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NON-ISOMORPHIC TENSOR PRODUCTS OF
VON NEUMANN ALGEBRAS

J.J. WILLIAMS

1. Introduction. This paper investigates special conditions under which
the tensor product of two von Neumann algebras will be non-isomorphic to
the tensor product of two others. The main tools are the algebraic invariants
property A, (x = 0) (first defined by Powers [18]) and the r, and p sets
(defined by Araki and Woods [3]).

We show that if .&7; is not purely infinite and .#; is a tensor product of
finite type I factors with 7 () 2 {0, 1} (i =1, 2), then &/, ® -#, has
property A, if and only if x € r (A1); also r,(F1 Q M) = r,(M,) =
7o (A1) for some countable sub-tensor product #, of A, and if 7, (M) #=
o (Ms) or if p(My) 5~ p( M) and M, and M, are countable tensor products,
then &/, ® M, % Ay @ M, (Theorems 4.1 and 5.5). We show also that an
algebra with property A, (0 < x < 1) is purely infinite (Theorem 4.5 (¢)), and
that there exists a continuum of non-isomorphic, non-hyperfinite, type III
factors on a separable Hilbert space, each one having its 7, set equal to {0, 1}
(Theorem 5.6). This last result (with the exception of the 7, part) has also
been obtained, using other methods, by Ching [6], Connes [7], and Sakai [20].
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Professor I. Halperin and to express his gratitude to Professor E. J. Woods
and Dr. G. A. Elliott for many helpful discussions concerning this paper. In
particular, Theorem 5.5 (b) is the direct result of a remark made by Professor
Woods.

2. Definitions and notations. If $ is a Hilbert space, then we denote the
inner product on by (.,.) which will be linear in the first argument and
conjugate-linear in the second. We write Z (), 1(9) and 1(9) to denote the
algebra of all bounded linear operators on 9, the identity operator on $ and
the algebra of all complex scalar multiples of the identity, respectively. If
K C © then we write Proj K to denote the projection operator from § onto
the closed, linear subspace of $ generated by K. If z € § then we define w, to
be the linear functional on & (9) defined by w,(T) = (T z,2). If & is a von
Neumann algebra on  then we say that z is a trace vector for & if w, defines a
normalized, faithful trace on 7.
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If n is a positive integer, o/ is a type I, factor on  and 0 # z € §, then
there exist Hilbert spaces $; and §, such that = ;1 ® H9, & = Z (1) ®
1(9:), and z = YE\fe; ® ¢, for some positive integer m < n, where

MZNhZ...2N>0and {p;ie=1,2,...,m}and {¢y;:1 =1,2,...,m}
are orthonormal sets in §; and 9., respectively [2, pp. 164, 165]. Define
Sp(z, ), the spectrum of z in &7, to be the “set” {A1, Ay, ..., Ny} together

with n — m zeroes. Although we use set notation, the elements of Sp(z, &)
are understood to be taken with their multiplicity, so that, for example, two
subsets of Sp(z,.2/) will be considered to be disjoint even if they contain the
same value A, providing that the total multiplicity of X\ in these two subsets
does not exceed the multiplicity of A in Sp(z, %/).

If we write § = Q (Da, 222 € I) and & = Q (Do Ly 24 € I), then
we will assume that we have been given an arbitrary, non-empty index set
such that for each « € I, 9. is a Hilbert space, z, € $. with ||z.|]| = 1, and
&/, is a von Neumann algebra on §,;  is the tensor product of the Hilbert
spaces {9.:a € I} relative to the reference family {z,:a € I} and & is the
von Neumann algebra on § generated by {7 ,:a € I} where m, is the canoni-
cal imbedding of Z (9.) into Z (H). If J is an arbitrary subset of I, then we
define HJ) = & (Da, 2aia € J), 2(J) = Q (a2 € J) € H(J), and
L) = Q (Day o, 2o € J). If J is a finite subset of I, and w, € §, for
each a € J, then we define w(J) = Q (wsia € J) € H(J). If J is finite and
for each o € J, &/, is a finite type I, factor on $, and Sp(z., Z.) =
Naitt =1,2,...,n(a)} then

Spi()), L () = (i@ € J):i(@) € {1,2,...,n(@)},a € J}.

Suppose that 0 < x < 1, I is a countably infinite index set, and that for
each a € I, , is a four-dimensional Hilbert space, %, is a type I, factor on
Oay Va € Do With ||ve|| = 1 and Sp (va, Xo) = {(1 + x)~ !, x(1 + x)~'}. Then
the algebra & (D, Za, vo:a € I) depends up to spatial (product) isomorphism
only on the value of x, and is denoted by &#,. If x > 1 then we define %, =
R

We write = to denote an algebraic *-isomorphism and .4 to denote the set
of positive integers.

General discussions are given in Dixmier [8] for von Neumann algebras and
in von Neumann [15] for tensor products.

3. Property A, and the r_ set.

Definition 3.1. (a) Suppose that x > 0, ¢ > 0,.# is a von Neumann algebra,
w is a normal positive linear functional (PLF) on.#, and U € .#. Then the
pair (w, U) is said to have property (e, A;) for M if
@) U =0and U*U 4+ UU* = 1, and
(i) |w(UT) — xw(TU)| £ €||T|,forall T € M.
(b) A is said to have property A, if for every ¢ > 0, and for every normal PLF
won M, there exists a U € M such that the pair (w, U) has property (e, A;) for A .
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(c) A is said to have property A, if for every € > 0, and for every finite set
w1, W2, « . ., W, Of normal PLF's on M, there exists a U € M such that for each
i=1,2,...,n,the pair (w;, U) has property (e, A,) for M.

Remark. If 0 £x <1, then x = X/(1 —\) for some 0 =\ =3 and
property A, is equivalent to the property L) that was defined by Powers [18,
Definition 3.1] where he used it to distinguish between the Z..

PROPOSITION 3.2. Suppose that x > 0, ¢ > 0, # is a von Neumann algebra,
w is a normal PLF on M, U € M and the pair (w, U) has property (e, A,) for M.
Then the pair (w, U*) has property (ex~, Ay,;) for M.

Proof. For all T € #, the complex conjugate of w(7) is w(7*). By hypothe-
sis, |w(UT) — xw(T'U)| < €||T]|, for all T € #. Take complex conjugates,
divide by x, let S = T*, and we obtain |w(U*S) — " (SU*)| < e Y||S]|,
for all S € A.

COROLLARY 3.3. If x > 0, then property A, is equivalent to property A,,,, and
property A, is equivalent to property Ay;; .

The asymptotic ratio set (r,,) was defined by Araki and Woods [3, Definition
6.1] where they used it to give a classification of tensor products of type I
factors.

Definition 3.4. Suppose that# is a von Neumann algebra. Then we define
ro( M) ={x 201 M =M QA
A(AM ) = {x = 0: 4 has property A,},
and
AN (M) = {x = 0: 4 has property A,'}.

It is clear that property A, implies property A,, that 7, (&) C 7 (& @ £)
for any von Neumann algebras. %/ and &, and that if &/ =~ % thenr_ () =
1o (B), M) = A(#),and N (F) = N (D).

THEOREM 3.5. Suppose that x = 0 and that & is any von Neumann algebra.
Then Z @ X, has property A,'.

Proof. This is an easy generalization of [18, Lemma 3.2], or follows from [1,
Lemma 3.1].

COROLLARY 3.6. Suppose that/ is any von Neumann algebra. Then v, () C
AMN(F) CA(A).

Araki [1, Theorem 1.3] showed that if 2/ is a von Neumann algebra on a
separable Hilbert space, then 7, (%) = A’ (/). However, 7, (%) # A(S),
in general. Let &, be the free group on two generators, and let .27 (®,) be the
von Neumann algebra generated by the left regular representation of ®s,.
Note that &7 (®;) is a II, factor on a separable Hilbert space. Schwartz [21,
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Lemma 10, Corollary 12] showed that 1 ¢ 7, (27 (®;)), but [1, Lemma 6.1]
1 € A(H(®,)). Part of our results are to give conditions under which 7_ and
A are the same (Theorem 4.1(b)).

Definition 3.7. Suppose that . = @ (Da, L, 2oia € I) with each &, a
finite type I factor on §,, and that x = 0. We call a sequence (I, K,1, K,2,
en:n €N') an x-sequence for & if {I,:n € N} are pairwise disjoint, finite
subsets of I, and for each n € N, K,1 and K,; are disjoint subsets of Sp(z(I,),
& (I1,)) and ¢, is a bijection from K, to K, such that 0 ¢ K,

@©

Zl [ AA €Ku)]l =0

and
lim max {|x — ¢,(A\)/A|[:N € K,u} = 0.
n->o
THEOREM 3.8. Suppose that x = 0, that is a countable tensor product of finite
type I factors, and that there exists an x-sequence for . Then x € r ().

Proof. See [3, Definition 3.2, Corollary 5.5].
Remark. The converse of this theorem is also true [3, Lemma 5.8].

Definition 3.9. If 0 < x < 1, define S; = {0, «™:n = 0, £1, £2, ...}.
Define Sy = {0}, S; = {1},501 = {O, 1}, and S(,o = [0, 00)

It follows from Theorem 3.8 and its converse that for 0 < x < 1,7 (#,) =
S; and that 7, (%o ® #1) = So1. There exists a tensor product of finite type I
factors, %, such that r_(#.) = S, [3, Lemma 3.13].

For the remainder of this section, we will assume that we are given a von
Neumann algebra . described as follows.

Let I, be an arbitrary index set and let 4#/; be a countably infinite index set
such that I,, .#; and A are pairwise disjoint, and let I = I, U 4/,. For
eacha € I, let n(a) € A, let a1 and Has be Hilbert spaces with orthonormal

bases {¢as:2 = 1,2,...,n(a)} and {¥,;:2 = 1,2, ..., n(a)}, respectively, let
n(a) 1
Wa = 12_1 (n(a))_iﬂoai@ ‘I,aiv
and

n(a)

Ua = Z ()\ai)%ﬁoai@ \I,aiy

i=1
With hat = Ma2 2 -+ 2 Aane 2 0, [[2a]|2 = X% %Nas = 1, and for each 2 € A,
let n(k) = 2.
Let Yo = Z(Da1) @ 1(Da2), let & = @ (Dar ® Dazy vaie € I) and let
S = Q (Da ® Daty L vaia € I). Note that w, is a trace vector for F,.

LEMMA 3.10. Suppose that 0 < x <1, ¢ > 0, that & is a von Neumann
algebra on a Hilbert space &, and that z € & ® O with ||z|| £ 1. Suppose that
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there exists a U € B ®.F such that the pair (w,, U) has property (e, A,) for
B Q.. Then there exist a finite subset J of I and a U, € L) ®
1(OI — J)) such that the pair (w,, U) has property (2¢, A;) for B @5
(cf. [18, Lemma 3.5]).

Proof. Choose some k € A, and define W, € & (1) as follows: if p € Dy,
then W]P = (P, ¢k1)¢k2. Then Wl*p = (P, <pk2)<pk1, le = 0 and Wl*Wl +
W1W1* = 1(@;;1). Let

Q=18 @ (W: @1(Dr2)) @ LOHUT — {k})).

Then Q € & ® L({k}) ® 1(OU — {k})), Q* = 0 and Q*Q + QQ* =
1(® ® 9). By hypothesis, U? = 0and U*U + UU* = 1(f ® O). Therefore,
{Q*Q, QQ*} and {U*U, UU*} are each a pair of orthogonal, equivalent,
complementary projections in 4 ®.%, and hence, it follows from [12, p. 25,
Corollary] that Q*Q and U* U are equivalent. Hence, thereexistsa W € & ®.%
with W*W = U*U and WIV* = Q*Q.

Let V =W 4+ QWU*. Since (WU)*(WU) =0 and (W*Q)*(W*Q) = 0,
it follows that WU = W*Q = 0and U*W* = Q*W = 0. From this, a straight-
forward calculation shows that Vis a unitary in 4 ®.% and that V*QV = U.

Using the spectral theory, V' = exp (imS) for some

SCE ={TeB QRY:T="T*|T|] £1}.
Let
D =U{Z FLU) Q1O — J)):J is a finite subset of I}.

Then it is easy to see that 9 is a *-algebra which is strongly dense in 4 ® .%.
Hence, it follows from the Kaplansky density theorem that .S lies in the strong
closureof & = {T € 9:T = T*,||T|| £ 1}. The mapping of % into ¥ ®.%
defined by 7" +— exp (iwT") is strongly continuous [11, Lemma 2]. There exists
a net {Sg:8 € T} C & such that S = strong limit S, and hence, V = exp (irS)
= strong limit exp (¢mSs). Therefore, there exists a v € T such that if we let
X = exp (irSy) then [|[(V — X)i|| < ¢/4 for € {3, V*QVz, V*Q*Vz}.
S, € &,50.S,and hence X liein % ®.% (Jo) @ 1(HUT — J,)) for some finite
subset Jo of I, and X is unitary. Let J = J, \U {k}.
Since X and V are unitary, we have, forany 7' € Z(® ® 9),

[(V*TV — X*TX)z|| = [[(X — V)(V*TV)2|| + [T [[(V — X)s]].
By substituting first Q, then Q* for 7', we obtain
[[(V*QV — X*QX)z|| < ¢/2, [[(V*Q*V — X*Q*X)z|| < ¢/2.

Let U; = X*QX. Then U, € & L) Q 1(HUT — T)), U =0 and
UrU, + UU*F =18 ® D).
Since V*QV = U, we have |[(U — Ui)z|| < ¢/2 and |[(U* — U*)z|| <
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¢/2, and since the pair (w,, U) has property (¢, A,) for Z ®.%, we have for
any T € Z %,

lw (UL T) — xw,(T'Uy)|

< |, (UiT) — w,(UT)| + |w.(UT) — xw,(TU)|

+ |xw.(TU) — xw,(TU,)|

|(Tz, (U* — Ur*)z)| + €l|T]] + =[((U — Uz, T*z)]
2¢|T-

A 1A

Definition 3.11. Suppose that & is a von Neumann algebra with a normalized
finite trace (tr). For any T" € & we let Ay be the linear functional defined on &
as follows: if S € & then A,(S) = tr(TS). If T = T* ¢ &, then, by the
spectral theory, 7" can be written as

T = J: AEQ)

with E(\) € & for all \, and the E(\) are right strongly continuous. If 0 <
6 < 1, then we define

er(0) = inf {\:tr (E(\)) = 6}.

Remark 3.12. If T" = Y7, @ NP, where Ay = N2 £ ... £ )\, (real),
Py, P,, ..., P, are orthogonal projections in & with >.7.; @ P, = 1 and
ifwelet Py + ...+ Pr1=0ifk =1, thenfork =1,...,n, e(0) = N

iftr(P1+...+Pk._1)<0§tr(_P]+...+Pk).

LeEMMA 3.13. Suppose that & is a von Neumann algebra with a normal, nor-
malized, finite trace (tr), and that S and T are self-adjoint operators in &, and
let A and e be defined relative to this trace, as in Definition 3.11. Then

fo les(8) — ex(®)[d0 < |[As — Agl]

(cf. [17, Lemma 5.5, Theorem 5.6]).

Proof. Let &Z act on the Hilbert space &. Let 4 be any self-adjoint operator
in & and let

A = ME(N)

with the E()\) right strongly continuous. For any real Ny, let N — N\o*. Then
E(\) — E(\) strongly, and hence ultra-strongly, and hence ultra-weakly.
We note that the strong and ultra-strong operator topologies coincide on
bounded subsets of Z (&) [8, p. 34]. Since the trace is normal, it is also ultra-
weakly continuous (8, p. 51, Théoréme 1] and hence tr E(\) — tr E(X\). This
fact is needed in order to make the proofs of [13, Lemmas 15.2.1, 15.2.2] valid
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for & and its trace. Therefore, for 0 < § < 1,

(3.1)  es(8) = inf {sup {(Af,f):f € PR, || f|| = 1}:P is a projection in &

with tr P = 6},
and

(3.2) J: €4(0)do = tr (4).

Let A € # and let A = WB be the polar decomposition of 4 [13, p. 142,
§ 4.4] where W is a partial isometry, B 2 0, W, B € &, and W*4 = B =
(A*4)% Then

(3.3)  [lall = sup {|a.(D)[:D € &, [|D]| =1}

[A.(W*)] = |tr (W*A)| = tr [(4*4)}]

From the spectral theory, we can write S — 1" = C; — Cy with Cy, C; € &,
Ciand Cy 2 0, and C:Cy = CoCy = 0. Let C = S + Co. Then C € &, and
it is easy to see that C =S, C=71, 2C—-S -1 = C; + C,, and
that (C; + C2)2 = (C1 — Co)2 = (S — 1) = (S—=1)*(S = 1).

If A, B¢ % with A = A* B = B*and 4 £ B then it follows from (3.1)
that for each 0 < 6 £ 1, e4(8) < ez(8). This, together with (3.2), (3.3) and
the above shows that

v I

S 1es@ - «@las < [ les®) = cc@)] + 1e60) — er0)lat

f: (2e0(6) — es(6) — er(6)dd = tr (2C — S — T)

= tr (Cl + C2)
= tr [{(S — 1)*(S — T)}?]
< [|Asg|| = [[As — Ar|].

LEmMA 3.14. Suppose that 0 £ x < 1, ¢ > 0, that J is a finite subset of I, and
that Z is a von Neumann algebra on a Hilbert space & with a trace vector t € K.
Let w = w, where z = t @ v(I) and suppose that there exists a

UeZ L) @LOU —J))

such that the pair (w, U) has property (e, A,) for B Q.. Then there exist a
finite-dimensional Hilbert space &, a finute type I factor G on &, a ¢ € ® such
that q is a trace vector for G, disjoint subsets K, and K of

Spe()) ®¢, L) @ D),

and a bijection ¢:K; — K, such that 0 ¢ Ky, > AN(\ € K;) = % and
max {[x — ¢(\)/N:N € Kif < 24e

(cf. [18, Lemmas 3.3, 3.4]).
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Proof. Let # =X L) Q1U(OUT — J)). Let E = Fy; = U*U, Fy =
U, Fio = U*, and F = Fy, = UU*. Then for 7, j =1, 2, F;; is a partial
isometry in & from F;,(& ® ) to F,;,(& ® ). Therefore, it follows from
[8, p. 25, Proposition 5 (ii)] that # =~ X » ® L where ¥ is the von Neumann
algebra spanned by {E, U, U*, F}. We will identify operators that correspond
under this isomorphism, hence, if 7" € #, then

34) T =(ETEQE)+ (UYTE®U) + (ETU ® U*) 4+ (U*TU ® F)
so that, in particular, U = E & U and
8.5) ETE+ UTU* = ETE ®1.

Forany S € XA yitiseasytoseethat US ® E) =S Q U, (SQE)U = 0,
USQ@U*)=S®F, and (S ® U¥)U =S ® E. From the hypothesis,
lw(UT) — x0(TU)| < €|T||, for all T € #. Hence, by substituting first
S ® E, then S ® U* for T, we obtain that, for any S € Xz,

3.6) [0S @U) =Sl |0 ®F) — xS ®E)| = €S|

Let 8 be the linear functional on & that is defined as follows: if 7" € &%,
then B(T) = (1 + x) ' {0(ETE ®1) + x0(U*TU ® 1)}. Since E + F = 1,
and the complex conjugate of w(7") is w(7*), we see from (3.4) and (3.6) that
for any 7" € %4,

(37)  |w(T) — B(1)] £ (1 + )R (ETE @ E) — «(ETE @ F)|
+ [o(UTE @ V)| + [o(U*T*E @ U)|
+ (1 4+ 2) e (U*TU ® F) — 20(U*TU ® E)|
< 4¢|T)|.

We shall now express our functionals w and 8 in terms of a trace (tr) on &.

For each a € I and eachi = 1,2,...,n(a), define Py; = Proj {¢ai} ® 1(Das)-
Then {P,;:7i =1, 2,..., n(a)} are orthogonal, equivalent projections in %,
each having trace equal to 1/#(e). For each a € I, let

n(a)

Ra = Z—:l @ (n(a))\ai)Pai-
Then R, = 0 and v, = R w,. Let
t@wlJ) @v( —J),

w
and
R

1(R) ®{Q@Rata € N)} @ L(OHUT — J)).

Note that z = t Qv(J) ®v(I —J). Thenw € R ® H, R € #, R =2 0, and
z = Rbw. It is straightforward to see that w is a trace vector for %, and that
for any T € %, w(T) = tr (TR) and B(T) = tr (TD,), i.e., w = Ag and
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B8 = Ap,, where, by using (3.4) and (3.5),

Dy = (14 x) {(ERE 4+ U*RU) + x(URU* + FRF)}
=1+ x)Y(ERE QE) + (URU Q E) + x(ERE ® F)
+ x(U*RU ® F)}
= (ERE + U*RU) ® {(1 4+ x)"(E + xF)}.
Let D = ERE + U*RU and let S = (1 + x)""(E @ xF). Then D €¢ X,
Sec¥,and B(T) = tr (T(D ®S)), forall T € R.
We shall now approximate D by a finite sum of projections. Since R = 0
we have D = 0, and by the spectral theory,

p= [ naEw,

with E(\) € Az, for all \. Choose a positive integer p = 1/¢ and let D; =
oo(n/PIE((n + 1)/p) — E(n/p)}. Since E(\) = E for all X = ||D||, this

is a finite sum and hence, we may write

38) D= IZ: @ ».Q:

with m € A, vy, vo, ..oy, ¥ 20, {Q1, Qo, ..., Qn} orthogonal, non-zero
projections in Z 5z with >/o1 @ Q, = Eand ||[D — Dy|| £ 1/p £
Let 81 = Ap,gson . Then, for any T € Z#,

(3.9 [B(T) = Bu(D)| = [tr [T{(D — D) @S}

= [(T{(D — D) ® Stw, w)|
WZIID = Dl {ISI] [[eel]*
el Tl

Let N = Iln(a) (@ € J). From the definition, R can be written as R =
N 311 @ piEs, where {p1, ..., py} = Sp (@(J), £ (J)), ordered so that
0=pZp=...=Zpy {Ei Es ..., Ey} are orthogonal projections in #,
and foreach7 =1,2,..., N, tr (E;) = Il 1/n(a) (@ € J) = 1/N.

If .Z is a subset of real numbers, we write Z  (.#) to denote its characteristic
function, and if £ is an interval, then we write ||#|| to denote its length.

For eachi =1,2,..., N,let &, = ((i — 1)/N, i/N]. Let f = ex. Then,
using Remark 3.12, f = >¥.\Np;Z (&,). From (3.8),

I\ 1IA

Di®S= 3 ® 1 +x) (0@ B ®Q.® A,

where {Q; ® E, Q; ® Fii,j =1, 2, ..., m} are pairwise orthogonal projec-
tions in &%, and for each 1 =1, 2, ..., m, tr (Q; ®E) = tr (EQ:E) =
tr (UEQ:EU*) = tr (Q; ® F) # 0, since Q; # 0. Using Remark 3.12, we see
that we have the following situation.

There exists a partition of (0, 1], {%€, D1 =1, 2, ..., m}, such that

https://doi.org/10.4153/CJM-1974-047-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-047-8

VON NEUMANN ALGEBRAS 501

foreachi =1,2,...,m, %,and &, are each of the form (a, b] for some
0<a<b=1land||%F| =D %0, and if we let g = ¢p,g s, then
g = iZ_l (1 +x)_11’1{55r () + =% (Z2)}.

We wish to compare f and g, and, as a first step, we will begin to subdivide
the €, 9, and ¢, in order to obtain common end points.
Fori=1,2,...,m,letl; = |[|% ] = ||D|. Thenl, > 0 and Y7/, = 1.
Let {us:i = 0,1, ..., 2m} be the end points of the intervals
{%“91:1 = 1,2,...,m}
sothat 0 = uy < uy < ... < thop1 < Uz, = 1. Let
6 = min {20, ¢/(1 + 2 XiLwy)}.

Then 6 > 0. Foreach: =1,2,...,m — 1, let ; be a rational number such
that », > O and |r; — ;] < 8/(2m?). Then

(Zia're) — (ZEa')| < 8/ @m) < L.
Hence,

Tl < (TR 4 e = 4
Let7, =% — (X"3'%,). Then r, > 0 and

= dal = b= 2 re— = 3 1] <5/ Cm).

We wish to define a partition of (0, 11, {€ s, Duii = 1,2, ..., m}, such
that foreach ¢ =1, 2, ..., m, €, and & ;1 are each of the form (a, b] for
some 0 < a < b =1, q, b rational numbers, and [|€ || = || ]| =7, > 0,
and the relative ordering of the {% 1, Duti =1, 2, ..., m} is the same as
that of the {€, D1 =1,2,...,m}. The end points of the intervals
(€ay, Dui=1,2, ..., m} will be {22 =0, 1, ..., 2m} so that 0 =
d0<d1< <d2m—1 <d2m=1

Let dy = 0. Suppose that 2 € {0, 1, ..., 2m — 1} and that do, d,, . . ., d,
have been chosen. Then (u;, #z11] = %, (or ;) for some i € {1,2, ..., m}.

Define dyy1 = di + 7, and define € ;1 (respectively, D 1) = (dy, dryi]. It is
clear that ds, = 2 > i=ir; = 1, and that our intervals and end points exist
as required.

For each s =1,2,...,2m,d; = X r; the sum taken over some set of j's
in which each 7; may occur twice, and #; = >I;, the sum taken over the same
set of j's. Hence |d; — u;| £ 2 X 7lr; — 1)) <.

If @ < band ¢ < d then it is easy to see that

J: |2 ((a,6])(0) — Z ((c,d])(©)]d8 < |a — ¢| + [b — d].

Since for each ¢ = 1, 2, ..., m, there exists a j € {1, 2, ..., 2m} such that
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€= (w1, u;) and €51 = (d,_1, d;], we have that

J; |Z (€)0) — 2 (€a)0)]do < Jusy — dja| + |u; — dy < 28,

and similarly for Z; and 9 ;.
Leth = P 1+ 2)" %l Z (€n) +xZ (Z4)}. Then,

(310) [ 160 — h@las

m

<3+, fo (2 (F00) — F (F )06
+ x| 2 (2)0) — Z (Dn)0)|}do
< }_:‘,1 A 4 x) ", (26 + 20x)

<e

Foreachi =1,2,...,2m,d,is rational and so d, = a;/b; for a;, b; € N.
Let b = least common multiple of {by, by, ..., ba,}. Then, b € A and there
exist ¢1, Ca, . . . , Com €A so that d; = ¢;/(20N).

We now subdivide the % ;; and &, into subintervals of length 1/(20N).
Hence, there exists a partition of (0, 1], {6 w, P4 = 1,2,...,bN}, such that
each € ;2 and 9 4, is of the form ((¢ — 1)/(20N), k/(2bN)] for some k € N,
and there exists a partition of {1, 2, ..., 0N}, {L(G):i = 1,2, ..., m}, such
that foreachz =1,2,...,m,

Cu=\U%. (€LG),
9@1 = U 93’2 (] € L("'))

Foreachj =1, 2,..., bN, there exists exactly one z € {1, 2, ..., m} such

that j € L(z), and we define ¢; = v;. Hence,

3.11) &= g;l 1+ X (€ ) + X (D))

For each 7 = 1, ., N, we define

2,..
L@#,1) ={j€{1,2,...,bN}:CnC &}
and

LG, 2) =1{j€{l,2,...,bN}: D C &

Then, {L(#, 1):2=1,2,..., N} and {L(, 2):14=1,2,..., N} are each a
partition of {1, 2, ..., 5N}, and if card stands for cardinality, then,

(3.12) card L(¢,1) + card L(z,2) = 20.

For each j = 1, 2, ..., bN, there exists exactly one 7 and one k such that
j€ L@ 1) and j € L(k, 2), and we define X\;; = p, and ;2 = p;. Hence,

(3.13) f= i;vl {N}\;]% (%ﬂ)—l‘N)\jzﬁf (‘97-2)}.
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For any o, A;, A2 2 0, let @ = min {A, N\o}, let 4 = max {\;, N}, and let
Q= |N\ — (1 4 %) '] 4+ |[NN2s — x(1 4+ x)~lo|. Then, since 0 < x < 1,

Q = [Nehy — x(1 4 )7l 4+ |[NNs — x(1 + x)"o|

> Nl — A
= Njx4d — qf
= NAl|x — a/4|,
if we define 0/0 = 0.
Forj=1,2,...,bN,let

Mj1 = max {)\jly )\j2}/(2b); Kg2 = min {)\jly N2}/ (2D).
Then, using (3.11), (3.13), and the above, we obtain

319 [ 150 - h6)lds

= 2 {IMa—a+ x)7'o,l 4+ [NN;2 — x(1 4 x)7"o,} / (20N)

j=
N

> Zl pal% — wp/ual.
=
Let ®; and O, be Hilbert spaces with orthonormal bases {e;:7 = 1,2, ..., 2b}
and { f;i72 =1, 2, ..., 2b}, respectively. Let ¢ = S (2b) e, ® fi, and let

G = Z#(®;) ® 1(®,). Then g is a trace vector for Z. Let @ = ¢; ® ©,.
The elements of Sp(@(J) ® ¢, ¥ (J) ® ¥) are identical to those obtained
by taking the elements of Sp((J), ¥ (J)) = {p1, - - ., pn}, multiplying each
one by 1/(2b) and repeating it 2b times. Using (3.12) and the definitions of
Nii» N2, 1 and pje, this set is the same as
{Nj1/(20), N2/ (20):7 = 1,2,...,bN} = {pun, ueij = 1,2,...,bN}.
Using Lemma 3.13 together with (3.7), (3.9), (3.10), and (3.14), we obtain

N

(3.15) X palr — ps/ual

< J, 176 - h@as
< J15® —c@lao + [ 126) — (o) las

< ﬁ ’63(0) bl €D1®S(0)!d6 + €

< [|[Ar — Ap@s|| + ¢

= [lo— Bi|| +e
<l =B+ [IB= 81l + ¢
< Be.
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Foreachj = 1,2,...,bN,leta; = |x — uyo/pj|. Let
L={jec{l,2 ...,bN}:pu = 0},
let
| Li=1{j€Lia, = 24,
and let
Ly = {j € Lia, < 24.
Then, from (3.15),

Dun(G € L) < (24 D2 wpa; (G € L)

bN
< (246)—1 21 K1Q;
j=

Bl

<
J

Since p;; = ppeforeachj =1,2,..., bN, we have
J 7

{3 ) — 1 wn Ger)

=1

{3 n+um} — 2

=1

He(N®@ql* =1

Il

Z #jl(j € L2)

\Y

N

Let K; = {p:j € Ly} and let K, = {u;2:j € Lo}. Define a mapping
¢: K, = Ksby ¢(usn) = ppforj € L. Then ¢ is a bijection. Hence, K1, K, and
¢ satisfy the requirements of the statement of the lemma.

We now come to the key theorem of the paper.

THEOREM 3.15. Suppose that x = 0, that & is a von Neumann algebra with a
trace vector, and that &/ Q. has property A,. Then there exists a countable
subset I, of I such that x € r.(L (1,) Q@ X,).

Proof. Suppose first that 0 < x < 1. Let &/ act on the Hilbert space &
and let t, € f be a trace vector for &. We will prove, by induction, the
following: there exists a sequence {J,:n € A} of pairwise disjoint, finite
subsets of I, and for each n € A/, there exist a finite-dimensional Hilbert
space ©,, a finite type I factor 4, on ®,, a g, € @, such that ¢, is a trace vector
for ¥, disjoint subsets K,; and K, of Sp(@(J,) ® ¢u, L (J) ® ¥,) and a
bijection ¢,:K,1 — K,» such that 0¢ K,;, > AN\ € K,;) =%, and
max {|x — ¢,(N\)/A:N € K} < 1/m.

Suppose that # € A4 and that the J;, . . . , J,_; have been chosen as required.
Let K = UjZi/, (K isempty whenn = 1). Letw = w, withz = t) @ w(K) ®

https://doi.org/10.4153/CJM-1974-047-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1974-047-8

VON NEUMANN ALGEBRAS 505

v(I — K). Then wis a normal PLFon% ®.#, and by hypothesis, there exists
a Uy € ®.5 such that the pair (w, U,o) has property ((48n)~1, A,) for
& @Y. We apply Lemma 3.10 with ¢ = (48n)"!, & = o R .¥(K),
S (I — K) in place of ¥ and U = U,. Thus, there exist a finite subset J, of
I—Kand a U, €& ¥ K) L, @ 1(H(I — K — J,)) such that
the pair (w, U,) has property ((24n)~!, A,) for & ®.%. We now apply
Lemma 3.14 with ¢ = (24n)~!, & and .¥ as above, J = J,, t = t, ® w(K),
and U = U,,. Therefore, there exist &,, Z,, ¢,, K1, Kp2, and ¢, as required.
Foreach n € A | let I, = J,\U {n}. Let

G =Q 6, %, ginecAH).

It is straightforward to show that & g, is a trace vector for ¥, and thus that &4
is a hyperfinite, finite factor on a separable Hilbert space. Similarly, &%, is a
hyperfinite IT; factor on a separable Hilbert space, and so, ¥ ® #, >~ X,
[14, p. 760, Theorem XI and p. 778, Theorem XII].

Let I, = Us=i/J,. [tis clear that (Z,, K1, K2, ¢uin € A) is an x-sequence
for ¥ (I,) ® ¥, which is a countable tensor product of finite type I factors.
Hence, by Theorem 3.8, x € 7. (¥ () ® 9) Cr (¥ U,) Y ® #,) =
7o(F (1) @ X1).

If x > 1, then by Corollary 3.3 % ®.% has property A;,. By the above,
x~! and hence x lie in 7 (¥ (I,) ® %.), for some countable subset I_ of I.

4. The main result.

THEOREM 4.1. Suppose that o/ is a von Neumann algebra that is not purely
infinite, and that M = Q (Day Moy 22 € J) with M, a finite type I factor on
Do for each a € J.

(a) Suppose that x = 0 and that &/ QM has property A,. There then exists a
countable subset J(x) of J such that x € ro (M (J(x)) @ Ry Q X,).

(b) Suppose that 0, 1 € ro(M ). Then there exists a countable subset J, of J
such that Jy is independent of &, and

(A QM) =N(A QM) =ANA QM) =1, (M)
=AN(M) =ANM) =r1,(M(0) = N (M{o)) = A(A)).
LEMMA 4.2. Suppose that x = 0, that I is an index set, and that for each

i € I, ;is a von Neumann algebra. Let &/ = Y, @ ; (i € I). Then L has
property A, if and only if for each i € I,.9 ; has property A,.

Proof. Suppose that.2/ has property A,. Choose any j € I, any ¢ > 0, and
any normal PLF w on.2/ ;. Let p be the normal PLF on %/ defined as follows:
fTed, then T = X @T, with T; € &, for each 7 € I, and let p(T) =
w(T;). Then, there exists a U € &/ such that the pair (p, U) has property
(e, Ay) for . U = X @ U, with U, € &7, for each 7 € I. It is clear that
the pair (w, U;) has property (¢, A,) for.2Z ;. Hence, .2/ ; has property A,.
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Conversely, suppose that each &7; has property A,. Choose any ¢ > 0 and
any normal PLF « on.%. For each 7 € I, we may consider &/ ; to be a subset
of &7, and we define w; to be the restriction of w to %/ ;. Then w; is a normal
PLFon, f T €/, then T = Y. @ T, with T, € &7, for each ¢ € I, and
w(T) = X wi(T;). In particular, w(1) = > w;(1), and hence, since ||w,|| =
w;(1), at most a countable number of the w; are non-zero, which, we may
assume, occurs only for i € A3 & A N I. For each k € A/, there exists a
U, € &/, such that the pair (w;, U) has property (e27%, A,) for o7,. Let
U= > DU, (k€cAN)). Then it is easy to show that the pair (w, U) has
property (e, A,) for 27. Hence, &/ has property A,.

Remark. The above proof can be modified easily to show that .2/ has property
A, if and only if for each 7 € I,.97, has property A,’.

LeEMMA 4.3. Suppose that o/ is a countably decomposable, finite von Newmann
algebra. Then there exists a von Neumann algebra 1 with a trace vector, such

th(ltuQ/ %%1

Proof. Suppose that &7 acts on the Hilbert space . Then there exists a
faithful, normal, normalized, finite trace (tr) on.%/ [8, p. 99, Proposition 9(ii)],
and there exists a sequence x1, X3, ... € & such that > oi||x,||? < o and
for each T € o, tr (') = Yw1(Tx,, x,) [8, p. 51, Théoréme 1]. Let £ be
a Hilbert space with orthonormal basis {e,:n € A }. Let & = & ® s, let
= @1(K:),and lett = 32 (¢, ®e,). Thent € R, tis a trace vector
for.o7, and &/ =~.o/,.

LeMMA 4.4. Suppose that &/ is a von Newmann algebra that is not purely
infinite. Then & = (1 @ X (R)) ® D where 1 is a von Neumann algebra
with a trace vector, 8 is a Hilbert space, and & is a (possibly zero) von Neumann
algebra.

Proof. There exist ei, ez, e; orthogonal, central projections in .2/ such that
1 =¢ @es @D ey, e; is finite, ey is properly infinite and semi-finite, and e; is
purely infinite. By hypothesis, e; 5 1, i.e., e; @ e2 #= 0.

We claim that there exists a non-zero, central projection e in %/, a finite
von Neumann algebra %, and a Hilbert space & such that%/, >~ G ® Z (R).
If e; # 0, then this follows if we let e = ¢, let ¥ =.97,, and let & be a one-
dimensional Hilbert space. If e; 5 0, then this follows from [8, p. 242, Exercice
5(a), (d)]. It follows from [8, p. 99, Proposition 9(iii)] that there exists a non-
zero, central projection p in & such that ¥, is finite and countably decompos-
able. By Lemma 4.3, there exists a von Neumann algebra %7, with a trace
vector such that ¥, =~.o7,. The result now follows if we let

D = (91, @FR)) ©H ..

THEOREM 4.5. Suppose that & is a von Neumann algebra.
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(a) Suppose that x = 0, that & is finite, and that & has property A,. Then
x = 1.

(b) The following are equivalent: (i) & is properly infinite, (ii) 0 € r_ (),
(iii) 0 € A (&), and (iv) 0 € A ().

(c) Suppose that x > 0, x 5= 1 and that has property A,. Then S/ is purely
infinite.

Proof. (a). Let w be a finite, normalized, normal trace on /. Choose any
¢ > 0. Then there exists a U € &/ such that U*U + UU* = 1 and |o(UT) —
xw(TU)| £ (¢/2)||T]|, for any T € &Z. Hence, w(U*U) = «(UU*) = 1, and
letting 7 = U*, we have that |1 — x| < e. Thus, x = 1.

(b). 4) = (i): It follows from [8, p. 25, Proposition 5(ii) and p. 298,
Corollaire 2] that there exists a projection e in &7, equivalent to 1, such that
A =2A, QB ((N)) = @Ay Hence, 0 ¢ r (). (ii) = (i), and
(iii) = (iv) by Corollary 3.6. (iv) = (i): There exist central projections e and
fin.o/ such that 1 = ¢ @, e is finite, and f is properly infinite. Then &/ =
L, @A, If e # 0, then, by Lemma 4.2,.97, has property Ao. However, this
contradicts part (a), and hence, e = 0, f = 1, and %/ is properly infinite.

(c). Assume that &7 is not purely infinite. Apply Theorem 4.1(a) with
J = {1} and #; a type I, factor. Then x € 7, (%Z¢ @ #1) = So1. This is a
contradiction and hence, %7 is purely infinite.

Remark. Part (c) and Theorem 3.5 show that for x > 0 and x # 1, %, is
a type III factor. This was first shown by von Neumann [16] and Pukénszky
[19]. Part (c) will not be used in the following.

Proof of Theorem 4.1. We may assume that J is disjoint from A4, For each
a € J, M,is a type I,q factor on 9, for some n(a) € A. Hence, there exist
Hilbert spaces 9.1 and &, with orthonormal bases {¢.;:2 = 1,2,...,n(x)} and
{xaii? € N,}, respectively, for some index set N,, a p(a) € A with p(a) <
min {n(a), card N}, and real numbers Ag1 = M2 = ... = g > O such that
Ou = Dot @ Koy Mo = # (Ha1) ® 1(Ra), {1,2, ..., p(@)} S Na, and z, =

P Nat)i0as @ Xas. Let $a2 be a Hilbert space of dimension #(e) with
orthonormal basis {¥,;:2 = 1,2, ..., n(@)}, let \a; = 0if p(a) <17 £ n(a),
and let

n(a)

Va = Z—l (Aai)%ﬁl’ai@ \I”ai-
For any T € % (Da1),

4.1) (T ®1(8a))2ar 22) = (T' @ 1(Da2))Vas Va)-
By Lemma 4.4, o =~ (&, @ Z(R)) ® D where &, is a von Neumann

algebra with a trace vector and & is a Hilbert space. Let I; be an index set
disjoint from J and A such that card I; = dim . Let .4, be a countably
infinite index set disjoint from J, I}, and A/, and let I = J\U I, \U A4/,. For
each £ € I; U N let ;1 and H;» be two-dimensional Hilbert spaces and
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choose v, € 1 ® Hie such that Sp (v, Z (D) ® 1(Hi2)) = {1, 0}. Let
S =R (D1 ® Dazy B (Da1) @ 1(Da2), va:a € I). Then, using (4.1) and [5,
Corollary 3.5], we have that if K is any subset of J then . (K) =4 (K).
L) =X (R) and L (N) = H, [4, Proposition 5.3]. Hence, ¥ =
M QLB (R) ® Ay Also, ¥ satisfies the conditions imposed on the ¥ of
Theorem 3.15. We are now prepared to prove (a) and (b).

(a) We are assuming that. &/ ®.# has property A,.

A QM= (A, QBR) M) D (D QM ),

and hence, by Lemma 4.2,.%7; ® % (R) ®-# has property A,. If Z () QA
is finite, then so is %/, @ Z ({) ®-# , and by Theorem 4.5 (a), x = 1, and
hence, x = 1 € r,(#1) C r (M (J(x)) @ Xy @ X,) for any subset J(x) of
J. If Z(®) ®-A is infinite, then by Theorem 4.5 (b), 0 € 7 (Z(]) R-A )

and hence,
A RQBR) QM=2A, QZR) QMRIRy =A, Y

and so %/, ®.% has property A,. Therefore, by Theorem 3.15, there exists a
countable subset I(x) of I such that x € 7, (L[ (x)) @ #,). Let J(x) =
I(x)N\J,and let I, = (I(x) N\ I;) \J A1 Then I(x) C J(x) U I, J(x) is
countable, & (J(x)) =4 (J(x)), and ¥ (I,) = A,. Therefore,

x € ro(AM T (%) @Ky @A).

(b) We are assuming that 0, 1 € 7, (.# ). We will first show that there
exists a countable subset K, of J such that 0, 1 € 7, (. (K,)).

Let K; = {a € Jin(a) = 2}. Since n(e) = 1 if and only if A, = 1(D.),
it follows that# ~_# (K,) =~.%(K,). K, is infinite, for otherwise,.# would
be a finite type I factor and r,(-# ) would be empty.

Assume that for every countably infinite subset K of K; that0 ¢ (. (K)).
By [3, Lemma 3.8], 7., (¥ (K)) is non-empty. Since 0, 1 € r_(Z,) for any x
with x > 0, x 5 1, it follows that 7., (¥ (K)) = {1}. Therefore, ¥ (K) =~ %,
[3, Theorem 9.1}, a I, factor, and hence, by [23, Theorem],

2 {Z(_:i ()™ — Aaﬁ)z} <w («€K).

a

Since this is true for every countably infinite subset K of K, it follows that
the above sum taken over a € K is finite. Therefore, by [4, Proposition 5.4],
Y (K,) is a II, factor, and hence, 0 ¢ 7., (¥ (K,)) = r,(-# ). This is a con-
tradiction, and so there exists a countable subset K, of J such that
0c¢ Tco(y(Kz)).

Assume that for every countably infinite subset K of K; that1 ¢ 7, (. (K)).
Then by [3, Lemma 3.8], 2|1 — M| (@ € K) < . Hence,

le - )\all (a E Kl) < w,
and by [4, Proposition 5.3], ¥ (K,) is a type I factor. Therefore, 1 ¢
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1o (S (K1) = r (A ). This is a contradiction, and so there exists a countable
subset K3 of J such that 1 € 7 (.%(K3)). Therefore, 0, 1 € r (M (K,)) if
K() = K-z U K3.

By Corollary 3.6, 7. (& QM) C AN (L QM) C AL QM ). Suppose
thatx € A(&Z @A ). By part (a) above, there exists a countable subset J (x)
of J such that x € 7o (M (J(x)) @ By R X1). Let K(x) = J(x) U K,. Then
X € ro(MEER) QR0 QK1) = ro(M(K(x))) CSro(M) S r (L QM).

This shows that 7 (& @A) = N (A QM) = ANA QM) = v (M).
Letting &/ be a type I, factor, we have that r, (. ) = A (M) = A(M ). If
Jois any subset of J with Jy 2 K, then 0,1 € »_ (A (J,)) and A (J,) satisfies
the conditions of Theorem 4.1(b). Therefore, 7, (M (Jy)) = A (M (Jy)) =
A(M (Jy)). Thus, it remains to show that there exists a countable subset J, of
J such that Jy D K¢ and v (M ) = 7, (M (Jy)).

There exists a countable set of numbers {v,:%n € A4} contained in r_ (4 ),
and whose closure contains 7, (_# ). For eachn € N, v, € r (M) C A(M ).
Thus, by the above (with.% a type I; factor), there exists a countable subset
K (y,) of J such that K(y,) D Kyand v, € 7 (A4 (K(v,))). Let

Jo = UK (3,)-
Then, each vy, € 7, (. (J,)) which is closed by [3, Lemma 3.7, Theorem 5.9].
Therefore, ‘

rw(AM ) C closure {y,in € N} C r (M (Jo)) C 1o (M ).

Remark. Both parts of Theorem 4.1 fail if &7 is purely infinite, and part (b)
fails if 0 ¢ (A ) ofif 1 ¢ r,(# ) as evidenced by the following: let
0 <x < 1;then Z, ® Z, has property A, for every y = 0, but

7@(%95 ®‘%0 ®‘%l) = Sx #Soo;roo(%oo ®‘%I) =Soo # rm(‘%z) =Sa:;
To(Ro @ K1) = Sot # 1o(#1) = S1; 1(B1 @ R0) = S # 1(Ho)
=So.

COROLLARY 4.6. 7 (M ) is closed for M an arbitrary tensor product of finite
type I factors.

5. Non-hyperfinite factors.

Definition 5.1. A von Neumann algebra .27 is said to be hyperfinite if there
exists a sequence {&7,:n € A4} of von Neumann sub-algebras of &/ such that
for each n € &, ., is finite-dimensional as a linear space and &, C . .1,
and the von Neumann algebra generated by {&7,:n € A} is /.

Definition 5.2. A von Neumann algebra & on a Hilbert space § is said to
have property AP if there exists a linear projection of norm one from % (D)
onto %/’ (the commutant of .&).

Let &, be the free group with two generators, and let .27 ($;) be the von
Neumann algebra generated by the left regular representation of ®,. .27 (®;)
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acts on the separable Hilbert space Il5(®,), and both .o ($,) and its com-
mutant are type I, factors [14, Lemmas 5.3.4, 5.3.5, 6.2.2].

LeMMA 5.3. Suppose that X is any von Newmann algebra. Then S (®y) @ X
1s non-hyperfinite.

Proof. Suppose that .o (®;) @ # is hyperfinite. Then it has property AP
[22, pp. 168-171]. Therefore, & (®;) has property AP [9, Theorem 3.2], i.e.,
there exists a linear projection of norm one, ¢, from % (I5(®;)) onto &7 (®,)’.
Therefore, for any 7" ¢ & (Io($2)) and any 4 € A (®,), o(AT) = Ao (1),
e(TA) = e(1)A, o(T*) = o(T)*, and if T = 0 then ¢(7) = 0 [10, p. 330,
proof of Lemma 8, p. 331 (bottom); 24, Theorem 1]. From this, it follows that
®, admits a finite, non-zero, non-negative, finitely additive, right invariant
measure [22, pp. 171, 172, proof of Lemma 3]; however, this is impossible
[22, p. 172 (bottom)].

Definition 5.4. For any von Neumann algebra.o/, define
() =0=2x 2 1A, 2R, @A}.

This was defined by Araki and Woods [3, Definition 11.1] where they used
it to distinguish factors in the .Sy; class.

THEOREM 5.5. Suppose that for i = 1, 2,9 ; is a von Neumann algebra that is
not purely infinite, M ; is a lensor product of finite type I factors indexed by a
set Ty, and v (M) 2D {0, 1}. Suppose that either

(a) roo(‘%l) #= 7’oo(‘%Z)y or

(b) p(AMy) %= p(M>) and Ji and J» are countable.

Then&/l ®%} $M2 ® e/ﬂz.

Proof. (a) By Theorem 4.1 (b),

To( A1 @ My) = 1,( M) # 1,(Ms) = 1,(A s QMs).

(b) Suppose, if possible, that &/, ® #; =~ . Q M, Choose any
x € p(M). Then M, @ K, = X,. Hence, using Theorem 4.1 (b),
Yo ( My @ Ry) = 1.(A s Q My @R,) = 1 (A Q M1 @ R.)
= w(%l ®%1) = 7’00(%1) = Sz.
Therefore, My @ X, = X, [3, Theorem 9.1], and x € p(.#>). By symmetry,
we have that p(.#,) = p(_#,), a contradiction.

THEOREM 5.6. (@) { (&) @ X.:0 < x < 1} is a continuum of pairwise
non-isomorphic, non-hyperfinite, type Il factors on a separable Hilbert space.
7o (A (®2) @ K.) = S

(b) There exists a continuum of pairwise non-isomorphic, non-hyperfiniie,
type I11 factors on a separable Hilbert space, each one having its ., set equal to So.

Proof. (a) Foranyx with 0 < x < 1,.97 (®;) @ %, is a non-hyperfinite type I1]
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factor (Theorems 3.5, 4.5 (c) and Lemma 5.3), and 7, (& ($:) ® #,) =
7o (#,) = S; (Theorem 4.1 (b)). The result now follows from Theorem 5.5 (a).

(b) Araki and Woods have constructed a family { .%;:0 < & < 1} of type
111 factors on a separable Hilbert space such that for each & € [0, 1], %, is a
tensor product of type I, factors, and hence is hyperfinite,

rm(yk) = rw(yk ®yk) = So1,

and for any j, k € [0, 1], ¢ * € r (¥; %) |3, Lemma 10.1, proof of
Theorem 10.10].

We claim that the family { & (®:) ®.%::0 < k < 1} satisfies the condi-
tions of this theorem. Using Theorem 4.1 (b), we see that for any & € [0, 1],
A (®2) ®.%is non-hyperfinite (Lemma 5.3), 7., (& (®:) ®.FL%) = r (Fy) =
Sol, and T’OO(VQ{(q:‘z) ®yk ®M(q>2) ®yk) = Tm(yk ®yk) = 501. If j,
k € [0, 1] with j # k, then ¢/=* ¢ S, but

e Fer (Y ) < Too(&/(q’?) R, A (P2) ® Fx)-
Therefore, & (®;) ®.F; E A (®;) ®.Fs.
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