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Ideas from Zariski Topology in the
Study of Cubical Homology

Tomasz Kaczynski, Marian Mrozek, and Anik Trahan

Abstract. Cubical sets and their homology have been used in dynamical systems as well as in digital

imaging. We take a fresh look at this topic, following Zariski ideas from algebraic geometry. The

cubical topology is defined to be a topology in R
d in which a set is closed if and only if it is cubical. This

concept is a convenient frame for describing a variety of important features of cubical sets. Separation

axioms which, in general, are not satisfied here, characterize exactly those pairs of points which we

want to distinguish. The noetherian property guarantees the correctness of the algorithms. Moreover,

maps between cubical sets which are continuous and closed with respect to the cubical topology are

precisely those for whom the homology map can be defined and computed without grid subdivisions.

A combinatorial version of the Vietoris–Begle theorem is derived. This theorem plays the central role

in an algorithm computing homology of maps which are continuous with respect to the Euclidean

topology.

1 Introduction

Representable sets, in particular, cubical sets, and their homology have proved to

be useful geometric structures in a variety of applications from the Conley index in

dynamical systems [9, 13, 16, 17] to image and pattern recognition in digital imaging

[2, 3, 9]1. We take a fresh look at this topic, following Zariski ideas from algebraic

geometry. Recall from [4, 8] that the Zariski topology in the Euclidean space R
d is

defined by declaring that a proper subset of R
d is closed if and only if it is algebraic.

The cubical topology is a topology in R
d in which a proper subset is closed if and only

if it is cubical.

It seems foolish at first to abandon the standard Euclidean topology and introduce

one which is not only not metrizable, but which does not even satisfy any separa-

tion axiom. Nevertheless, the points which we want to distinguish in a cubical set

are exactly those which belong to different cells or different elementary cubes, i.e.,

the points separated by the cubical topology. In digital imaging, computer scien-

tists seem to have a hard time deciding if they prefer to interpret pixels as unit size

squares or as isolated points in a square grid. The cubical topology permits these two

interpretations to co-exist on mathematical grounds.

Cubical topology has some more interesting features. A crucial property of the

Zariski topology used in algebraic geometry is that it is noetherian, that is, every de-

creasing sequence of closed sets eventually becomes constant. That the cubical topol-
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ogy is noetherian is quite obvious, but the simplicity of this observation does not

diminish its importance. In fact, all algorithms which construct isolating neighbor-

hoods and index pairs in dynamics are based on this property. Also, irreducible closed

sets are precisely elementary cubes. Moreover, maps f : X → Y between cubical sets

which are continuous and closed with respect to the cubical topology are precisely

those for which the homology map H∗( f ) can be defined and computed without

grid rescaling (the concept of rescaling is defined in [9]) or equivalently, without grid

subdivisions. Although this class of maps, called cubical maps, seems somewhat re-

strictive, its study leads to algorithms for constructing homology of maps which are

continuous with respect to the Euclidean topology.

This paper is organized as follows. In Section 2, definitions and properties of cu-

bical sets, cubical chain complexes, and representable sets are recalled from [9]. Note

that the cubical chain complex studied here is a combinatorial concept, in contrast

with a well known, but less suitable for algorithms, concept of singular cubical com-

plex presented for instance in [10, 5]. In Section 3, definition and properties of cubi-

cal topology are presented. For some routine proofs we refer to [18]. In Section 4, we

define the class of cubical maps as the class of maps on cubical sets which are contin-

uous and closed with respect to the relative cubical topology. We discuss the relation

of this definition to the one given in [6], and give an explicit formula for a cubical

map in terms of its coordinate functions. Using that formula, the homomorphism

induced in homology by a cubical map is constructed.

In Section 4.3 we present a combinatorial version of the Vietoris–Begle theorem

with a direct elementary proof. The classical version of that theorem has motivated

extensions of homology theory to various classes of multivalued maps (see [7] and

references therein) and is also used as a justification of a combinatorial procedure

for computing homology of single-valued maps via their multivalued enclosures [1].

This approach has been further developed in [9]. The Vietoris–Begle theorem is at

the heart of the explicit algorithm presented in [11]. Unfortunately, the role of that

theorem in the construction presented there is hidden by many technicalities needed

for the efficiency of the algorithm. Also, that paper uses the classical version of the

theorem, but the elementary version presented in this paper is sufficient. For this

reason, in Section 5 we provide a brief review of [11] in terms of our combinatorial

Vietoris–Begle theorem. The reader interested in details is referred to [11].

2 Preliminaries

We recall here basic terminology related to cubical sets, cubical chain complexes, and

representable sets [9]. The proofs of all statements of this section can be found in [9],

except for Proposition 2.1 which is proved in [18].

2.1 Cubical Sets

An elementary cube is a finite product of intervals

(1) Q = I1 × I2 × · · · × Id ⊂ R
d,
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where Ii is either a unit interval [li , li + 1] or a point (degenerated interval) [li , li] =

[li] := {li}, and li ∈ Z, where Z is the set of all integers. The set of all elementary

cubes is denoted by K, and the set of those which are in R
d for a specific d is denoted

by Kd. The number d in (1) is called the embedding number of Q and is denoted by

emb Q. The dimension of Q is the number of non-degenerated intervals Ii of the form

[li , li + 1] in (1) and is denoted by dim Q. We put

Kk := {Q ∈ K | dim Q = k}, K
d
k := K

d ∩ Kk.

Let Q, P ∈ K. If Q ⊂ P, then Q is a face of P. If Q ⊂ P and Q 6= P, then Q is a proper

face of P.

Proposition 2.1 Let Q ∈ Kd
k . Then Q has 3k faces.

A set X ⊂ R
d is cubical if X can be written as a finite union of elementary cubes.

Given a cubical set X ⊂ R
d, we denote by K(X), respectively Kk(X), the set of those

Q ∈ Kd, respectively Q ∈ Kd
k , such that Q ⊂ X. If Q ∈ K(X) is not a proper face of

some P ∈ K(X), then it is called a maximal face in X. The set of maximal faces in X

is denoted by Kmax(X).

2.2 Cubical Chain Complex

The group Cd
k of k-dimensional chains of R

d (k-chains for short) is the free abelian

group generated by Kd
k . By definition, the elements of Cd

k are functions c : Kd
k → Z

such that c(Q) = 0 for all but a finite number of Q ∈ Kd
k . We distinguish between

the geometric objects, elementary cubes Q ∈ Kd
k , and the corresponding algebraic

objects, their duals Q̂ : Kd
k → Z, defined on any P ∈ Kd by

(2) Q̂(P) :=

{
1 if P = Q,

0 otherwise.

The set {Q̂ | Q ∈ Kd
k} is the canonical basis for Cd

k . We put Cd
k = 0 if k > d, k < 0,

or d < 0. In order to define the chain complex structure for the collection of groups

{Cd
k}k∈Z, we first need the following auxiliary operation.

Given P ∈ Kd
k and Q ∈ Kd ′

k ′ , we have P × Q ∈ Kd+d ′

k+k ′ . Set P̂ ⋄ Q̂ := P̂ × Q. This

definition extends to arbitrary chains c1 ∈ Cd
k and c2 ∈ Cd ′

k ′ by

c1 ⋄ c2 :=
∑

P∈Kk
Q∈Kk ′

c1(P)c2(Q)P̂ × Q.

The chain c1 ⋄ c2 ∈ Cd+d ′

k+k ′ is called the cubical product of c1 and c2.

Given k ∈ Z, the cubical boundary map ∂k : Cd
k → Cd

k−1 is a homomorphism

defined on generators Q̂, where Q ∈ Kd
k , by induction on the embedding number d

as follows.
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First let d = 1. Then Q = [l] ∈ K1
0 or Q = [l, l + 1] ∈ K1

1 for some l ∈ Z. Define

∂kQ̂ :=

{
0 if Q = [l],

[̂l + 1] − [̂l] if Q = [l, l + 1].

Let d > 1 and Q =
∏d

i=1 Ii , where Ii are intervals (some possibly degenerate) in R.

Put I = I1 and P =
∏d

i=2 Ii . Then Q̂ = Î ⋄ P̂. Define

(3) ∂kQ̂ := ∂k1
Î ⋄ P̂ + (−1)dim I Î ⋄ ∂k2

P̂,

where k1 = dim I and k2 = dim P. Finally, we extend the definition to all chains by

linearity. It is shown in [9] that cubical boundary maps satisfy the algebraic condition

for a boundary map in an arbitrary chain complex, that is,

(4) ∂k ◦ ∂k+1 = 0,

for all k ∈ Z. Thus C := {Ck, ∂k}k∈Z is a chain complex. We shall now localize this

chain complex to cubical sets. The support of a chain c ∈ Cd
k is the cubical set

|c| :=
⋃
{Q ∈ K

d
k | c(Q) 6= 0}.

Given a cubical set X ⊂ R
d, we define

(5) Ck(X) =
{

c ∈ Cd
k

∣∣ |c| ⊂ X
}
.

Ck(X) is a finitely generated free abelian group and the set {Q̂ | Q ∈ Kk(X)} is a basis

called its canonical basis. We also have ∂k(Ck(X)) ⊂ Ck−1(X). Hence, the restricted

boundary map ∂X
k : Ck(X) → Ck−1(X) is well defined and C(X) :=

{
Ck(X), ∂X

k

}
k∈Z

is a chain complex called the cubical chain complex of X. When X is clear from the

context, we will use the notation ∂k for the restricted map ∂X
k .

The homology of X is the collection H∗(X) = {Hk(X)}k∈Z of quotient groups

Hk(X) := Zk(X)/Bk(X), where Zk(X) := ker ∂X
k is the group of k-cycles of X and

Bk(X) := im ∂X
k+1 is the group of k-boundaries of X.

2.3 Representable Sets

Note that any cubical set X ⊂ R
d is closed and bounded. Intersections and finite

unions of cubical sets are cubical. We want to obtain a larger class of sets, closed

under the subtraction X \ Y .

Given any elementary cube Q = I1 × I2 × · · · × Id, the corresponding elementary

cell
◦

Q =
◦

I1 ×
◦

I2 × · · · ×
◦

Id

is the set obtained by replacing all non-degenerate closed intervals Ii = [li , li + 1] in

the expression for Q by the open ones
◦

Ii = (li , li + 1), while
◦

Ii := Ii if Ii = [li].
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Proposition 2.2 Elementary cells have the following properties:

(i) R
d

=
⋃
{

◦

Q | Q ∈ Kd}.

(ii) If A ⊂ R
d is bounded, then the set {Q ∈ Kd |

◦

Q ∩ A 6= ∅} is finite.

(iii) If P,Q ∈ Kd, then
◦

P ∩
◦

Q = ∅ or P = Q.

(iv) For every Q ∈ K, cl
◦

Q = Q.

(v) Q ∈ Kd implies that Q =
⋃
{

◦

P | P ∈ Kd such that
◦

P ⊂ Q}.

(vi) If X is a cubical set and
◦

Q ∩ X 6= ∅ for some elementary cube Q, then Q ⊂ X.

A set Y ⊂ R
d is called representable if it is a finite union of elementary cells. The

family of representable sets in R
d is denoted by Rd.

Proposition 2.3 Representable sets have the following properties:

(i) Every elementary cube is representable.

(ii) If A,B ∈ Rd, then A ∪ B,A ∩ B,A \ B ∈ Rd.

(iii) A set X ⊂ R
d is cubical if and only if it is closed and representable.

(iv) A bounded set A ⊂ R
d is representable if and only if for every Q ∈ Kd,

◦

Q∩A 6= ∅

implies
◦

Q ⊂ A.

Let A ⊂ R
d be a bounded set. Then the open hull of A is

(6) oh(A) :=
⋃
{

◦

Q | Q ∈ K,Q ∩ A 6= ∅},

and the closed hull of A is

(7) ch(A) :=
⋃
{Q | Q ∈ K,

◦

Q ∩ A 6= ∅}.

Proposition 2.4 Assume A ⊂ R
d. Then

(i) oh(A) =
⋂
{U ∈ Rd | U is open and A ⊂ U}.

(ii) ch(A) =
⋂
{B ∈ Rd | B is closed and A ⊂ B}.

3 Cubical Topology

It is obvious that a union of a finite family of cubical sets in R
d is a cubical set and

easy to show that the intersection of any family of cubical sets is a cubical set. Thus

the following definition makes sense.

Definition 3.1 The cubical topology in R
d is defined by the family Vd of closed sets

given by Vd := {X ⊆ R
d | X is a cubical set} ∪ {∅,X}. More precisely, the family

Td of open sets called the cubical topology in R
d is given by U ∈ Td if and only if

R
d \U ∈ Vd.

Note that open sets, the complements of cubical sets, are unbounded. In partic-

ular, representable sets which are open with respect to Euclidean topology are not

open in cubical topology. This slight inconvenience may be avoided by restricting the

topology to a fixed cubical set X ⊂ R
d, which is always done in practical applications.

Let T|X := {U ∩ X | U ∈ Td} be the relative cubical topology of X. The following is

easily verified.
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Proposition 3.2 Let X be a cubical set. A set U ⊂ X is in T|X if and only if U is

representable and open in the relative Euclidean topology of X.

It is easy to see that the cubical topology does not satisfy any separation axioms.

For example, points in the open interval (1, 2) ⊂ R cannot be separated in the sense

of any axiom. We introduce the following refinement to two axioms of interest to us.

Definition 3.3 Let (X,T) be a topological space and x, y ∈ X.

(i) The points x and y are T0-separable if there exists U ∈ T which contains exactly

one of those two points.

(ii) The points x and y are T1-separable if there exist U ,W ∈ T such that U contains

x and not y and W contains y and not x.

(iii) The points x and y are T2-separable or Hausdorff-separable if there exist

U ,W ∈ T such that U ∩W = ∅, x ∈ U and y ∈ W .

Proposition 3.4 Consider the cubical topology Td and let x, y ∈ R
d.

(i) The points x and y are T0-separable if and only if they are in distinct elementary

cells
◦

P,
◦

Q.

(ii) The points x and y are T1-separable if and only if they are in distinct elementary

cells
◦

P,
◦

Q, such that neither P ⊂ Q nor Q ⊂ P.

(iii) Let X be a cubical set with the restricted cubical topology T|X and let x, y ∈ X. The

points x and y are T2-separable in X if and only if oh(x) ∩ oh(y) = ∅.

Proof (i) Suppose that x and y are T0 separable, and let U ∈ T be a set with x ∈ U ,

y /∈ U . Then Y = R
d \ U is a cubical set containing y. By Proposition 2.2(i) and

Proposition 2.3(iii), both U and Y are unions of elementary cells, hence there exist

P,Q ∈ K such that x ∈
◦

P ⊂ U and y ∈
◦

Q ⊂ Y . Since U and Y are disjoint, so are
◦

P

and
◦

Q.

Now suppose that there exist distinct cells
◦

P and
◦

Q such that x ∈
◦

P and y ∈
◦

Q. If

x /∈ Q, then we may take U = R
d \ Q. Then x ∈ U and y /∈ U . If y /∈ P, then we

may take U = R
d \ P, and the conclusion follows the same way. If neither of these

assumptions hold, then x ∈ Q ∩
◦

P and y ∈ P ∩
◦

Q. Then Proposition 2.3(iv) implies

that
◦

P ⊂ Q and
◦

Q ⊂ P. By Proposition 2.2(iv), P = Q, a contradiction.

(ii) Suppose that x and y are T1 separable; let U ∈ T be a set with x ∈ U , y /∈ U

and W ∈ T be a set with y ∈ W , x /∈ W . Then x ∈ U \ W and y ∈ W \ U .

Since U and W are both unions of elementary cells, there are cells
◦

P and
◦

Q such that

x ∈
◦

P ⊂ U \ W and y ∈
◦

Q ⊂ W \ U . It remains to show that P 6⊂ Q and Q 6⊂ P.

We have
◦

Q ∩U = ∅. Since U is open in T, it is also open in the Euclidean topology,

and since Q = cl
◦

Q, it follows that Q ∩ U = ∅. If P ⊂ Q, we get a contradiction to
◦

P ⊂ U . The argument for Q 6⊂ P is analogous.

Now suppose that there exist distinct cells
◦

P and
◦

Q such that x ∈
◦

P, y ∈
◦

Q, P 6⊂ Q,

and Q 6⊂ P. If x /∈ Q and y /∈ P, then we may take U = R
d \ Q, W = R

d \ P and the

conclusion follows as in the proof of (i). If one of these assumptions fails, for example

x ∈ Q, then we show, as in (i), that
◦

P ⊂ Q, so P = cl
◦

P ⊂ Q, a contradiction.
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(iii) By Proposition 2.4(i), oh(x) and oh(y) are the smallest open (in the Euclidean

topology) representable sets containing, respectively, x and y. Therefore the conclu-

sion follows from Proposition 3.2.

Cubical topology has analogous properties to Zariski topology. This analogy is

exhibited in the following definitions and propositions.

Definition 3.5 A topological space (X,T) is called noetherian if, given any decreas-

ing family V1 ⊃ V2 ⊃ V3 ⊃ · · · of closed sets, there exists an integer n ≥ 1 such that

Vn = Vn+ j for all j ∈ N.

Proposition 3.6 The space (R
d,Td) is noetherian.

Proof Consider a decreasing sequence V1 ⊃ V2 ⊃ V3 ⊃ · · · of closed sets. If

Vi = R
d for all i or Vn = ∅ for a sufficiently large n, the conclusion is obviously

satisfied, so we may assume that there exists k such that Xi is a cubical set for all i ≥ k.

In particular, Xk can be written as Xk =
⋃m

j=1 Q j , where Q j ∈ Kd. By Proposition

2.1, there exists at most m3d elementary cubes included in Xk and at most 2m3d

− 2

proper cubical subsets of X2. Thus Vi+1 = Vi for all but finitely many i, and the

conclusion follows.

Definition 3.7 Let (X,T) be a topological space. A closed set V ⊂ X is irreducible

if, given any decomposition V = V1 ∪ V2 with V1, V2 closed, we must have V = V1

or V = V2.

Proposition 3.8 Let V ∈ Vd. Then V is irreducible if and only if V = R
d or V is an

elementary cube.

Proof First, observe that R
d is irreducible, because all other elements of Vd are cu-

bical sets. Cubical sets are bounded and R
d is not, so it cannot be a union of two

cubical sets. Let V ⊂ R
d be an irreducible closed set. If V 6= R

d, then V is a cubical

set, so it may be written as a union of n elementary cubes, V =
⋃n

i=1 Qi , Qi ∈ Kd.

We argue by induction on n that V is an elementary cube. If n = 1, V = Q1 is an ele-

mentary cube. If n > 1, consider the decomposition V = V1 ∪V2 with V1 = Q1 and

V2 =
⋃n

i=2 Qi . Since V is irreducible, either V = V1 or V = V2 and the induction

hypothesis applies to both cases.

Suppose that V = Q is an elementary cube and consider its decomposition Q =

V1 ∪V2 to two closed, hence cubical, subsets. Then the cell
◦

Q intersects either V1 or

V2, and the conclusion follows from Proposition 2.2(iv).

Proposition 3.9 For any V ∈ Vd there exists a unique family of irreducible sets

{Vk}k=1,2,...,n such that V j 6⊂ Vk for j 6= k and V =
⋃n

k=1 Vk.
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Proof The set V = R
d is irreducible, so we may assume that V is a cubical set, so it

can be written as a finite union of elements of Kd. By the definition of a maximal face,

it can be written as V =
⋃
{Q ∈ Kd | Q ∈ Kmax(X)}. This union extends over a finite

set, and it remains to show that it is unique. Suppose that V =
⋃n

k=1 Vk, where Vk

are irreducible and V j 6⊂ Vk. By Proposition 3.8, Vk is an elementary cube for each k.

We need to show that {Vk | k = 1, . . . , n} = Kmax(V ). Suppose that Q ∈ Kmax(V ).

Since
⋃n

k=1 Vk = V , there exists k such that Q ∩ Vk 6= ∅. By Proposition 2.2(vi),

Q ⊂ Vk. Since Q is maximal, Q = Vk. Thus

(8) Kmax(V ) ⊂ {Vk | k = 1, . . . , n}.

The reverse inclusion is shown by contradiction. Suppose that V j /∈ Kmax(V ) for

some j. Then there exists Q ∈ Kmax(V ) such that V j is a proper face of Q. By (8),

Q = Vk for some k. But V j 6⊂ Vk, a contradiction.

We end this section with a remark that the statements of all propositions in this

section hold true for relative cubical topology in a given cubical set.

4 Cubical Maps and Their Homology

4.1 Cubical Maps

Having recalled the definition of homology of a cubical set in Section 2, we now

want to extend this definition to maps f : X → Y where X,Y ⊂ R
d are cubical sets.

Following [6], we will define the homomorphism H∗( f ) induced in homology for a

class of maps satisfying the following two conditions:

(i) f (Q) ∈ K(Y ) for every Q ∈ K(X).

(ii) The restriction f|Q to every Q ∈ K(X) is affine linear.

These conditions somewhat mimic the definition of simplicial maps in the simplicial

homology theory. The difference between these two classes of maps is that vertices

of a simplex are affine independent, whereas vertices of an elementary cube are not.

Thus, any simplicial vertex map admits a unique linear extension to each simplex,

and the passage from a combinatorial concept of a simplicial vertex map to a topo-

logical concept of a piecewise continuous map is very natural. This is not true for

maps defined on vertices of elementary cubes, which cause condition (ii) to be re-

strictive and not natural. However, the only purpose of this condition is to obtain a

continuous map. When the cubical topology introduced in Section 3 is considered,

condition (ii) is not necessary and the definition of a cubical map can be stated as

follows.

Definition 4.1 Let X, Y be cubical sets. A map f : X → Y is called a cubical map

if it is a continuous and closed map with respect to the relative cubical topology in X

and Y .

Here is a more explicit equivalent formulation.
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Proposition 4.2 Let X, Y be cubical sets. A map f : X → Y is a cubical map if and

only if

(i) f −1(Q) is a cubical set for every Q ∈ K(Y ),

(ii) f (Q) ∈ K(Y ) for every Q ∈ K(X).

Proof By definition of the relative cubical topology, f is continuous if and only if

f −1(A) is a cubical set in X for every cubical set A in Y . Since every cubical set is a

finite union of elementary cubes and a finite union of cubical sets is a cubical set, this

is equivalent to (i).

Again by definition, f is a closed map if and only if f (A) is a cubical set in Y

for every cubical set A in X. By the previous arguments, this is equivalent to the

condition that f (Q) is a cubical set for every Q ∈ K(X). We show, by contradiction,

that f (Q) must be an elementary cube. Suppose that f (Q) is a cubical set which

is not an elementary cube. By Proposition 3.8, there are two cubical sets R and S,

neither equal to f (Q), such that f (Q) = R ∪ S. Then Q = f −1(R) ∪ f −1(S). Since

Q is irreducible and f −1(R) and f −1(S) are cubical, we must have Q = f −1(R) or

Q = f −1(S), so f (Q) = R or f (Q) = S, a contradiction.

The following property of cubical maps will be used later.

Proposition 4.3 Let X, Y be cubical sets and f : X → Y a cubical map. For any

Q ∈ K(X) dim f (Q) ≤ dim Q.

Proof We argue by induction on the dimension k = dim Q. If k = 0, Q is a sin-

gleton and so is f (Q), hence dim f (Q) = dim Q = 0. Suppose that the conclusion

holds for a given k ≥ 0. Let Q ∈ Kk+1(X) and m = dim f (Q). If m = 0, we are

done. If m > 0, there are two opposite faces P+ and P− of f (Q) of dimension m − 1.

Since P+ and P− are disjoint elementary cubes, f −1(P+) and f −1(P−) are two disjoint

proper cubical subsets of Q. Therefore, dim f −1(P+) ≤ k and dim f −1(P−) ≤ k. By

induction hypothesis, k ≤ m − 1, so dim Q = k + 1 ≤ m = dim f (Q).

The identity map idX obviously is a cubical map, and it is easy to check that the

composition g◦ f of two cubical maps is a cubical map. Thus we may form a category

Cub whose objects are cubical sets and morphisms are cubical maps.

Note that cubical maps are not necessarily continuous with respect to the Eu-

clidean topology. For example, any surjective function f : [0, 1] → [0, 1] such that

f −1({0, 1}) = {0, 1} is a cubical map. We can modify values of a cubical func-

tion inside elementary cells freely, as long as images of elementary cubes remain the

same. Therefore it makes sense to define an equivalence relation for cubical maps

f , g : X → Y by setting f ∼ g if and only if f (Q) = g(Q) for all Q ∈ K(X).

The equivalence class of f is called the cubical class of f . We will soon see that any

cubical map contains in its cubical class a representative which is continuous and

whose restriction to any elementary cube is affine linear, that is, a linear map possi-

bly composed with a translation. Before proceeding further, it is helpful to have some

examples of cubical maps.
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Example 4.4 An inclusion of cubical sets i : A →֒ X is a cubical map. The fol-

lowing maps of the Euclidean space, when restriced to a cubical set and its image,

become cubical maps:

(i) Projection, p : R
d → Rd−1, p(x) = (x2, x3, . . . , xd);

(ii) Coordinate immersion, j : R
d → R

d+1; j(x) = (m, x1, x2, . . . , xd), m ∈ Z;

(iii) Translation, x 7→ m + x, where m ∈ Z
d;

(iv) Transpose, (xi , xi+1) 7→ (xi+1, xi);

(v) Inversion, xi 7→ −xi .

A composition of cubical maps is a cubical map, hence more maps can be gener-

ated from the above examples. We proceed towards an explicit formula which im-

plies, in particular, that any cubical map can be obtained by composing the maps

listed in Example 4.4, up to the cubical equivalence class.

In the sequel, the following notation is be helpful. We first put Nd = {1, 2, . . . , d}.

Next, given an elementary cube Q = I1 × I2 × . . .× Id ∈ Kd, we put

ess(Q) := {i ∈ Nd | Ii is non-degenerate}.

Theorem 4.5 Let X ⊂ R
d and Y ⊂ R

d ′

be cubical sets. The cubical class of any cubical

map g : X → Y contains a map f with the following property. For all Q ∈ K(X), the

restriction to Q of f = ( f1, f2, . . . , fd ′) can be expressed coordinate-wise by the formula

(9) fi(x) = mi + ǫixµ(i),

where i ∈ Nd ′ , mi ∈ Z, ǫi ∈ {−1, 0, 1} and µ is a function from Nd ′ to Nd. Moreover,

ǫi and mi are uniquely determined by i, µ(i) is uniquely determined by i unless ǫi = 0,

and the function ν f ,Q : ess( f (Q)) → ess(Q) such that ν f ,Q(k) = µ(k) is injective and

uniquely determined by f and Q. Conversely, any map defined on elementary cubes in

X by (9) is a cubical map.

Proof The construction of f on each elementary cube Q proceeds by induction on

k = dim Q.

Let k = 0. Then g(Q) ∈ Kd ′

0 (Y ) by Proposition 4.3, so we may write

g(Q) =

d ′∏

i=1

[li], li ∈ Z.

Hence fi(Q) = li + 0 is a unique function of the form (9) except that µ is arbitrary

because ǫi = 0. The function νg,Q is not defined in this case, because ess(g(Q)) =

∅ = ess(Q). Thus we may put f|Q := g|Q.

Suppose that the construction is done for all elementary cubes of dimension k ≥ 0

so that the restriction of g and f to the k-th skeleton of X,

X(k)
=

⋃
{Q ∈ Ki(X) | i ≤ k},

satisfies the conclusion of the theorem. Consider Q ∈ Kk+1(X).
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If ess(g(Q)) = ∅, we get as previously, gi(Q) = li+0 and f|Q := g|Q. If ess(g(Q)) 6=
∅, choose n ∈ ess(g(Q)) and let gn(Q) = [rn, rn + 1]. Put

P = g(Q),

P0 = g1(Q) × g2(Q) × · · · × gn−1(Q) × [rn] × gn+1(Q) × · · · × gd ′(Q),

Q0 = Q ∩ g−1(P0).

Since P0 is a proper face of P, Q0 ( Q. It follows from Proposition 3.8 that Q0 is an

elementary cube. Indeed, suppose that R1,R2 are cubical sets such that Q0 = R1∪R2.

Then g(R1)∪ g(R2) = P0, but g is a cubical map and P0 is an elementary cube, hence

g(R1) = P0 or g(R2) = P0. Consequently, R1 = Q0 or R2 = Q0. Hence, Q0 is

an elementary cube and a proper face of Q. We show that dim Q0 = k. Indeed, if

dim Q0 < k, there exists R0K(X) such that Q0 ( R0 ( Q, and then g(Q0) = P0 (
g(R0) ( g(Q) = P. This is impossible, because the three sets are elementary cubes

and dim g(Q) = dim P0 + 1. Thus dim Q0 = dim P0 = k.

By the induction hypothesis, fQ0
is defined coordinate-wise by formulas f0i(x) =

m0i + ǫ0ixµ0(i) for i ∈ Nd ′ , and ǫ0i , m0i , and µ0(i) are uniquely determined by i. Since

dimQ0
= k, there is a unique j ∈ ess(Q) such that j /∈ ess(Q0). The j-th component

I j of Q can be written as I j = [l j , l j + 1], and the j-th component I0 j of Q0 is either

[l j] or [l j + 1].

In the case I0 j = [l j], we put fi(x) = f0i(x) for all i 6= n and fn(x) = rn − l j + x j .

This uniquely determines mn = rn − l j , ǫn = 1 and µ(n) = j.

In the case I0 j = [l j + 1], we put fi = f0i for all i 6= n and fn = rn + 1 + l j − x j .

This uniquely determines mn = rn + 1 + l j , ǫn = −1 and µ(n) = j.

We show that ν f ,Q : ess( f (Q)) → ess(Q) such that ν f ,Q(k) = µ(k) is an injective

function. Consider a, b ∈ ess( f (Q)), a 6= b. If a 6= n and b 6= n, then a, b ∈
ess( f (Q0)) and, by induction hypothesis, a 6= b implies ν(a) 6= ν(b). If a = n 6= b,

then ν(a) = ν(n) = j and b ∈ ess( f (Q0)). However, j is not in the image of ν f ,Q0
,

hence ν(a) 6= ν(b).

The converse statement is obvious.

Note that the coordinate function fi in the formula (9) for a given elementary cube

Q depends only on one coordinate of x, namely xµ(i). Thus, we may introduce cubical

functions f i : Iµ(i) → Ji defined on elementary intervals appearing in Q =
∏d

j=1 I j ,

f (Q) =
∏d ′

i=1 Ji , given by

(10) f i(t) = mi + ǫit.

With the help of these one-dimensional functions, the formulas (9) for i ∈ Nd ′ can

be replaced by the formula

(11) f (x) = ( f 1(xµ(1)), f 2(xµ(2)), . . . , f d ′

(xµ(d ′))).

It is clear that the maps defined by (9) and (11) are affine linear on each elementary

cube, and since the formulas coincide on common faces of elementary cubes, they

extend to a map f : X → Y which is continuous in Euclidean topology. Thus every

cubical class contains a representative which is continuous in the traditional sense.
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4.2 Induced Chain Maps

We shall now proceed towards the definition of H∗( f ), the homomorphism induced

by a cubical map f . First, let us introduce the following notation. Given A,B ⊂ N

and a function α : A → B, we define its sign by

sgnα :=

{
(−1)card{(i, j)∈A2|α j<αi} if α is bijective,

0 otherwise,

where card stands for the number of elements of a set.

Definition 4.6 Let f : X → Y be a cubical map, X ⊂ R
d and Y ⊂ R

d ′

cubical sets.

The homomorphism induced by f on k-chains f#k : Ck(X) → Ck(Y ) is defined on the

generators Q̂ ∈ Kd
k(X) by induction on d as follows.

(i) Let k = 0 and d = 1. Then Q = [l] for some l ∈ Z and we put

f#0([̂l]) = [̂ f (l)].

(ii) Let k = 1 and d = 1. Then Q = [l, l + 1] for some l ∈ Z and we put

f#1( ̂[l, l + 1]) =






̂
[ f (l), f (l + 1)] if f (l) < f (l + 1),

−
̂

[ f (l + 1), f (l)] if f (l) > f (l + 1),

0 if f (l) = f (l + 1).

(iii) Let d > 1, Q =
∏d

i=1 Ii , dim f (Q) = n, and let l1 < l2 < · · · < ln be the indices

in ess( f (Q)). We define

(12) f#k(Q̂) = sgn( f ,Q)
n

♦
i=1

f i
#1(Îν f ,Q(li ))

where sgn( f ,Q) := sgn(ν f ,Q) is defined in Theorem 4.5, and f i is defined in

(10).

Note that the image of a k-chain is always a k-chain because if dim Q 6= dim f (Q),

then sgn( f ,Q) = 0.

Theorem 4.7 The family of homomorphisms f# := { f#k} : C(X) → C(Y ) is a chain

map, that is, it commutes with the boundary operator. More explicitly, for any k ∈
N, k 6= 0 we have

(13) ∂k ◦ f#k = f#k−1 ◦ ∂k.

Proof Obviously it is enough to verify (13) on elements of the canonical basis Q̂ ∈

C(X). If emb Q = 1, the verification is straightforward. Thus assume Q =
∏d

i=1 Ii

with d > 1. Let Ii = [ai , bi] for some ai ∈ Z and bi ∈ {ai, ai +1}. Let µ : Nd ′ → Nd be
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as in Theorem 4.5. Let A := ess(Q), B := ess( f (Q)) and ν := ν( f ,Q) = µ|B : B → A.

If ν is not a bijection, then one easily verifies that both sides of (13) are zero. Thus

assume that ν is a bijection. For i ∈ B put

si := card {ν( j) ∈ A | j < i} = card { j ∈ B | j < i} ,

pi := card { j ∈ B | j < i and ν( j) > ν(i)} ,

ni := card { j ∈ B | j > i and ν( j) < ν(i)} ,

ti := card { j ∈ B | ν( j) < ν(i)} = card {ν( j) ∈ A | ν( j) < ν(i)} ,

Bi := B \ {i},

ri := card
{

(l,m) ∈ B2
i | l < m and ν(l) > ν(m)

}
,

γi := (−1)
Pi−1

j=1 dim f
j

# (bIν( j)),

ǫi := sgn( f ,Q)γi .

Since ν is bijective, dim f i
# (Îν(i)) = dim Îν(i), therefore

γi = (−1)
Pi−1

j=1 dim bIν( j) = (−1)si .

Let

Qi
a :=

i−1∏

j=1

I j × [ai] ×

d∏

k=i+1

Ik, Qi
b :=

i−1∏

j=1

I j × [bi] ×

d∏

k=i+1

Ik.

Note that ess(Qi
a) = Bi = ess(Qi

b), therefore sgn( f ,Qi
a) = (−1)ri = sgn( f ,Qi

b).

Denote this common value by δi . We have

sgn( f ,Q) = (−1)card{(l,m)∈B2|l<m and ν(l)>ν(m)}
= (−1)ri +pi +ni .

Therefore δi = (−1)ri = sgn( f ,Q)(−1)pi +ni . Consequently,

ǫiδi = sgn( f ,Q)2(−1)si +pi +ni = (−1)ti .

From equation (3) and Definition 4.6 we get

(∂ ◦ f )#(Q̂) =

d∑

i=1

ǫi

( i−1

♦
h=1

f h
# (Îµ(h))

)
⋄ ∂ f i

# (Îµ(i)) ⋄
( d

♦
h=i+1

f h
# (Îµ(h))

)

=

∑

i∈B

ǫi

( i−1

♦
h=1

f h
# (Îν(h))

)
⋄ f i

# ([̂bν(i)]) ⋄
( d

♦
h=i+1

f h
# (Îν(h))

)

−
∑

i∈B

ǫi

( i−1

♦
h=1

f h
# (Îν(h))

)
⋄ f i

# ([̂aν(i)]) ⋄
( d

♦
h=i+1

f h
# (Îν(h))

)
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=

∑

i∈B

ǫiδi f#

(( i−1

♦
h=1

Îν(h)

)
⋄ [̂bν(i)] ⋄

( d

♦
h=i+1

Îν(h)

))

−
∑

i∈B

ǫiδi f#

(( i−1

♦
h=1

Îν(h)

)
⋄ [̂aν(i)] ⋄

( d

♦
h=i+1

Îν(h)

))

= f#

(∑

i∈B

(−1)ti
( i−1

♦
h=1

Îν(h)

)
⋄ ∂ Îν(i) ⋄

( d

♦
h=i+1

Îν(h)

))

= f#

(∑

l∈A

(−1)card{m∈A|m<l}
( l−1

♦
h=1

Îh

)
⋄ ∂ Îl ⋄

( d

♦
h=l+1

Îh

))

= f#

( d∑

l=1

(−1)
Pl−1

j=1 dim bI j
( l−1

♦
h=1

Îh

)
⋄ ∂ Îl ⋄

( i−1

♦
h=l+1

Îh

))

= f# ◦ ∂(Q̂).

The correctness of the following definition is a standard consequence of the prop-

erty (13) of any chain map on chain complexes.

Definition 4.8 Let f : X → Y be a cubical map and f# : C(X) → C(Y ) the in-

duced chain map. The homomorphism Hk( f ) : Hk(X) → Hk(Y ) induced by f# on

quotient groups is called the the k-th homology of f . The family of maps H∗( f ) =

{Hk( f )} : H∗(X) → H∗(Y ) is called the homology map of f .

Lemma 4.9 The definition of a chain map induced by a cubical map is functorial, in

the following sense.

(i) Given a cubical set X, (idX)#k = idCk(X) for all k.

(ii) Given two cubical maps f : X → Y and g : Y → Z on cubical sets, g#k ◦ f#k =

(g ◦ f )#k for all k.

Proof Let X ⊂ R
d,Y ⊂ R

d ′

and Z ⊂ R
d ′ ′

. It is enough to verify (i) and (ii) on

elements of the canonical basis Q̂ ∈ Kd
k(X). Put Q =

∏d
i=1 Ii .

(i) Since νidX,Q
: Nd → Nd is the identity, we have

(idX)#k(Q̂) = sgn(idX,Q)
d

♦
i=1

(idX)#1 Îν(i) =

d

♦
i=1

Îi = Q̂.

(ii) First let d = d ′
= d ′ ′

= 1. If dim Q = 0 then Q = [l] for some l ∈ Z and

(
g#0 ◦ f#0

)
[l] = g#0[̂ f (l)] = ̂[(g ◦ f )(l)] = (g ◦ f )#0[̂l].

https://doi.org/10.4153/CJM-2007-043-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2007-043-3


1022 T. Kaczynski, M. Mrozek, and A. Trahan

If dim Q = 1, then Q = [l, l + 1] for some l ∈ Z. Put a = f (l), b = f (l + 1), c = g(a),

and d = g(b). We have

(g#1 ◦ f#1)( ̂[l, l + 1]) =






g#1[̂a, b] if a < b,

−g#1[̂b, a] if b < a,

g#10 if a = b,

=






[̂c, d] if a < b and c < d,

−[̂d, c] if a < b and d < c,

−[̂d, c] if b < a and d < c

[̂c, d] if b < a and c < d,

0 otherwise,

=






[̂c, d] if c < d,

−[̂d, c] if d < c,

0 otherwise,

= (g ◦ f )#1( ̂[l, l + 1]).

Now let d, d ′, d ′ ′ ≥ 1, not all equal to 1. We use abbreviations ν f = ν f ,Q and

νg = ν f (Q)g. We let k1 < k2 < · · · < km be the essential indices of f (Q) and

l1 < l2 < · · · < ln the essential indices of g( f (Q)).

By the linearity of g# and by (12),

(g#k ◦ f#k)(Q̂) = g#k

(
sgn( f ,Q)

m

♦
i=1

f ki

#k Îν f (ki )

)

= sgn(ν f ) g#k

( m

♦
i=1

f ki

#k Îν f (ki )

)

= sgn(ν f ) sgn(νg)
n

♦
j=1

g
l j

#k

(
f
ν f (l j )

#k (Îν f (νg (l j )))
)
.

Since sgn(σ ◦ τ ) = sgn(σ) sgn(τ ) for any permutations σ, τ , using the result proved

in the case d = d ′
= d ′ ′

= 1, we get

(g#k ◦ f#k)(Q̂) = sgn(ν f ◦ νg)
( n

♦
j=1

(g l j ◦ f ν(l j ))#k Îν f ◦νg (l j )

)

= sgn(ν f ◦ νg)
( n

♦
j=1

(g ◦ f )
l j

#k Îν f ◦νg (l j )

)

= sgn(νg◦ f )
( n

♦
j=1

(g ◦ f )
l j

#k Îν f◦g (l j )

)
= (g ◦ f )#k.

By standard homological algebra arguments, Lemma 4.9 implies the following.
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Theorem 4.10 H∗ is a functor from Cub to the category of graded groups. More ex-

plicitly:

(i) Given a cubical set X, H∗(idX) = idH∗(X).

(ii) Given cubical maps f : X → Y and g : Y → Z on cubical sets, H∗(g) ◦ H∗( f ) =

H∗(g ◦ f ).

The following examples are related to first three maps in Example 4.4.

Example 4.11 Assume A ⊂ X are cubical sets. If i : A → X is the inclusion map,

then i# : C(A) → C(X) is also an inclusion map.

Example 4.12 Consider the elementary cubes Q = [0, 1]d, Q ′
= [0, 1]d−1 and the

projection map p : Q → Q ′ given by p(x1, x2, x3, . . . , xd) := (x2, x3, . . . , xd). Any

face P of Q can be written as P = I1 × P ′, where I1 can be [0, 1], [0], or [1], and

P ′
= p(P) is a complementary face of P. The induced chain map p# : C(Q) → C(Q ′)

is given by

(14) π#k(P̂) :=

{
P̂ ′ if I1 = [0] or I1 = [1],

0 otherwise.

Example 4.13 Let Q and Q ′ be as in Example 4.12. The map j : Q ′ → Q given by

j(x1, x2, x3, . . . , xd−1) := (0, x1, x2, . . . , xd−1)

is a cubical map, and the induced chain map p# : C(Q ′) → C(Q) is given by

j#k(c) := [̂0] ⋄ c.

Note that p j = idQ ′ , therefore p# j# = (p j)# = idC(Q ′). Next, j# p# = ( j p)# is chain

homotopic to idC(Q), with the chain homotopy Dk : Ck(Q) → Ck+1(Q) given by

Dk(P̂) :=






[̂0, 1] ⋄ P̂ ′ if I1 = [1],

0 if I1 = [0],

0 if I1 = [0, 1],

where P = I1 × P ′ ∈ K(Q) is as in Example 4.12. It follows that H∗(p j) : H∗(Q ′) →
H∗(Q) is the inverse of H∗(p j) : H∗(Q) → H∗(Q ′). Consequently, H∗(Q ′) ∼= H∗(Q).

From the result presented in Example 4.13, one can conclude, by induction on d,

that Q = [0, 1]d is acyclic, that is, its homology is isomorphic to homology of a point:

Hk(Q) ∼=

{
Z if k = 0,

0 otherwise.

That is probably the simplest way of proving it without using the homotopy invari-

ance theorem, whose proof is more involved.
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4.3 Combinatorial Vietoris Theorem

Here is a combinatorial version of the Vietoris theorem [7].

Theorem 4.14 Let X,Y be cubical sets and f : X → Y a cubical map. If f is sur-

jective and f −1(Q) is acyclic for each Q ∈ K(Y ), then f∗ : H∗(X) → H∗(Y ) is an

isomorphism.

Proof We construct by induction a chain map ψ = {ψk : Ck(X) → Ck(Y )} and we

prove that it is a homological inverse of f∗.

For k = 0, let Q̂ ∈ C0(X) be an elementary 0-chain. Since f is surjective and

cubical, there exists a P ∈ K0(X) such that f (P) = Q. Then f#(P̂) = Q̂ and we put

ψ0(Q̂) := P̂.

Suppose now that k ≥ 1 and that ψi : Ci(X) → Ci(Y ) has been constructed for

i = 1, 2, . . . , k − 1 so that

|ψi(Q̂)| ⊂ f −1(Q) for all Q ∈ Ki(Y ),(15)

ψi−1∂i = ∂iψi .(16)

Note that then for any Q ∈ Kk(Y ),

|ψk−1(∂Q̂)| ⊂ f −1
(
|∂Q̂|

)
⊂ f −1

(
|Q̂|

)
⊂ f −1(Q).

By the induction hypothesis, ψk−1∂Q̂ ∈ Zk−1( f −1(Q)). Since f −1(Q) is acyclic, its

reduced homology H̃∗( f −1(Q)) is zero. Therefore, there exists a c ∈ Ck( f −1(Q))

such that ∂c = ψk−1∂Q̂. In the case k > 1, this is straightforward. In the case k = 1,

it follows from the fact that Q is an interval so, by the definition of Ψ0, ψ0∂Q̂ is a

difference of two vertices, thus it is a reduced cycle. We put ψkQ̂ := c.

Thus the map ψ is constructed. We will show now that

(17) f# ◦ ψ = idC(Y ) .

The proof is again by induction. For k = 0, the assertion follows immediately from

the definition of ψ0. Suppose that ψ#i ◦ ψi = idCi (Y ) for 0 ≤ i ≤ k − 1. Given any

Q ∈ Kk(Y ), we have

∂Q̂ = f#k−1 ◦ ψk−1(∂Q̂) = ∂k ◦ f#k ◦ ψk(Q̂)

and, by the definition of ψ,

| f#k ◦ ψ(Q̂)| ⊂ f (|ψ(Q̂)|) ⊂ f ( f −1(Q)) ⊂ Q.

Therefore f#k ◦ ψk(Q̂) is a k-chain which has the same boundary as Q̂. It follows that

f#k ◦ ψk(Q̂) − Q̂ is a cycle in Q. However, H̃∗(Q) = 0, hence, every k-cycle in Q is

a boundary. Since dim Q = k, the only (k + 1)-dimensional boundary in Q is zero.

Thus f#k ◦ ψ(Q̂) = Q̂.
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In the last step, we will show that ψ ◦ f# is chain homotopic to idC(X). To do this

we construct by induction a chain homotopy D = {Di : Ci(X) → Ci+1(X)} such that

∂i+1 ◦ Di + Di−1 ◦ ∂i = ψi ◦ f#i − idCi (X),(18)

|Di(c)| ⊂ f −1(Q) for any c ∈ Ci( f −1(Q)) and Q ∈ Ki(Y ).(19)

Let k = 0 and take any P ∈ K0(X). Let Q := f (P) and let c := ψ0(Q̂). Then

ψ0◦ f#(P̂) = c. Since |c| ∪ |P̂| ⊂ f −1(Q), we have |c − P̂| ⊂ f −1(Q). Since

H̃∗( f −1(Q)) = 0, there exists a c ′ ∈ C1( f −1(Q)) such that

∂c ′ = c − P̂ =
(
ψ0 ◦ f#0 − idC0(X)

)
(P̂).

We put D0(P̂) := c ′.

Now suppose that for i = 0, 1, 2, . . . , k − 1 the maps Di : Ci(X) → Ci+1(X) are

constructed so that properties (18) and (19) are satisfied. Take any P ∈ Kk(X). Let

Q := f (P) and let c := ψk(Q̂) = ψk( f#(P̂)). Since both |P̂| and |c| are in f −1(Q), the

induction hypothesis (19) and the subadditivity of support in [9, Ch. 2, Proposition

2.19(iv)] imply that

|c − P̂ − Dk−1∂kP̂| ⊂ |c| ∪ |P̂| ∪ |Dk−1∂kP̂| ⊂ f −1(Q).

Since H̃∗( f −1(|Q|) = 0, there exists a c ′ ∈ Ck+1( f −1(Q)) such that

∂c ′ = c − P̂ − Dk−1∂kP̂ =
(
ψk ◦ f#k − idCk(X) −Dk−1∂k

)
(P̂).

It remains to define Dk(P̂) := c ′. Then (18) is obviously satisfied, and (19) follows

when the construction is completed for all cubes P in f −1(Q).

5 Application to Computing Homology of Maps

From now on, by a continuous map we mean a map which is continuous with re-

spect to the Euclidean topology. As we pointed out in Section 4.1, the class of cubical

maps is small. In particular, it is too small to obtain a counterpart of the theorem

stating that every continuous map may be approximated by simplicial maps. Since

this approximation theorem is crucial in the definition of simplicial homology of

continuous maps, one can see that there is no way to carry over the definition of

the homology of a continuous map from the simplicial case to the cubical case by

means of approximation. One way to overcome this difficulty is by considering cu-

bical multivalued maps and their homology. This approach is presented in [9]. The

main difficulty of this approach does not lie in the construction of the multivalued

map itself, but in the construction of the so-called chain selector of the multivalued

map. In particular it requires solving a large linear equation for each elementary cube

in the domain of the multivalued map.

However, it turns out that approximation, which is convenient in the case of sim-

plicial homology, may be replaced by a Cartesian approach, which is natural for cu-

bical homology. This approach is used in [11] to present a new algorithm for com-

puting homology of continuous maps. Since the presentation there is technical and
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oriented on efficiency, in this section we will describe the Cartesian approach without

the technicalities that hide the main idea.

The construction is based on the definition of the homology of a multivalued map

via projections from the graph given in [7] together with an idea from [1]. Let X,Y
be two cubical sets, and let f : X → Y be continuous in Euclidean topology. Our goal

is to define the homology of f in terms of homology of some cubical maps. Recall

that the graph of f is the set graph( f ) := {(x, y) ∈ X × Y | y = f (x)}. Obviously,

graph( f ) is not a cubical set unless f is locally constant. However, we may consider

a cubical set Z ⊂ X × Y such that graph( f ) ⊂ Z. Let pZ : Z → X and qZ : Z → Y

denote projections to X and Y , respectively. Then we have the following commutative

diagram of continuous maps.

(20) Z
pz

����
��

��
� qz

��
??

??
??

?

X
f

// Y

We know from Example 4.4 that pZ and qZ are cubical maps and therefore their ho-

mology is well defined. Since homology is functorial, the homology of f must satisfy

H∗( f ) ◦ H∗(pZ) = H∗(qZ). This may be solved for H∗( f ) if H∗(pZ) is an isomor-

phism. Since obviously pZ is surjective, by Theorem 4.14 H∗(pZ) is an isomorphism

if

(21) ∀x ∈ X the set p−1
Z (x) = {x} × Y ∩ Z is acyclic.

The simplest candidate for Z is ch( f ), the closed hull of f in X × Y . In practice, it

often fulfills the acyclicity condition of (21). In the case when the acyclicity condition

of (21) fails, one has to go through the process of subdivision or, similarly to the

multivalued approach presented in [9], so-called rescaling (changing units). One

can prove that with a sufficiently fine rescaling the closed hull of the graph satisfies

the acyclicity condition of (21).

We now turn our attention to the algorithm computing H∗( f ).

First observe that computing the homology of a cubical map is very simple: via

formulas in Definition 4.6 one obtains the associated chain map, which reduces the

problem to elementary linear algebra.

In order to find an algorithm computing the homology of a continuous map one

has to answer first the fundamental question what does it mean to have a continuous

map on input of an algorithm. Algorithms can process only finite amounts of data,

which suggests that the continuous maps must be somehow coded with some finite

code. A possibility is to restrict the class of considered maps to polynomials with

rational coefficients and to feed the algorithm with the coefficients. However, such

an approach is very restrictive, because in many problems the continuous maps of

interest are not polynomials. Even worse, the necessity of coding may lead to the

incorrect conclusion that it is necessary to restrict the algorithm to some countable

class of continuous maps.
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Fortunately, the homology of maps is preserved under homotopy, which suggests

searching for a coding which could be shared by many maps having the same homol-

ogy. Exactly this type of coding is provided by the closed hull of the graph of the map.

The construction of the closed hull may be done in many ways and we do not want to

go into detail here. The typical approach is based on interval arithmetic [12]. Some

ways to achieve this task for certain classes of continuous functions are discussed in

[9, 14, 15].

Therefore the outline of the algorithm is as follows. Given a continuous map

f : X → Y :

(1.) Fix a grid scale in X × Y .

(2.) Construct the closed hull Z of the graph of the map f .

(3.) Compute the projections pX : Z → X and pY : Z → Y .

(4.) Verify the condition (21) and if it fails, take a smaller grid scale and go back to 2.

(5.) Compute the homology maps p∗
X : Z → X and p∗

Y : Z → Y .

(6.) Compute the inverse p∗−1
X (the inverse exists by Vietoris–Begle theorem).

(7.) Compute and return the composition p∗
Y p∗−1

X .

As we already stated, the strength of this algorithm lies in the fact that one avoids

solving the large number of large linear equations needed in the algorithm presented

in [9]. However, a direct application of this algorithm would not be efficient for

another reason. The problem is that with introduction of the graph one raises the

dimension of the problem from the maximum of dimensions of the cubical sets X and

Y to the sum of these dimensions. The solution is to perform some preprocessing,

which allows one to replace the graph by another set in X×Y whose dimension is the

same as the dimension of X. The preprocessing is quite complicated but leads to an

algorithm which has been implemented and performs well in concrete applications.

The details of the algorithm outlined in this section together with all the technicalities

which make it efficient are presented in [11].
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