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Abstract

Electromagnetic simulation software has become an important tool for antenna design.
However, high-fidelity simulation of wideband or ultra-wideband antennas is very expensive.
Therefore, antenna optimization design by using an electromagnetic solver may be limited
due to its high computational cost. This problem can be alleviated by the utilization of fast
and accurate surrogate models. Unfortunately, conventional surrogate models for antenna
design are usually prohibitive because training data acquisition is time-consuming. In order
to solve the problem, a modeling method named progressive Gaussian process (PGP) is pro-
posed in this study. Specially, when a Gaussian process (GP) is trained, test sample with the
largest predictive variance is inputted into an electromagnetic solver to simulate its results.
After that, the test sample is added to the training set to train the GP progressively. The pro-
cess can incrementally increase some important trusted training data and improve the model
generalization performance. Based on the proposed PGP, two monopole antennas are opti-
mized. The optimization results show effectiveness and efficiency of the method.

Introduction

Full-wave electromagnetic simulation software is one of the important tools in the field of
antenna engineering, and the goal is to adjust geometry and/or material parameters to ensure
the antenna satisfies design indexes. Usually, the problem of antenna design can be considered
as an optimization problem. Among various optimization methods, the evolutionary algo-
rithm, including particle swarm optimization (PSO), genetic algorithm, etc., is widely used
due to its high global optimization ability, without good initial design, wide applicability,
and robustness [1–3]. However, the optimization algorithm might require thousands of fitness
function evaluations, namely, full-wave electromagnetic analysis of the optimized antenna,
which is very time-consuming.

In order to solve the problem, surrogate-based optimization is applied to microstrip
antennas (MSAs) or filter design [4, 5], which use surrogate models instead of high-fidelity
electromagnetic simulation, significantly reducing the computational costs. Currently, the
most common and popular surrogate models include artificial neural networks (ANNs)
[6, 7], support vector machine (SVM) [8, 9], and Gaussian process (GP) [10, 11]. Chen
et al. [12] used PSO parallelization to accelerate ANN training and simulate the resonant
frequency of rectangular MSAs under the unified device architecture. Chen et al. [13] pro-
posed an ANN based on prior knowledge to design the filter on an advanced design system.
Angiulli et al. [14] proposed a SVM-based microwave device modeling. Sun et al. [15] gave a
SVM combined with a hybrid kernel function for accurately modeling the resonant fre-
quency of a compact MSA. Jacobs et al. [16] used a GP to model ultra-wideband (UWB)
and dual-frequency coplanar waveguide (CPW) feed slot antennas. Gao et al. [17] proposed
a semi-supervised co-training algorithm based on GP and SVM. Zhang et al. [18] con-
structed a deep GP model by using the structural form of convolutional neural networks
and combining it with GP. Chen et al. [19] developed a manifold GP machine learning
method based on a differential evolution algorithm. Gao et al. [20] gave a semi-supervised
learning GP, which combines unlabeled samples to improve the accuracy of the GP model
and reduce the number of labeled training samples required. Zhou et al. [21] presented a
novel surrogate-assisted evolutionary optimization framework that combines both global
and local surrogate models.

Although these proposed methods can reduce the number of evaluations of electromagnetic
simulations, it is also a deserved research topic. In this paper, we primarily propose a progres-
sive GP (PGP) to solve the problem of insufficient generalization ability of GP model when
modeling some antennas with complex structure. The main research details of this paper
are as follows:
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(1) By the method of orthogonal experiment design, we generate
a small number of samples which is training set to train a GP
model. Progressively, some new samples with large variances
predicted by the trained GP are simulated by using electro-
magnetic software, such as high-frequency structure simula-
tor (HFSS) (https://www.ansys.com/Products/Electronics/
ANSYS-HFSS), computer simulation technology (www.cst.
com.), etc., and their electromagnetic parameters including
S-parameter or voltage standing wave ratio (VSWR) are
obtained. Then, the new samples will be added into the training
set to train the GP again and again until the target is reached.
This is so-called PGP. Finally, the PSO algorithm is used to
optimize the trained PGP and find the optimization results.

(2) In order to verify the feasibility of the proposed PGP model,
we experiment with two monopole antennas with complex
structures, and the simulation results show that the proposed
PGP model is effective.

The rest of the paper is organized as follows. Section “Key
technical background” introduces the key technical background
of GP and PSO, and then the PGP model is proposed in
Section “The proposed PGP.” In Section “Simulation examples,”
wideband monopole antenna and UWB MSA are optimized by
the model which shows the effectiveness of the PGP.
Conclusions and future studies are in Section “Conclusion.”

Key technical background

Gaussian process

A GP is defined as a set of random variables, in which any finite
subset is subjected to a joint Gaussian distribution. Suppose there
are N samples in training set D, D = {(xi, yi)|i = 1, 2, …, N}, where
xi represents i-th input vector with Q dimension, and yi represents
the corresponding output. All training inputs are denoted as X
and target outputs as Y, therefore all observed data, namely train-
ing set can be denoted as D = (X, Y). From the perspective of
function space, GP can be regarded as distribution of functions,
where GP is completely defined by its mean function m(x) and
covariance function k(x, x′), and they are given by

m(x) = E[f (x)]

k(x, x′) = E[(f (x)−m(x))(f (x′)−m(x′))].
(1)

where f (x) is the formal expression of GP, and it is

f (x) � GP(m(x), k(x, x′)) (2)

According to the definition, joint distribution of any finite ran-
dom variables in GP is Gaussian distribution, so the joint distri-
bution of training output f and test output f ∗ is

f
f ∗

[ ]
� N 0,

K(X, X) K(X, X∗)
K(X∗, X) K(X∗, X∗)

[ ]( )
(3)

where K is the covariance matrix calculated by the covariance
function. The predicted distribution of test output can be
obtained by Bayesian formula

f ∗|X, f , X∗�N(K(X∗, X)K(X, X)−1f ,

K(X∗, X∗)− K(X∗, X)K(X, X)−1K(X, X∗))
(4)

In general, the training output Y is not generated by a GP directly.
Usually, it is in the form of noise, namely Y = f (x)+ 1, where ε is
additive independent identically distributed Gaussian noise with
variances2

n. Given an implicit function, the likelihood of the observed
data also submits to the Gaussian distribution. Then, the joint
distribution of training outputY and noiseless prediction output f ∗ is

Y
f ∗

[ ]
� N 0,

K(X, X)+ s2
nI K(X, X∗)

K(X∗, X) K(X∗, X∗)

[ ]( )
(5)

After re-deducing the conditional distribution, the predicted
distribution of GP can be obtained as

f ∗|X, Y, X∗�N(�f ∗, cov(f ∗)) (6)

where

�f ∗=K(X∗, X)[K(X, X)+ s2
nI]

−1Y (7)

cov(f ∗) =K(X∗, X∗)

− K(X∗, X)[K(X, X)+ s2
nI]

−1K(X, X∗)
(8)

The optimal hyper-parameters are obtained by maximizing
log-likelihood function of the training sample:

log p(f |X) = − 1
2
f TK−1f − 1

2
log |K| − n

2
log 2p (9)

where K = K(X, X), |K| is the determinant of K, f is the training
target vector, X is the matrix of input vector, and n is the number
of hyper-parameters.

In this paper, we use squared exponential covariance function
with automatic relevance determination (ARD) distance measure,
and it is given by

k(x, x′) = s2
f exp [−0.5(x − x′)TM−1(x − x′)] (10)

where the M matrix is diagonal with ARD parameters
l21, l

2
2, . . . , l

2
D, where D is the dimension of the input space,

and s2
f is the signal variance. We also use the Gaussian likelihood

function for regression, and it is given by

lik Gauss(x) = 1������
2ps2

n

√ exp − (x − m)2

2s2
n

( )
(11)

where μ is the mean and s2
n is the standard deviation. Therefore,

the hyper-parameters are:

u = [log (l1), log (l2), . . . , log (lD), log (sn), log (sf )] (12)

Particle swarm optimization

PSO is a very popular global optimization method, and it has
advantages of easy to implement, simple, fewer parameters and
can effectively solve the global optimization problems [22, 23].
The velocity and position update formulas are:

vk+1
i,d = vvki,d + c1 rand()(p

k
i,d − xki,d)+ c2 rand()(p

k
g,d − xki,d) (13)
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xk+1
i,d = xki,d + vk+1

i,d (14)

where c1 and c2 are learning factors and usually c1 = 2 and c2 = 2.
rand () is a random number between 0 and 1. ω is the inertia
weight, usually it is linearly decreasing, namely

v = 0.9− (0.9− 0.4)× (generation/maxgeneration)2

where maxgeneration is the maximum iteration number, and gen-
eration is the current iteration number. vki,d and xki,d are velocity and
position of d-dimensional i-th particle in the k-th iteration. pki,d is
the personal best position and pkg,d is the global best position.

The proposed PGP

The flow chart of the proposed PGP model based on PSO algo-
rithm is shown in Fig. 1, and the main steps are as follows:

(1) To a designed antenna, select samples using the method of
orthogonal experimental design [24], and then call full-wave
electromagnetic simulation software HFSS to compute the
S-parameter or VSWR. After that, we obtain the training set.

(2) Use the size parameters of the designed antenna and fre-
quency points as inputs, and S-parameter or VSWR as output
to train the GP model.

(3) Randomly generate a test sample, and then compute mean
absolute error (MAE) and correlation coefficient (r) between
GP predicted result and HFSS simulation one. If MAE < 0.5
and r > 0.95 in this paper, go to step 5, otherwise go to step 4.

(4) Randomly generate some test samples and evaluate them by
the trained GP model, and obtain their predicted mean m
and variance σ2. Then select the sample with large variance,
and simulate S-parameter or VSWR by calling HFSS.
Finally, the sample is added to the training set.
Progressively, we train the GP again, after that go to step 3.

(5) The trained PGP model is used as the fitness function of PSO
algorithm to optimize the antenna:

MAE = 1
j

∑j

i=1

|yi − ŷi| (15)

r =
∑j

i= 1 (ŷi − ŷ)(yi − y)���������������������������������∑j
i= 1 (ŷi − ŷ)

2 ∑j
i=1 (yi − y)2

√ (16)

where j represents the size of vector y, yi represents the HFSS
simulation value, ŷi represents the PGP predicted value, �̂y repre-
sents mean of the PGP predicted value, and �y represents mean of
the HFSS simulation value. In this paper, the difference between
the PGP-predicted result and HFSS simulation result is showed
by the correlation coefficient r and MAE. If r is closer to 1 or
MAE is closer to 0, then the model is more reasonable.

In addition, for the proposed PGP, training time complexity is
O(n3) and spatial complexity is O(n2), where n is the number of
selected frequency points. This paper also uses sparse sampling
method which we sample intensively in important frequency
range and sparsely in the secondary frequency range. Therefore,
we only need m (m < n) points to fit prediction performance.

Simulation examples

Wideband monopole antenna

The proposed PGP is applied to optimize the wideband monopole
antenna based on CPW-fed step impedance in [25] as the first
example, shown in Fig. 2. The MSA is fabricated on an FR4 micro-
wave substrate with 56.47 × 53.44mm2, thickness of 0.8 mm,
relative dielectric constant of 4.4, and loss tangent of 0.02. We
will optimize the antenna performance by changing the geometry
of the L-shaped slot and the ground plane to satisfies the following
design specifications:

| S11| ≤−10 dB for 1.5 through 2.8 GHz
| S11| ≤−10 dB for 4.6 through 6.1 GHz

The fixed sizes of the antenna are Lm1 = 19.7mm, Lm2 = 23.2
mm, Lm3 = 11.3mm, Lt2 = 12.75 mm, Lf1 = 5mm, Lf2 = 23mm,
L0 = 1.5 mm, Wf1 = 3mm, Wf2 = 2.4 mm, Wf3 = 3mm, Ws2 = 8.25
mm, Ws3 = 3.75mm, Wm1 = 8.4mm, Wv = 5.5 mm, g1 = 0.25mm,
g2 = 0.55, h = 0.8 mm. The widths of the two quasi-transmission
lines are 2.4 mm (Wf2) and 8.4 mm (Wm1). In order to demonstrate
the impedance characteristics of the proposed monopole antenna,
the design parameters x = [Lt1, Ws1, Wh]mm are selected for opti-
mization because they are the main factors that impact the per-
formance of the antenna. Table 1 shows the ranges of x.

First, we select nine groups x as initial samples by partial orthog-
onal table (L9(3

4)) and simulate their S-parameters by using HFSS
software in the frequency range 1.4–6.6 GHz with an interval of
0.05 GHz. In this example, sparse sampling method, with frequency
interval of 0.1 GHz from 1.4 to 2.9 GHz, 0.3 GHz from 3 to 4.5 GHz,
and 0.2 GHz from 4.6 to 6.6 GHz, is adopted for training. Therefore,
we select m = 33 rather than n = 105 frequency points. The PGP is
trained by the nine group samples with x and 33 frequency points
as input and their corresponding S-parameters as output. Table 2

Fig. 1. Flow chart of the proposed PGP.
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shows the MAE and r during modeling process. The r and MAE
between the initial GP model (the number is 0 in Table 2) and
HFSS are 0.9368 and 0.7670, respectively. After updating four
times, the correlation coefficient r increases from 0.9368 to 0.9932,
while the MAE decreases from 0.7670 to 0.4305, which satisfies the
threshold. The hyper-parameters of the trained PGP are

Fig. 2. Wideband monopole antenna (a) schematic
diagram and (b) HFSS model.

Table 1. Parameter ranges of the wideband monopole antenna

Parameter Lt1 Ws1 Wh

Unit (mm) [12.4,14.4] [28,34] [5,7]

Table 2. Results of different updating numbers for the wideband monopole
antenna

Number MAE r

0 0.7670 0.9368

1 0.5379 0.9938

2 0.9598 0.9699

3 0.6972 0.9805

4 0.4305 0.9932
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u = [ log (l1), log (l2), log (l3), log (l4), log (sf )]

= [10.85, 2.9425, 11.0159, −2.4772, 2.3175].

We use the trained PGP exploiting PSO to optimize the wide-
band monopole MSA, with the maximum iteration number of the
PSO is 300, c1 = c2 = 2 and swarm size is 20. In this example, to
satisfy the antenna design specifications, the fitness function of
the PSO is given by

Fit =
∑len(freq)
i

1
len(freq)

|y pgp,i − yhfss,i|
s.t. |y@1.5 GHz| . 10&&|max (y@1.6 GHz, y@2.0 GHz, y@2.6 GHz)| . 10

&&|y@2.8 GHz| . 10&&|y@4.6 GHz| . 10&&|y@6.1 GHz| . 10

&&|max (y@5.2 GHz, y@5.8 GHz)| . 10

(17)

where len( freq) is the number of points over frequency band, ypgp,i
is the predicted value by the trained PGP model at the i-th
frequency point, yhfss,i is the simulated value of HFSS software
at the i-th frequency point, y@1.5 GHz is the |S11| at the 1.5 GHz,
and the notation && means that all conditions must be met
simultaneously.

After optimization, the result is x = [13.0505,30.4825,5.3912]
mm.

The comparison result of the proposed PGP and HFSS is
shown in Fig. 3, where the solid line represents simulation result
based on HFSS software, the dashed line represents predicted
result given by the trained PGP model, and the dotted line repre-
sents the result in [25].

We can conclude from Fig. 3 that the optimized result by the
trained PGP exploiting PSO basically satisfies the design require-
ments. Meanwhile, at the three resonant frequency points, the
deviation value is also within the acceptable range. The reason
why the proposed PGP model is more effective compared to

the GP model is that training samples for the PGP are more tar-
geted and progressive. It benefits from the samples, reducing the
computing time of covariance matrix for unnecessary training
samples.

From the perspective of calculation time, if the antenna is opti-
mized by PSO evaluated by HFSS, it takes about 5 min for one
evaluation, while it will take about 30 000 min for 20 particles
to iterate 300 times. However, for the proposed PGP model, the
total time, including the time to obtain training samples by
HFSS, progressively training time, and optimal time based on
the trained PGP model, is about 85 min. The efficiency is very
high.

UWB monopole antenna

In this subsection, we optimize a compact step-slot monopole
antenna with band-notched characteristics for UWB applications
[26] based on the proposed PGP model and PSO. The MSA can
obtain frequency notch characteristic in the WLAN band, and
band-notched characteristic is achieved by introducing an
inverted-U slot into the rectangular stub. The schematic diagram
of the MSA is shown in Fig. 4, which has a compact size of 20 ×
26 mm2 (W × L), fabricated on the FR4 dielectric substrate with
the thickness of 1.6 mm, relative dielectric constant of 4.4, fed
by a microstrip line with the rectangular stub and a step-slot
which are printed on the different side of the dielectric substrate.
The design specifications are as follow:

VSWR < 2 for 3.1–5 GHz
VSWR > 2 for 5–6 GHz
VSWR < 2 for 6–10.6 GHz

The fixed size are Wsp1 = 18mm, Wsp2 = 15mm, Wsp3 = 12mm,
Wsp4 = 9 mm, Wsp5 = 7.2 mm, W = 20 mm, L = 26 mm, Lsp1 =

Fig. 3. Comparison result of the trained PGP, HFSS, and [25] for the wideband monopole antenna.
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8.75 mm, Lsp2 = 2 mm, Lsp3 = 2 mm, Lsp4 = 2 mm, Lsp5 = 2 mm,
Wst = 13 mm, Lst = 7 mm, Wf = 3 mm, Lf = 7 mm, and Lh =
6.25 mm. The selected variables is x = [S1, S2, S3, Sh] that deter-
mines the position and size of the inverted-U slot, and their
ranges are shown in Table 3.

We also select nine groups x as initial samples by partial
orthogonal table (L9(3

4)), and then simulate their VSWR by
using HFSS software. The frequency range is 3–12 GHz with an
interval of 0.1 GHz. In this example, sparse sampling method,
with frequency interval of 0.2 GHz from 3.1 to 4.5 GHz, 0.1
GHz from 4.6 to 6.7 GHz, and 0.4 GHz from 6.8 to 12 GHz, is
also adopted. Therefore, we select m = 43 rather than n = 91 fre-
quency points. The proposed PGP is trained, and MAE and r
are shown in Table 4 simultaneously. The correlation coefficient
r between original GP (the number is 0 in Table 4) and HFSS

is 0.5130, and MAE is 0.8457. After updating 21 times, r increases
from 0.5130 to 0.9575, and MAE decreases from 0.8457 to 0.2893.
At this time, the hyper-parameters of the trained PGP are

u = [log (l1), log (l2), log (l3), log (l4), log (l5), log (sf )]

= [−1.5871, −1.2109, −1.3032, 0.0398, −1.9395, 0.602].

We use the trained PGP exploiting PSO to optimize the UWB
monopole antenna, and the parameter settings are the same as the

Fig. 4. UWB MSA: (a) schematic diagram and (b) HFSS
model.

Table 3. Parameter ranges of the UWB MSA

Parameter S1 S2 S3 Sh

Unit (mm) [9,11.5] [0.5,0.9] [3,4.2] [11.75,12.75]

Table 4. Results of different updating numbers for the UWB MSA

Number MAE r

0 0.8457 0.5130

5 0.6388 0.7859

10 0.5457 0.7409

15 0.4254 0.9228

21 0.2893 0.9575
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last example. The fitness function is given by

Fit =
∑len(freq)
i

1
len(freq)

|y pgp,i − yhfss,i|
s.t. y@3.1 GHz , 2&&y@4.9 GHz , 2&&y@5.1 GHz . 2

&&y@5.9 GHz . 2&&y@6.1 GHz , 2&&y@10.6 GHz , 2

(18)

And the optimized result is x = [10.4721,0.8204,3.1883,
12.1718] mm.

The comparison of the proposed PGP, HFSS, and [26] is
shown in Fig. 5, where the solid line represents HFSS simulation
result, the dashed line represents optimization result based on the
trained PGP model, and the dotted line represents the result from
reference [26]. Figure 5 shows the simulated impedance band-
width for VSWR is <2 covering from 3.1 GHz to >12 GHz,
which frequency band from 5.05 to 6.05 GHz is rejected. From
the perspective of calculation time, if we optimize the antenna
by using the PSO algorithm exploiting HFSS, the calculation
time for one evaluation is 85 s, then the total consumed time is
about 510 000 s with 20 particles and 300 iterations. However,
the total time for the PGP modeling and PSO optimizing is
3360 s, which means the method is very efficient.

Conclusion

A novel surrogate model for antenna optimization design based on
PGP is proposed. The method exploits the predicted variance char-
acteristics of trained GP to obtain more valuable training samples
during the modeling process. As we all know, for a general GP,
we usually determine the training set at one time, for which we
do not know the suitable number of the training data; moreover,
we also do not know whether the data in the training set are the
most effective ones for training the GP or not. The proposed
PGP can answer two questions simultaneously. Taking wideband

and UWB monopole antennas as an example, the predicted result
by the trained PGP model is comparable to that of the HFSS solver.
The quality of the model is sufficient to be surrogate one for
antenna optimization. Compared with the traditional optimization
algorithms, the efficiency of the proposed method is very high.
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