with no common refinement. If we stay away from the bottom, however,
we can find the following structure;

THEOREM 3. Suppose G = (Gt * G2;G0), and consider the set of all decom-
positions of G coarser than this one. Any two elements of this set have a greatest
lower bound and a least upper bound in the set.

PROOF. Suppose G = (G\* G\; GQ) and (G\ * G2
Z; Gl) are the decomposi-

tions. We first construct a least upper bound. By Theorem 2, there is S c Gj
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with G] = (GhS), i=0,l,2. Now G = {G\*G2
2: G2

0) and S satisfy the hypotheses
of Theorem 1, so

G = ((G2,S)*(G2
2,S); (G2,S)).

That this is the desired least upper bound is clear since

(G2,S) = (G2,Gt,S) = (Gf,GJ)

is the smallest subgroup of G containing G2 UG*.
We now construct a greatest lower bound. Denote GQ n GQ by B. We now

construct a set S by transfinite induction. Let

St = (G1 U G 2 ) n 5

and well-order it arbitrarily.

Let
SA+1 = ((Gl5SA) U (G2,SX)) r\B for A £ 1;

retain the order on SA c Sx+1 and well-order the new elements arbitrarily to follow
them. When this process terminates, denote the final SA (which is the union of all
all the SJ by So. Now

G = ((G^So) * (G2,S0); (G0,S0))

is a lower bound for the original factorizations since Gt ^ Gj and So c B <; GQ
^ G/. TO show this is the greatest lower bound, suppose G = (Hj * H2; Ho) is
any other lower bound coarser than G = (Gx * G2, Go). By Theorem 2, //0 =
(G0,S) and

S = S
where

S1 c^Gj UG 2 )nB = St

s2 <= ((G^s1)u(G^s1))nBc(HGMu(G^sj) n s = s2

and by transfinite induction Sx c SA, so S c So. Hence ^ = (Gj,S) c (G,-,S°) and
our lower bound is coarser than any other.

3. Products with normal amalgamation

This section is due in large part to conversations with Professor Charles S.
Holmes, in some of which Professor L. M. Sonneborn participated.

Let G = (A * B;C). Clearly C is normal in G if and only if it is normal in A
and in B. Now suppose C is not normal in G. Then CA (the normal closure of C in
A) or CBis not C. Denote CAUC Bby St and well-ordar it arbitrarily. By Theorem 1,

If ( C ^ J is not normal in G, repeat the process; S2 = (C,S1)'
1' U(C,S1)B|

where A' = (A^j) and B' = (B^j). Stc: S2, so we can well-order S2 so that
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elements of S2\St follow elements of S1. Define Sx by transfinite induction, and
let S be the (suitably ordered) union of the Sx. Now

where (C,S) is simply CG, the normal closure of Cin G. Since (A,S) = (A,C,S) =
(A,CG), we have proven:

THEOREM 4. Let G = (A* B;C). Then

G = ((A,CG)*(B,CG);CG).

Since CG is normal in (A,CG), we may compute its index.

LEMMA 3. \_{A,CG) :CG] = IA;CA~\, and similarly for B.

PROOF. This may be proven by using the word problem, or by first looking
at the isomorphism

(A*B;C)'^_A_ B
CG " = ~CA~*7^

from which it is clear that CA = An CG. Then since CG is normal in G,

A _ A ^ (A,CG)
t~A~ AC\CG = C° '

We are now able to extend somewhat the following theorem of Holmes [2].

THEOREM 5. Let G = (A* B;C), C normal in G,A ¥= C # B, [A:C] > 2
or [B:C] > 2. Then G is determined by its lattice of subgroups.
Our extension is:

THEOREM 6. Let G = (A * B;C), IA;CA] > 2, [£;CB] ^ 2. Then G is
determined by its lattice of subgroups.
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