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This work introduces a formulation of resolvent analysis that uses wavelet transforms
rather than Fourier transforms in time. Under this formulation, resolvent analysis may
extend to turbulent flows with non-stationary mean states. The optimal resolvent modes are
augmented with a temporal dimension and are able to encode the time-transient trajectories
that are most amplified by the linearised Navier–Stokes equations. We first show that
the wavelet- and Fourier-based resolvent analyses give equivalent results for statistically
stationary flow by applying them to turbulent channel flow. We then use wavelet-based
resolvent analysis to study the transient growth mechanism in the near-wall region of a
turbulent channel flow by windowing the resolvent operator in time and frequency. The
computed principal resolvent response mode, i.e. the velocity field optimally amplified by
the linearised dynamics of the flow, exhibits characteristics of the Orr mechanism, which
supports the claim that this mechanism is key to linear transient energy growth. We also
apply this method to non-stationary parallel shear flows such as an oscillating boundary
layer, and three-dimensional channel flow in which a sudden spanwise pressure gradient
perturbs a fully developed turbulent channel flow. In both cases, wavelet-based resolvent
analysis yields modes that are sensitive to the changing mean profile of the flow. For the
oscillating boundary layer, wavelet-based resolvent analysis produces oscillating principal
forcing and response modes that peak at times and wall-normal locations associated with
high turbulent activity. For the turbulent channel flow under a sudden spanwise pressure
gradient, the resolvent modes gradually realign themselves with the mean flow as the latter
deviates. Wavelet-based resolvent analysis thus captures the changes in the transient linear
growth mechanisms caused by a time-varying turbulent mean profile.
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1. Introduction

Though turbulent flows are highly chaotic systems, they are very often organised into
large-scale energetic structures (Jiménez 2018). These coherent structures have been
observed for wall-bounded flows, jet flows and flows over wings or other bodies. Since
coherent structures are important vehicles of mass and energy, they constitute a popular
research topic in a variety of fields including climate sciences and aerodynamics.

In this paper, we focus on the coherent structures present in near-wall turbulence.
We note the ubiquity of streamwise streaks near the wall, i.e. regions of low and high
velocity elongated in the streamwise direction whose shape, life-cycle and interactions
with the outer flow are studied extensively through experiments and numerical simulations
(Klebanoff, Tidstrom & Sargent 1962; Bakewell & Lumley 1967; Kline et al. 1967;
Kim, Kline & Reynolds 1971; Blackwelder & Eckelmann 1979; Smith & Metzler 1983;
Johansson, Her & Haritonidis 1987; Robinson 1991; Adrian 2007; Smits, McKeon
& Marusic 2011). These streaks are often described as undergoing a quasiperiodic
cycle of formation and breakdown, the drivers of which many works are dedicated to
understanding (Landahl 1980; Butler & Farrell 1993; Hamilton, Kim & Waleffe 1995;
Panton 2001; Chernyshenko & Baig 2005; Del Alamo & Jimenez 2006; Jiménez 2018).
The structure of near-wall turbulence has inspired the pursuit of lower-dimensional
models, wherein high-dimensional flows are described by the dynamical evolution of large
spatial structures. Often, these structures are extracted from spatiotemporal correlations
exhibited in experimental or numerical data (Lumley 1967, 2007; Berkooz, Holmes &
Lumley 1993; Borée 2003; Mezić 2013; Abreu et al. 2020; Tissot, Cavalieri & Mémin
2021).

In contrast to data-driven approaches, many works seek to understand the generation
and sustenance of coherent structures through the equations of motion. In the context of
wall-bounded turbulence, despite the central role of nonlinearities, linear mechanisms have
been proposed as sources of highly energetic large scale coherent structures (Panton 2001;
Chernyshenko & Baig 2005; Del Alamo & Jimenez 2006; Jiménez 2013; Lozano-Durán
et al. 2021). One example is the Orr mechanism (Orr 1907; Jiménez 2013), in which the
mean shear profile near the wall rotates wall-normal velocity perturbations forward in
the streamwise direction and stretches vertical scales; to preserve continuity, wall-normal
fluxes and velocity perturbations are intensified. Another linear mechanism that has been
studied as a possible energy source for coherent velocity perturbations is lift-up (Hwang
& Cossu 2010), which occurs when wall-normal velocity perturbations transport fluid
initially near the wall to regions farther away from the wall, allowing it to be accelerated
by the faster mean flow away from the wall. The key role of linear mechanisms in
near-wall turbulence has been emphasised in works like Del Alamo & Jimenez (2006)
and Pujals et al. (2009), which show that, even after removing the nonlinear term from
the perturbation equations, linear transient growth via the mean shear generates the
dominant (streaky) structures in wall-bounded turbulence. The numerical experiments
in Lozano-Durán et al. (2021) show that turbulence can be sustained in the minimal
flow unit even without the nonlinear feedback between the velocity fluctuations and
the mean velocity profile. The only exception is when the authors suppress either the
aforementioned Orr-mechanism or the push-over mechanism, i.e. the momentum transfer
from the spanwise mean shear into the streamwise velocity perturbation, suggesting the
prominence of linear transient growth in energising near-wall streaks.

Given these results, it is not entirely surprising that resolvent analysis has been fruitful
in the analysis and modelling of near-wall turbulence, despite relying on a linearisation of
the Navier–Stokes equations (Butler & Farrell 1993; Farrell & Ioannou 1998; Jovanović
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& Bamieh 2005; McKeon & Sharma 2010). In resolvent analysis, the Navier–Stokes
equations are written as a linear dynamical system for velocity and pressure fluctuations
about a mean profile. The nonlinear term, along with any additional exogenous force on
the system, is represented as a forcing term acting on this system. The resolvent operator
refers to the linear map between the forcing inputs and the flow states. In this linearised
setting, without computing the nonlinear terms, we can solve for the input (or forcing)
terms that would generate the output trajectories (or responses) with the largest kinetic
energy (Jovanović & Bamieh 2005). This is done in practice by taking a singular value
decomposition (SVD) of the discretised resolvent operator: the first right singular mode
reveals the inputs to which the linearised equations of motion are most sensitive; the first
left singular mode reveals the most amplified outputs; the first singular value squared
yields the kinetic energy amplification. The assumption underpinning this approach is
that the optimal structures computed by resolvent analysis will be preferentially amplified
by the linear dynamics of the flow, believed to be prominent in near-wall turbulence
as discussed previously, and will thus manifest as sustained coherent structures. In the
context of wall-bounded turbulent flows, resolvent analysis is successful at identifying
streamwise rolls as the most perturbing structures, and streamwise streaks as the most
amplified structures (McKeon & Sharma 2010; Bae, Lozano-Durán & McKeon 2021).

Since resolvent response modes are expected to figure prominently in the flow, a linear
combination of the leading response modes have been used to construct low-dimensional
approximations of turbulent flows, including channel and pipe flow (Moarref et al. 2013;
Gómez et al. 2016; Beneddine et al. 2017; Illingworth, Monty & Marusic 2018; Bae,
Dawson & McKeon 2020a,b; Ahmed et al. 2021; Arun, Bae & McKeon 2023). This is
especially tractable when the singular values decay quickly, and the resolvent operator
can be represented by a heavily truncated SVD. Other works have also explored the
use of resolvent modes in estimating and predicting flows with sparse measurements.
Specifically, a low-rank approximation of the resolvent operator can be used to model
correlations between different spatial locations of the flow (Martini et al. 2020; Towne,
Lozano-Durán & Yang 2020). Moreover, the dynamical relevance of resolvent modes in
controlling the fully turbulent flow has been probed (Luhar, Sharma & McKeon 2014; Yeh
& Taira 2019; Bae et al. 2021). We highlight the work of Bae et al. (2021), who demonstrate
the effectiveness of resolvent modes in transferring energy to coherent near-wall turbulent
perturbations within a turbulent minimal channel: by subtracting out the contribution
of the leading resolvent forcing mode from the nonlinear term at every time step, the
streak-regeneration process is interrupted and buffer layer turbulence is suppressed.

Traditionally, resolvent analysis has been applied to systems that are homogeneous in
two-spatial dimensions and time, but the framework has been extended to explore the
influence of spatial variations in at least one additional dimension. This ‘global’ resolvent
analysis has produced promising results in the study of steady flows over airfoils (Yeh &
Taira 2019; Kojima et al. 2020; Ribeiro, Yeh & Taira 2020, 2023) and jets (Pickering et al.
2020; Towne et al. 2022). The main obstacle that this method faces is its large memory and
computation costs, which can be mitigated with the use of randomised methods (Ribeiro
et al. 2020) or matrix-free time stepping algorithms (Martini et al. 2021; Towne et al.
2022; Farghadan et al. 2024).

Despite these extensions, the formulation of the resolvent operator relies on
Fourier-transforming the linearised Navier–Stokes equations in time. This restricts its
formulation to statistically steady and quasiperiodic flows (Padovan, Otto & Rowley 2020).
Moreover, the resulting SVD modes will be Fourier modes in time, and cannot represent
temporally local effects. However, the linear energy amplification mechanisms that are
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important to near-wall turbulence, namely the Orr-mechanism, are transient processes.
Accounting for transient effects is also important in estimation and control problems. In
Martini et al. (2020), time-colouring is employed to improve their estimates, and in Yeh
& Taira (2019), which studies flow separation over an airfoil, the resolvent operator is
modified to select forcing and responses modes acting on a time scale of interest using
the exponential discounting method introduced in Jovanovic (2004). Be it for analysis,
estimation or control, resolvent modes capable of encoding time are a potentially valuable
extension.

In this work, we propose using a wavelet transform (Meyer 1992) in time to construct
the resolvent operator so that the SVD modes for the newly formulated resolvent operator
are localised in time. Wavelets are indeed functions (in time, for this application) whose
mass is concentrated in a subset of their domain. This allows a projection onto wavelets
to preferentially capture information centred in a time interval. Each wavelet onto which
a function is projected also captures a subset of the Fourier spectrum. Due to their
properties, wavelets have been used extensively in fluid mechanics research, particularly
spatial wavelets which allow for the analysis of select length scales concentrated in a
region of interest (Meneveau 1991; Lewalle 1993). Temporal wavelet transforms have
also been used to decompose turbulent flows. In Barthel & Sapsis (2023), the authors
show that high-frequency phenomena upstream over an airfoil are correlated with
low-frequency extreme events downstream, and exploit the time-frequency localisation
in wavelet space to build more robust predictors of these extreme events. Other work
has focused on constructing an orthogonal wavelet basis from simulation data to best
capture self-similarity in the data (Floryan & Graham 2021; Ren, Mao & Fu 2021). An
operator-based approach is given in López-Doriga et al. (2023, 2024), in which the authors
use a time-resolved resolvent analysis to extract transient structures that are preferentially
amplified by the linearised flow; these modes notably exhibit a wavelet-like profile in time.
In the context of resolvent analysis, the additional time and frequency localisation provided
by the wavelet transform will allow us to formulate the flow states and forcing around
non-stationary mean profiles. The resolvent modes would thus reflect time-localised
changes due to transient events in the mean profile. Moreover, resolvent modes that encode
both time and frequency information could help analyse linear amplification phenomena
that occurs transiently and that separates forcing and response events in time and/or
frequency.

The present work is organised as follows. In § 2, we describe traditional Fourier-based
resolvent analysis and introduce a wavelet-based formulation. We highlight the properties
of the wavelet transform and discuss the choice of wavelet basis; we also discuss the
efficiency and robustness of the numerical methods to compute the resolvent modes. In § 3,
we develop and validate wavelet-based resolvent analysis for a variety of systems, ranging
from quasiparallel wall-bounded turbulent flows to spatiotemporally evolving systems. In
§ 3.1, we establish the equivalence of Fourier- and wavelet-based resolvent analyses for
the statistically stationary turbulent channel flow and, in § 3.2, we showcase the additional
capacity of the wavelet-based resolvent to capture linear transient growth under transient
forcing. Specifically, we use the time- and frequency-augmented system to capture the
Orr-mechanism in turbulent channel flow. Then we apply wavelet-based resolvent analysis
to statistically non-stationary flows in § 4, notably the turbulent Stokes boundary layer flow
in which the mean oscillates periodically in time (§ 4.1), as well as a turbulent channel flow
subjected to a sudden transverse pressure gradient (§ 4.2). A preliminary version of this
work is published in Ballouz et al. (2023); novel contributions include an application of the
method to the study of two additional phenomena: the Orr mechanism in turbulent channel
flow, and the transient reduction of Reynolds stresses in the non-stationary channel flow
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Case Section L∗ u∗

Channel flow § 3 δ∗ (channel half-height) u∗
τ

Turbulent Stokes boundary layer § 4.1 δ∗Ω (laminar boundary layer
thickness)

U∗
max (max wall velocity)

Channel flow with spanwise
pressure gradient

§ 4.2 δ∗(channel half-height) u∗
τ,0 (wall shear velocity at

t = 0)

Table 1. Length and velocity used to non-dimensionalise the Navier–Stokes equations for each case
considered in this paper.

under a sudden transverse pressure gradient. This work also includes a deeper discussion
on the computational costs of the method. Conclusions and a discussion of the results are
given in § 5.

2. Mathematical formulation

2.1. Fourier-based resolvent analysis
The non-dimensional incompressible Navier–Stokes equations are given by

∂ ūi

∂t
+ ūj

∂ ūi

∂xj
= − ∂ p̄

∂xi
+ 1

Re
∂2ūi

∂xj∂xj
,

∂ ūi

∂xi
= 0, (2.1a,b)

where ūi is the total velocity (including the mean and the fluctuating component) in the
xi direction and p̄ is the total pressure. The Reynolds number is given by Re = u∗L∗/ν,
where ν is the kinematic viscosity, and u∗ and L∗ are, respectively, a reference velocity and
length scale used to non-dimensionalise ūi, xi and t. Likewise, p̄ is non-dimensionalised by
a reference density ρ∗ and u∗. The non-dimensionalisations for each of the cases studied
in this work are given in table 1. The total velocity can be split into ūi = Ui + ui. Here,
Ui := 〈ūi〉 represents the average over ensembles and homogeneous directions, with 〈·〉
denoting the averaging operation, and ui is the fluctuating component. Similarly, pressure
can be decomposed as p̄ = P + p := 〈p̄〉 + p.

We can split (2.1a,b) into equations for the mean and the fluctuating components of the
flow

∂Ui

∂t
+
〈
ūj
∂ ūi

∂xj

〉
= − ∂P

∂xi
+ 1

Re
∂2Ui

∂xj∂xj
,

∂Ui

∂xi
= 0, (2.2a,b)

∂ui

∂t
+ Uj

∂ui

∂xj
+ uj

∂Ui

∂xj
= − ∂p

∂xi
+ 1

Re
∂2ui

∂xj∂xj
+ fi,

∂ui

∂xi
= 0, (2.3a,b)

where fi is the remaining nonlinear terms in the fluctuating equations. The equations above
do not have an analytic solution unless in very particular situations and are most commonly
solved numerically. Note that some of the terms in the fluctuating equations may be zero
depending on the flow configuration. In traditional resolvent analysis and in this work,
(2.3a,b) are Fourier-transformed in the homogeneous spatial directions. For the cases
considered in this work, these are the streamwise and spanwise directions. Homogeneity in
these directions also implies ∂Ui/∂x1 = ∂Ui/∂x3 = 0. Further simplifications of (2.3a,b)
are also possible in some cases, for example when certain components of the mean flow are
zero. Moreover, in traditional resolvent analysis, the mean flow is statistically stationary
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(and therefore independent of time), and the fluctuation equations are assumed to be
periodic in time and further Fourier transformed in time.

After applying a Fourier transformation in time and in one or more spatial dimensions
in which the system is homogeneous, and discretising the equations over the remaining
spatial dimensions of the grid, we obtain the following:

D̂tûi + ûjdU i,j + U jD̂jûi = −D̂ip̂ + 1
Re

L̂ûi + f̂ i, D̂iûi = 0, (2.4a,b)

where ûi, f̂ i and p̂, respectively, denote the transformed and discretised ui, fi and p; D̂t
and D̂i are the transformed discrete differentiation operators in time and the xi-directions,
respectively; L̂ is the transformed Laplacian. For systems that are homogeneous in the
streamwise and spanwise directions and periodic in time, we can write D̂t = −iω, D̂1 =
ik1, D̂3 = ik3, D̂2 = D2 and L̂ = −k2

1 + D2
2 − k2

3, where ω is the chosen frequency for
the temporal Fourier transform, (k1, k3) are the streamwise and spanwise wavenumber
pair, and D2 is the discrete derivative in the x2 direction. We use U i and dU i,j to denote
the diagonal matrices whose diagonal terms are, respectively, Ui and ∂Ui/∂xj evaluated
at the grid points, and we note that since the system is homogeneous in x1 and x3,
U2 = dU i,1 = dU i,3 = 0. Each of the discretised momentum and continuity equations is
an N2-dimensional system, where N2 is the spatial resolution in the x2 direction. These
linearised equations can then be cast as⎡⎢⎣û1(x2)

û2(x2)
û3(x2)
p̂(x2)

⎤⎥⎦ = Ĥ(k1,k3,ω)

⎡⎢⎢⎣
f̂ 1(x2)

f̂ 2(x2)

f̂ 3(x2)
0

⎤⎥⎥⎦ , (2.5)

where Ĥ(k1,k3,ω) denotes the traditional Fourier-based resolvent operator

Ĥ(k1,k3,ω)

=

⎡⎢⎣(−iωI − 1
Re

L̂ + ik1U1 + U2D2 + ik3U3

)⎛⎜⎝ I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

⎞⎟⎠

+

⎛⎜⎝ 0 dU1,2 0 ik1I
0 dU2,2 0 D2
0 dU3,2 0 ik3I

ik1I D2 ik3I 0

⎞⎟⎠
⎤⎥⎦

−1

, (2.6)

and the superscript (k1, k3, ω) indicates the choice of streamwise and spanwise
wavenumbers k1 and k3 and frequency ω used in the Fourier transforms. The functional
dependence on x2 indicates the discretisation over the wall-normal spatial dimension.
Typically, the SVD of the linear resolvent operator Ĥ(k1,k3,ω) ∈ C4N2 × C4N2 is taken to
study the left and right singular vectors as response and forcing modes, and the singular
values as amplification factors or gains. We denote the principal forcing and response

modes by φ̂(x2) = [φ̂
T
1 , φ̂

T
2 , φ̂

T
3 , 0T]T and ψ̂(x2) = [ψ̂

T
1 , ψ̂

T
2 , ψ̂

T
3 , ψ̂

T
p ]T, respectively. For

a wall-normal spatial domain [0, L2], the modes are normalised such that their integrated
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kinetic energy satisfies

[φ̂1] + [φ̂2] + [φ̂3] = 1, (2.7)

[ψ̂1] + [ψ̂2] + [ψ̂3] = 1, (2.8)

where we use [·] = (1/L2)
∫ L2

0 |·|2 dx2 to denote the x2-integrated energy.

2.2. Wavelet-based resolvent analysis

2.2.1. Formulation
To extend resolvent analysis to statistically non-stationary flows by accounting for transient
behaviour in the mean flow or the fluctuations, we introduce the wavelet-based resolvent
analysis. The benefit of the wavelet transform in time is that it preserves both time and
frequency information. The wavelet transform projects a function onto a wavelet basis
composed of scaled and shifted versions of a mother function η(t). The transformed
function depends on the scale α and shift β parameters, respectively, linked to frequency
and time information, whereas the Fourier transform is a function of only frequency. We
propose using a wavelet transform in time to the left of the spatially Fourier-transformed
equations (2.3a,b) while keeping the Fourier transform in homogeneous spatial directions.
In practice, we discretise the spatially Fourier-transformed equations in both time and the
wall-normal dimension, and apply a discrete wavelet transform W to the left of the discrete
equations. For a system that is homogeneous in the streamwise and spanwise directions,
and that has been wavelet-transformed in time and Fourier-transformed in x1 and x3 for a
streamwise and spanwise wavenumber pair (k1, k3), we obtain

D̃tũi + ũjd̃U i,j + Ũ jD̃jũi = −D̃ip̃ + 1
Re

L̃ũi + f̃ i, D̃iũi = 0. (2.9a,b)

Here, ũi, f̃ i and p̃, respectively, denote the transformed ui, fi and p discretised over x2, α and
β. We introduce Ũ i := W U iW −1 and d̃U i,j := W dU i,jW−1, where U i and dU i,j are defined
in §2.1. As before, U2 = dU i,1 = dU i,3 = 0. Moreover, D̃1 = D̂1 = ik1, D̃2 = D̂2 = D2,
D̃3 = D̂1 = ik3, L̃ = L̂ = −k2

1D2
2 − k2

3 and D̃t := W DtW −1, where Dt refers to the discrete
time differentiation matrix. We denote the temporal resolution of our discretised system by
Nt; the wavelet-transformed vectors will also have a resolution of Nt in the space of wavelet
parameters α and β. Similarly to the Fourier-based resolvent analysis, the equations can
be written in matrix form as

⎡⎢⎣ũ1(x2, α, β)
ũ2(x2, α, β)
ũ3(x2, α, β)
p̃(x2, α, β)

⎤⎥⎦ = H̃(k1,k3)

⎡⎢⎢⎣
f̃ 1(x2, α, β)

f̃ 2(x2, α, β)

f̃ 3(x2, α, β)
0

⎤⎥⎥⎦ , (2.10)

where the functional dependence on x2, α and β represents the discretisation over the
wall-normal spatial dimension, and the wavelet shifts and scales, and the wavelet-based
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resolvent operator H̃ ∈ C4Nt×N2 × C4Nt×N2 is defined as

H̃(k1,k3)

=

⎡⎢⎣(D̃t − 1
Re

L̂ + ik1Ũ1 + Ũ2D2 + ik3Ũ3

)⎛⎜⎝ I 0 0 0
0 I 0 0
0 0 I 0
0 0 0 0

⎞⎟⎠

+

⎛⎜⎝ 0 d̃U1,2 0 ik1I
0 d̃U2,2 0 D2
0 d̃U3,2 0 ik3I

ik1I D2 ik3I 0

⎞⎟⎠
⎤⎥⎦

−1

. (2.11)

This formulation allows us to study transient flows using resolvent analysis. We denote the
principal forcing and response modes obtained under this formulation by φ̃(x2, α, β) =
[φ̃

T
1 , φ̃

T
2 , φ̃

T
3 , 0T]T and ψ̃(x2, α, β) = [ψ̃

T
1 , ψ̃

T
2 , ψ̃

T
3 , ψ̃

T
p ]T, respectively. We denote their

respective inverse wavelet-transforms by φ̆(x2, t) := W −1φ̃ and ψ̆(x2, t) := W −1ψ̃ . These
are normalised such that integrated kinetic energy satisfies

1
T

1
L2

∫ T

0

∫ L2

0
|φ̆1|2 + |φ̆1|2 + |φ̆3|2 dx2 dt = 1, (2.12)

1
T

1
L2

∫ T

0

∫ L2

0
|ψ̆1|2 + |ψ̆2|2 + |ψ̆3|2 dx2 dt = 1, (2.13)

where [0, T) represents the temporal domain. We denote the inverse Fourier transforms of
the modes to the physical domain by φ(x1, x2, x3, t) and ψ(x1, x2, x3, t), respectively.

2.2.2. Wavelet-based resolvent analysis with windowing
We can formulate a resolvent map between forcing and response at specific time shifts and
scales by defining a windowed resolvent operator⎡⎢⎣ũ1(x2, α, β)

ũ2(x2, α, β)
ũ3(x2, α, β)
p̃(x2, α, β)

⎤⎥⎦ = CH̃(k1,k3)B

⎡⎢⎢⎣
f̃ 1(x2, α, β)

f̃ 2(x2, α, β)

f̃ 3(x2, α, β)
0

⎤⎥⎥⎦ , (2.14)

where B and C are windowing matrices on the forcing and response modes, respectively
(Jeun, Nichols & Jovanović 2016; Kojima et al. 2020). The windowing matrices select a
subset of the full forcing and response states. For example, to select a particular scale and
shift parameter (αs, βs) for the forcing mode, we set

B = diag(1(α = αs)1(β = βs)), (2.15)

where 1(·) is an indicator function. Here, B selects the relevant columns of W−1

corresponding to the wavelet scales and shifts to which we wish to restrict our forcing.
Analogously, C selects the rows of W corresponding to the wavelet scales and shifts to
which we restrict our response modes. The SVD of the windowed resolvent operator,
CH̃(k1,k3)B, allows us to identify forcing and response modes restricted to a limited
frequency and time interval determined by the selected wavelets.
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Wavelet-based resolvent analysis

2.2.3. Choice of wavelet basis
Wavelet transforms are not unique and are determined by the choice of the mother wavelet
η(t). The translations and dilations of a real mother wavelet are given by

ηα,β(t) ≡ 1√
α
η

(
t − β

α

)
, (2.16)

where α and β correspond, respectively, to the scale and shift parameters, and,
respectively, represent location in the frequency and time domains. The dilations of the
wavelet capture information at varying scales, and its translations capture information at
different time intervals.

Consider an arbitrary square-integrable function f (t). Its Fourier and wavelet transform
are

f̂ (ω) =
∫ +∞

−∞
f (t) exp(−iωt) dt, (2.17)

f̃ (w)(α, β) =
∫ +∞

−∞
f (t)ηα,β(t) dt, (2.18)

where i = √−1. In practice, we define the wavelet transform on a dyadic grid, i.e. α = 2�,
β = k2� for k, � ∈ Z. However, we usually do not dilate the mother wavelet indefinitely;
the dilations and translations of a scaling function ζ(t) are used to capture the residual
left-over from a scale-truncated wavelet expansion. We define the projection onto these
functions as

f̃ (s)(α, β) =
∫ +∞

−∞
f (t)ζα,β(t) dt, ζα,β(t) ≡ 1√

α
ζ

(
t − β

α

)
. (2.19a,b)

The wavelet expansion of an arbitrary function f (t) at dyadic scales is thus given by

f (t) =
L∑

�=−∞

+∞∑
k=−∞

f̃ (w)(2�, 2k)η
( t

2�
− k

)
+

+∞∑
k=−∞

f̃ (s)(2L, 2k)ζ
( t

2L − k
)
, (2.20)

where L ∈ Z represents the largest scale captured by the wavelet expansion, the f̃ (w)(2�, 2k)

terms approximate f (t) at scales −∞ < 2� ≤ 2L, and the f̃ (s)(2L, 2k) terms capture the
residual at scales 2� > 2L. For each �, the projection onto η(t/2� − k) will roughly capture
a portion of the frequency content of f , centred in a time interval determined by k. Larger �
corresponds to a narrower band of frequencies closer to zero, while larger k corresponds to
later times. In a discretised setting, we use the finite resolution wavelet expansion, which
approximates (2.20) for a discrete signal and where 2 ≤ 2� ≤ 2L ≤ Nt. The choice of
the largest scale L will depend on the band of frequencies we wish to isolate with our
wavelet-based resolvent operator: narrower bands closer to zero will require larger L.

The wavelet and scaling function coefficients are produced by a premultiplication by the
discrete wavelet transform W , which approximates the convolution against the wavelets
and scaling functions. The choice of the wavelet and scaling function pair determines
the properties of W . Wavelets/scaling functions of compact support in time result in
banded W , since the convolution with these functions will also have compact support.
Orthonormal wavelets/scaling functions result in a unitary W . Each wavelet or scaling
function captures a portion of the temporal and frequency domains. There is a trade-off
between precision in frequency and precision in time, i.e. one cannot find a function η(t)
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that is well localised in both time and frequency (Mallat 2001). As two extreme examples,
consider the Dirac delta centred at t = 1, which is perfectly localised in time but with an
infinite spread in frequency space, and the Fourier mode eit, which is perfectly localised
in frequency space at ω = 1 but has infinite spread in time. In the context of windowed
resolvent analysis, we may wish to highlight specific bands of the frequency spectrum, or
conversely, narrow bands in time, which will inform the choice of wavelet transform.

For this study, we work with the Shannon and Daubechies-16 wavelets. The Shannon
wavelet is notable because it acts as a perfect bandpass filter (Mallat 2001; Najmi 2012)
and covers a frequency band Nt/2�([−2π,−π] ∪ [π, 2π]) (figure 1). Though the Shannon
wavelet does not have the perfect frequency localisation provided by the Fourier transform,
it allows the separation of the frequency content into distinct non-overlapping bands
for different scales. One disadvantage of the Shannon wavelet is that it does not have
a compact support in time and its corresponding discrete wavelet transform is dense,
thus increasing the computational cost of the inversion of H̃ and SVD of its inverse. For
problems where the sparsity of the wavelet transform is important, we use the Daubechies
wavelets, which trade the perfect bandpass property in frequency domain for a compact
support in time. Higher index Daubechies wavelets will have larger temporal supports and
will behave closer to perfect bandpass filters. For both the wavelets described, the discrete
transform matrix is unitary (Mallat 2001; Najmi 2012).

In addition to numerical cost, we also consider the physical interpretation implied by
the wavelet transform to inform our choice of wavelets. For example, in the channel flow
case where critical layer dynamics are important, the Shannon wavelet would allow us
to study wave speeds of interest with more precision due to its being a perfect bandpass
filter (Ballouz et al. 2023). Constraining the resolvent modes to a particular dilation of
the Shannon wavelet would highlight waves of frequencies contained in the frequency
band of the chosen wavelet. If more precision is required in the time domain to study
time-localised phenomena, a wavelet that is compactly supported in time is more pertinent.
This is the case, for example, in Ballouz, Dawson & Bae (2024), which studies how
a compactly supported resolvent forcing function affects a turbulent channel beyond its
time support. In some cases, both properties can be combined through the use of wavelets
that are compactly supported in time but whose frequency Fourier spectra decay quickly
outside a certain frequency band, making them quasibandpass filters. The Daubechies or
the Fejér–Korovkin wavelets satisfy these properties, and in the case of turbulent channel
flow, produce similar results as when a Shannon wavelet-transform is used.

2.2.4. Computational cost
The construction of H̃ (2.11) requires the inversion of a 4NyNt × 4NyNt matrix, a
computation that costs O(N3

y N3
t ) operations when solved directly. The full SVD of H̃ would

also require O(N3
y N3

t ) operations. With a direct solve, the wavelet-based resolvent analysis
would cost O(N2

t )-times more than performing Nt separate Fourier-based resolvent for
each temporal scale, though the latter would fail to capture the interactions between
the different time scales. This penalty of O(N2

t ) is the nominal cost of constructing
time-localised resolvent modes. Below, we discuss some methods to reduce the cost and
memory storage requirements of such a computation.

One method for reducing the memory and computational cost of wavelet-based
resolvent analysis is to use sparse finite difference operators and wavelet transforms when
constructing H̃−1. We then factor the resulting sparse matrix using specialised packages
such as MATLAB’s ‘decomposition’ function, and save the factors in order to later solve
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Figure 1. Shannon wavelets and scaling function in time (a) and frequency (b) domains. Daubechies-16
wavelets and scaling function in time (c) and frequency (d) domains. The functions shown are two wavelets
for α = 2L = Nt (black —) and α = 2L−3 (black −−), and a scaling function for α = 2L (red —) for arbitrary
shift parameters.

linear equations of the form H̃−1v = w , where v and w are arbitrary vectors, without
having to invert H̃ again. This is useful in the context of iterative methods for computing
the SVD of H̃−1. Though much of the sparsity of H̃ is lost by the factorisation process,
we note that the factors still exhibit significant sparsity. In this work, to take advantage of
the sparse precomputed factors of H̃ , we opt for an iterative method to perform the SVD.
We use a one-sided Lanczos bidiagonalisation (Simon & Zha 2000), which additionally
allows us to compute a truncated SVD and accurately estimate a number q < 4NyNt of the
most significant singular input and output modes.

Other efficient SVD algorithms rely on randomised approaches, in particular
by subsampling the high-dimensional matrix and performing the SVD on the
lower-dimensional approximation (Halko, Martinsson & Tropp 2011; Drineas & Mahoney
2016; Tropp et al. 2017). Modifications of randomised SVD algorithms, notably
randomised block Krylov methods (Musco & Musco 2015), have been additionally
developed for matrices with slow-decaying singular values, a property exhibited by the
resolvent operator in § 4.1. A randomised SVD of a high-dimensional discrete resolvent
operator was used in Ribeiro et al. (2020) and Yeh et al. (2020).

Another option that would avoid the direct inversion of H̃−1 involves taking the SVD
of H̃−1 first. The left and right singular vectors of H̃−1 are, respectively, the right
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and left singular vector of H̃ . However, since we are looking for the largest singular
values of H̃ and their corresponding singular vectors, we would have to compute the
full SVD of H̃−1 to find its smallest singular values and corresponding singular vectors.
Though this method avoids the inversion of H̃−1, it does not preserve the efficiency gains
of a (heavily) truncated SVD, and should only be used if the sparse factorisation of
H̃−1 remains the costliest operation. Suppose for example that H̃−1 has nnz ≤ (4NyNt)

2

non-zero elements, and that the LU-factorisation of H̃ has at most mnz ≤ (4NyNt)
2

non-zero elements. Suppose that nnz is small enough that the cost of the LU-factorisation
is small. A full iterative SVD of H̃−1 has complexity O(4NyNtnnz), whereas a q-truncated
SVD of H̃ has complexity O(mnzq). Thus, if nnz/mnz < q/(4NyNt), it is more efficient to
compute an SVD of H̃−1 without computing an LU-factorisation. For the turbulent Stokes
boundary layer problem considered in § 3, q = 400 modes are calculated and q/(4NyNt) ≈
0.001. Using a second-order finite difference operator in time and Daubechies-8 wavelet
transform, nnz/mnz ≈ 0.24, making the factorisation and truncated SVD method more
efficient. In general, since we compute a heavily truncated SVD (q/(4NyNt) is very small),
we find that a factorisation of the sparse system prior to the SVD is advantageous.

Resolvent analysis can also be performed more efficiently for the windowed systems
described in § 2.2.2. Indeed, BH̃C = (B†H̃−1C†)†, where the superscript † indicates the
Moore–Penrose pseudoinverse. Rather than form the resolvent operator H̃ first through
an inversion, we can reduce the dimension of the system by windowing the linearised
Navier–Stokes operator prior to taking the pseudoinverse of the windowed system. The
matrix pseudoinversion and SVD will be applied to a lower-dimensional matrix of size
defined by the non-zero block of BC.

2.2.5. Choice of time differentiation matrix
The choice of the discrete time differentiation operator Dt has a significant impact on
the computation of resolvent modes. The sparsity of Dt controls the sparsity of the
resolvent operator, which heavily affects the memory and complexity requirements of the
computation of the resolvent modes. However, though a sparse Dt seems beneficial, it also
distorts the time differentiation for high-frequency waves and can falsify the results of the
SVD.

To illustrate this, we study the spectra of two time-derivative matrices, Dt,2, a
second-order centred finite difference matrix, and Dt,F, a Fourier derivative matrix.
The eigenvectors of both operators are the discrete Fourier modes. The eigenvalues
of the Fourier derivative matrix Dt,F are simply the wavenumbers i2πk/T for k =
1, 2 · · · �Nt/2
 − 1, while those of the second-order centred difference matrix Dt,2 are the
modified wavenumbers i sin(2πk/Nt)Nt/T . For a fixed wavenumber k, we note that

lim
Nt→+∞

sin
(

2πk
Nt

)
Nt

T
= 2πk

T
, (2.21)

and our modified wavenumber converges to the correct value. Now consider the maximum
wavenumber k = �Nt/2
 − 1. Suppose without loss of generality that Nt is even so that
�Nt/2
 − 1 = Nt/2 − 1. The limit as the resolution in time increases becomes

lim
Nt→+∞

sin
(

2π

Nt

(
Nt

2
− 1

))
Nt

T
= 2π

T
, (2.22)

which does not converge to the correct wavenumber 2π(Nt/2 − 1)/T . Indeed, the error
grows as O(Nt).
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To study how the numerical properties of the resolvent operators introduced in §§ 2.1
and 2.2 vary with the choice of discrete time derivative, we consider an arbitrary matrix
A, which can represent the spatial derivatives of the linearised Navier–Stokes equations,
and write the following approximation:

(Dt,2 + A)−1 = (Dt,F + A + Dt,2 − Dt,F)
−1

≈ (Dt,F + A)−1 − (Dt,F + A)−1(Dt,2 − Dt,F)(Dt,F + A)−1 + · · · . (2.23)

Thus,

‖(Dt,2 + A)−1 − (Dt,F + A)−1‖2 ≤ O(
√

Nt)‖(Dt,F + A)−1‖2
2 + O(Nt). (2.24)

The lack of convergence as Nt increases suggests that the use of a finite difference operator
rather than a Fourier derivative can significantly distort the SVD of the resolvent operator.
To benefit from the advantages of a sparse temporal finite difference operator while
avoiding spurious SVD modes, we propose using the windowing procedure described in
§ 2.2.2 to filter-out the wavelet scales associated with the high-frequency wavenumbers
more susceptible to distortion. Specifically, rather than choose the windowing matrices B
and C to highlight a physically interesting range of the frequency spectrum, we use them
to exclude the frequencies above a threshold kmax < Nt/2. The maximum error between
the eigenvalues of Dt,2 and Dt,F is given by the Taylor expansion

sin
(

2πkmax

Nt

)
Nt

T
− 2πkmax

T
= 4π3k3

max

3N2
t T

+ O
(

k5
max

N4
t

)
. (2.25)

Thus, assuming the chosen wavelet transform W is unitary,

‖BW (Dt,2 + A)−1 − (Dt,F + A)−1)W −1C‖2 ≤ O

(
k3/2

max

Nt

)
‖(Dt,F + A)−1‖2

2. (2.26)

The error between the SVD of the two operators will decrease as 1/Nt provided kmax
remains fixed. In § 3, we employ this filtering approach for cases using a finite difference
time derivative operator.

3. Application to statistically stationary flow

In this section, we first validate wavelet-based resolvent analysis on a statistically
stationary turbulent channel flow, for which the wavelet and Fourier approaches are
equivalent provided that we use a unitary wavelet transform. Thus, for the channel flow
case, we expect the two methods to produce identical resolvent modes. After confirming
this result, we exploit the time-localisation property of wavelet-based resolvent analysis to
study transient growth in turbulent channel flow.

3.1. Turbulent channel flow
The mean profile of turbulent channel flow at friction Reynolds number Reτ ≈ 186 is
obtained from Bae & Lee (2021). We non-dimensionalise using the channel half-height δ∗
and the friction velocity u∗

τ as shown in table 1, so that Re = Reτ . We note that U3, U2,
dU2,2 and dU3,2 are zero due to the absence of a spanwise and wall-normal contribution
to the mean velocity profile.

For resolvent analysis, the wall-normal direction is discretised using a Chebyshev
collocation method using N2 = 128, and the mean streamwise velocity profile and its
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wall-normal derivative from the direct numerical simulation (DNS) are interpolated to
the Chebyshev collocation points. We uniformly discretise the temporal domain, [0, T),
where T = 5.5 (T+ = 1023), with a temporal resolution of Nt = 128. The superscript +
denotes wall units, which are defined to be (·)+ := (·)Reτ for length and time scales and
(·)+ := (·) for velocity scales. We impose periodic boundary conditions at the edges of
the time window. The temporal boundary conditions are encoded in the choice of time
differentiation matrix Dt, which we choose to be a Fourier differentiation matrix. For
spatial derivatives in the wall-normal direction, we use first- and second-order Chebyshev
differentiation matrices, and impose no-slip and no-penetration boundary conditions at the
wall. In choosing k1 and k3, we target spanwise and streamwise wavelengths of λ+1 ≈ 1000
and λ+3 ≈ 100 in wall units, which are the typical length scales for near-wall streaks and
correspond to the peaks in the streamwise spectrum. For our wavelet transform, we choose
a two-stage (L = 2) Shannon wavelet transform, i.e. the state vectors in the resulting
system described by (2.10) will contain terms covering the following three intervals in
frequency domain: Nt/4[−π,π] and Nt/2�[−2π,−π] ∪ [−2π,−π] for � = 1, 2. We note
that, for this application, the resolvent modes converge despite the relatively low dimension
of the resolvent operator. This permits us to use the aforementioned dense differentiation
matrices. Sparse finite difference matrices may be used in higher-dimensional problems
to improve efficiency. The wavelet- and Fourier-based cases, described by (2.9a,b) and
(2.4a,b), respectively, only differ by their time differentiation matrices. These satisfy
W −1D̃tW = F−1D̂t,FF = Dt, where D̂t,F is the diagonal matrix with diagonal terms
(D̂t,F)�� = −iω� = i(2π�)/T for � = −Nt/2, . . . ,Nt/2 − 1, and F is the discrete Fourier
transform in time. The Shannon wavelet transform is unitary, and since the SVD is unique
up to multiplication by a unitary matrix, we expect the singular values of H̃(k1,k3) to be the
same as those for

Ĥ(k1,k3) =

⎛⎜⎜⎜⎝
Ĥ(k1,k3,ω1)

Ĥ(k1,k3,ω2)

Ĥ(k1,k3,ω3)

. . .

⎞⎟⎟⎟⎠ , (3.1)

where each Ĥ(k1,k2,ω�) is defined according to (2.6). Moreover, we expect the response and
forcing modes of both systems to be related by the unitary transform given by the Fourier
and inverse-wavelet transform in time, FW−1.

The results for the Fourier-based cases were computed by applying traditional resolvent
analysis at each ωi captured by our temporal grid, while the wavelet-based resolvent modes
were computed by solving the full space–time system at once. We consider the results
from wavelet-based resolvent analysis to be converged: the singular values obtained for
(Nt,N2) = (128, 128), and for (Nt,N2) = (64, 128) produced the same leading singular
values. These are not shown in this work. As implied by (3.1), a single wavelet-based
resolvent analysis will yield the modes corresponding to all time scales captured by the
temporal grid. In order to associate each singular value from the wavelet-based resolvent
analysis to a frequency, we Fourier-transform the corresponding response mode in time,
and identify the index of the non-zero Fourier component.

In figure 2(a), we show the 10 leading singular values of the wavelet-based resolvent
operator, along with the first singular value for the Fourier-based operator for different
temporal Fourier parameters ω�. In order to associate the singular values obtained from
the wavelet-based method with their frequencies, we Fourier-transform each wavelet-based
response mode in time, and identify the index of the non-zero component. The first 10
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Figure 2. (a) First 10 singular values for the wavelet-based resolvent (red) and the largest singular value of the
Fourier-based resolvent operator (black) computed for each ω�. The vertical grey lines indicate the frequencies
resolved by the chosen temporal grid, and the vertical black lines delimit the frequency band covered by
each of the wavelet scales used in the wavelet expansion. (b) Magnitude of the streamwise component of the
principal resolvent mode corresponding to ω ≈ 17.14. The red line represents F ψ̆1, the mode obtained from
wavelet-based resolvent analysis after a Fourier transformation in time, and the black line the mode obtained
from traditional Fourier-based resolvent analysis ψ̂1. In both cases, λ+1 = 1000 and λ+3 = 100.

singular values obtained differ by at most 3 %, with the largest differing by 1.3 %, which
matches our expectation. The discrepancy can be explained by numerical and truncation
errors. Though Shannon wavelet transforms are unitary in the continuous setting, Shannon
wavelets do not have compact support in time. The discrete Shannon transform is thus not
a unitary matrix due to the truncation of the wavelet in time, and exhibits a condition
number of approximately 1.6 in this case. Using wavelets that are compactly supported in
time, such as the Daubechies wavelets, reduces the discrepancy, as the resulting wavelet
transform matrix W is a unitary operator with a condition number of 1 that better preserves
the singular values of Ĥ(k1,k3). Increasing the time resolution also reduces the gap between
the singular values. We note that due to the symmetry of the problem about the centreline,
the singular values appear in equal pairs (McKeon & Sharma 2010). This is only visible in
figure 2(a) for ω = 20.56, where the pair of singular values deviate slightly for each other
due to numerical error. The modes corresponding to the pair of equivalent singular values
are reflections of each other about the channel centreline.

In figure 2(b), we compare the two methods further by plotting the streamwise
component of the most amplified resolvent response mode that they each produce.
For the Fourier-based method, this corresponds to the frequency ω ≈ 17.14. For the
wavelet-based method, we first Fourier-transform the principal mode in time, and though
not shown, observe that the Fourier mode associated with ω ≈ 17.14 is the only non-zero
component. This matches our expectation that the wavelet-based resolvent analysis in
this case is equivalent to performing the traditional Fourier-based resolvent analysis for
each frequency ω� individually. Figure 2(b) shows that the modes from the two methods
match. Despite the slight discrepancy in the singular values, both methods yield the
same resolvent modes associated with the maximum singular value, indicating that both
methods are equivalent for this stationary case.

Although not shown, the streamwise component of the modes dominate for the principal
modes computed with the two methods, and the modes form alternating low- and
high-speed streamwise streaks. The principal forcing mode is in the form of streamwise
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rolls, with a negligible streamwise component. The shape of the modes is thus in line
with previous analysis of the self-sustaining process of wall turbulence (Jiménez &
Moin 1991; Hamilton et al. 1995; Waleffe 1997; Jiménez & Pinelli 1999; Schoppa &
Hussain 2002; Farrell, Gayme & Ioannou 2017; Bae et al. 2021). We do, however,
note that the response modes peak at x2 ≈ 0.21, corresponding to x+

2 ≈ 40, higher than
the location of x+

2 ≈ 15 preferred by near-wall streaks. This is also in line with the
previous literature on Fourier-based resolvent analysis (Schmid, Henningson & Jankowski
2002; McKeon & Sharma 2010; McKeon 2017, 2019): resolvent response modes, both
formulated traditionally and using the wavelet basis in time, peak at the critical layer
located where U(x2) = ω/k1. Using a version of the linearised Navier–Stokes equations
that includes eddy viscosity (Symon et al. 2023) causes the modes to peak closer to
x+

2 = 15 so that they match observations of the near-wall cycle.

3.2. Transient growth mechanism of turbulent channel flow
The added advantage of the wavelet-based method lies in its ability to preserve temporal
localisation. The states in (2.14) encode time and frequency information, which allows
us to study transient problems even when the mean profile is statistically stationary. One
such transient phenomenon is the Orr mechanism, a linear mechanism first described by
Orr (1907) that has been proposed to explain transient energy amplification in shear flows
(Landahl 1975; Jiménez 2013, 2015, 2018; Encinar & Jiménez 2020). A two-dimensional
physical description is given in Jiménez (2013, 2018): the mean shear profile rotates
backward-tilting velocity structures forward (in the positive x1− direction), effectively
extending the wall-normal distances between structures; to compensate, continuity will
impose larger wall-normal fluxes, i.e. larger wall-normal velocity perturbations. This
effect amplifies the velocity perturbations until the velocity structures are tilted past the
normal to the wall, after which the mechanism is reversed and the perturbations are
attenuated. The tilting angle of the velocity perturbations does not affect the streamwise
or spanwise velocities directly, and after those components are amplified by the growth
of the wall-normal component through lift-up, they decay slowly through viscous effects
(Jiménez 2013). Thus, due to the long-lasting effects on the streamwise component of
a brief amplification of the wall-normal velocity perturbation, it has been proposed that
these Orr bursts are involved in the generation of persistent near-wall streaks (Jiménez
2013, 2015; Encinar & Jiménez 2020).

Because of its possible role in regenerating near-wall streaks, the Orr mechanism in
linearised wall-bounded flows has been examined in Jiménez (2013, 2015, 2018) and
Encinar & Jiménez (2020). These studies rely on computing optimal growth trajectories
for the linearised equations with viscosity as well as solutions to the inviscid linearised
equations The optimal trajectories are defined as those emanating from the optimal
initial condition which maximises the growth of kinetic energy under the linearised
dynamics (Butler & Farrell 1993; Schmid et al. 2002). The linear trajectories exhibit
the characteristic forward tilting of velocity structures in conjunction with the transient
amplification of velocity perturbations, suggesting that the Orr-mechanism is a dominant
energy amplification mechanism in the linearised system.

Optimal growth trajectories compute the singular modes for the linearised flow map
between an initial condition and velocity perturbations at a later time; the question we
wish to answer is whether optimal external forcing upon the linearised system, which
could originate from nonlinear interactions, also exploits the Orr mechanism. For this, we
use the wavelet-based resolvent analysis formulation. We note that traditional resolvent
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Figure 3. Mean streamwise velocity profile for channel flow at Reτ = 2000. The dashed line corresponds to
the upper bound of the frequency band covered by the chosen wavelet, mapped to streamwise velocities using
U1 = ω/k1.

analysis has been used to reveal some evidence of the Orr mechanism in turbulent jets,
where it is identified by the tilt of the optimal forcing structures against the jet shear (Tissot
et al. 2017; Schmidt et al. 2018; Pickering et al. 2020). In an attempt to capture the Orr
mechanism in channel flow at Reτ = 2000 as in Encinar & Jiménez (2020), we use the
mean profile for channel flow at Reτ = 2000 (Hoyas & Jiménez 2008), the same grid
in the wall-normal direction as § 3.1 with N2 = 128 collocation points, and a uniform
temporal grid with Nt = 256. As argued in Encinar & Jiménez (2020), we choose spatial
wavelengths λ1 = λ3 = 0.7, and we choose a total time of T = 2.15.

The choice of T depends on the critical layer dynamics that we wish to highlight. From
traditional resolvent analysis applied to turbulent stationary channel flow, we know that
the resolvent Fourier modes tend to peak in magnitude at the critical layer, i.e. where
U(x2) = ω/k1 (Schmid et al. 2002; McKeon & Sharma 2010; McKeon 2017, 2019). In
this section, we study the effect of a time-localised forcing on a region x+

2 ∈ [0, 500]
which contains the inner region of the boundary layer (Hoyas & Jiménez 2006). This
maps to a frequency interval [0,U(x+

2 = 500)]k1 = [0, ωmax] ≈ [0, 185] according to the
mean profile for turbulent channel flow (figure 3). Thus, using a total time T = 2.15 and a
Shannon wavelet transform with L = 1, the Shannon scaling functions ζ(t/2L − k) would
cover the frequency interval Nt/(2T)[−π,π] ≈ [−187, 187]. To restrict our forcing term
to this frequency band while localising it time time, we use the windowed wavelet-based
resolvent analysis framework from § 2.2.2. We set C to the identity matrix, allowing the
response modes to cover the entire time and frequency range. We choose B to select the
forcing terms corresponding to the relevant the Shannon scaling function. Without loss of
generality, we select the shift parameter β = 0 so that the forcing term is concentrated at
a time interval centred at t = 0.

The principal resolvent response mode obtained from the SVD of H̃B represents
the maximally amplified response to a transient forcing term aligned with the selected
wavelet, under the dynamics of the linearised Navier–Stokes equations. The resulting
principal response mode is confined to the frequency band determined by the forcing,
as shown in figure 4(a), which is expected since the time scales are decoupled in resolvent
analysis for statistically stationary flows (3.1). The velocity fluctuations can only extract
energy from the mean flow in the linearised formulation of resolvent analysis, and since
the mean profile is solely constituted by a steady-state component, the response mode
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Figure 4. (a) Inverse wavelet-transformed principal response mode for channel flow at Reτ = 2000 and k1 =
k3 ≈ 8.98 under windowed forcing, in the frequency–time plane. The forcing window is highlighted in red.
(b) The x2-integrated total energy of the inverse wavelet-transformed principal response mode.

can only contain the frequencies injected by the forcing mode. We observe that the
spatially integrated energy of the response mode first grows transiently, peaks at t = 0.72,
then decays, as shown in figure 4(b). This transient growth can be explained by the
non-normality of the linearised system (Schmid et al. 2002). The response modes at
three different times are shown in figure 5. We note that the modes are concentrated in a
region x2 < 0.4 with a corresponding Corrsin shear parameter of approximately 10, which
justifies the use of a linearised method to analyse the full system (Jiménez 2013).

The transient behaviour of the modes displays characteristics of the Orr mechanism,
mainly a synchronisation between the amplification of the wall-normal component of the
response mode and its forward tilting. To study the forward tilting of velocity structures in
the response mode, we define the tilt angles as in Jiménez (2015), i.e.

θi(x2, t) = − tan−1

(
∂x2∠ψ̆ i(x2, t)

k1

)
, (3.2)

where ∠(·) represents the complex angle. In Jiménez (2015), the angle defined above is
averaged over a region of interest. We define the energy-weighted average tilt as

θ
[y+

a ,y
+
b ]

i (t) =

∫ yb

ya

‖ψ̆ i‖2θi dx2∫ yb

ya

‖ψ̆ i‖2 dx2

, (3.3)

and the amplitude as

A
[y+

a ,y
+
b ]

i =
(∫ yb

ya

‖ψ̆ i‖2 dx2

)1/2

, (3.4)

and pick y+
a = 0 and y+

b = 2000 to capture the half-channel. The results (figure 6) show
that the amplitude of the wall-normal velocity component of ψ̆2 indeed peaks roughly
when θ [0,2000]

2 ≈ 0 at t ≈ 0.45, and decays as θ [0,2000]
2 tilts past zero until it vanishes for

θ
[0,2000]
2 = π/4.
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Figure 5. Principal response mode for the channel flow at Reτ = 2000 and k1 = k3 ≈ 8.98 under transient
forcing. The modes are shown at (a) t = 0.25, (b) t = 0.71 and (c) t = 1.56. The panels (i) and (ii), respectively,
correspond to half-wavelength locations of x3/δ = π/k3δ and x1/δ = π/k1δ.

We note that the spanwise component tilts forward much faster than the streamwise and
wall-normal components (figure 6). This faster tilt has been attributed to the spanwise
component’s placement closer to the wall where the shear is stronger (Encinar & Jiménez
2020), and we do indeed find that ψ̆3 is closer to the wall compared with ψ̆2. However, we
also find that ψ̆1 is located at the same wall-normal height as ψ̆3, and hypothesise that it
tilts forward at the same rate as ψ̆2 because of the more direct coupling between the two
components via the u2 dU1/dx2 term in the linearised momentum equations.

Moreover, both the streamwise and spanwise components of the mode peak at t ≈ 0.75,
i.e. after θ [0,2000]

1 and θ
[0,2000]
3 cross the zero threshold and approximately t ≈ 0.35

later than the amplitude peak for the wall-normal component. The streamwise and
spanwise components also decay more slowly than the wall-normal component, even as
their tilt is relatively constant at θ [0,2000]

1 = θ
[0,2000]
3 = π/4 and after the wall-normal

component vanishes. Jiménez (2013) explains this using the Squire equation, the linearised
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Figure 6. Mode angle (a) and magnitude (b) of the principal response mode as a function of time. The
streamwise component of the mode is represented by −• (blue), the wall-normal component by −� (green)
and the spanwise component by −� (red).

advection–diffusion equation for the wall-normal vorticity in which the wall-normal
velocity perturbation acts as a forcing term. Even if this forcing disappeared, the
streamwise and spanwise velocity components would continue advecting downstream and
decay only due to viscous dissipation, which acts at a slower time scale than the mean
shear in the near-wall region for the length scales considered. The non-normality of the
Squire system further explains the delayed growth of the spanwise component after being
forced by the wall-normal component. Note that the amplitude streamwise component
rises in tandem with the wall-normal component, possibly due their tighter coupling via
the presence of the u2 dU1/dx2 term in the linearised streamwise momentum equation.
The tilt of the streamwise and spanwise components does not directly drive or suppress
their amplitudes, since forward-tilting only affects their wall-normal gradients which do
not appear in the equations of motion. This allows them to grow even after they attain their
maximum positive tilt.

The lifetime of the wall-normal component ψ̆2 of the principal resolvent response mode
differs significantly from the bursting time scales in Jiménez (2013, 2015) and Encinar &
Jiménez (2020), which argue that the Orr-mechanism is a linear inviscid process whose
period scales with the local mean shear. Defining the location of the wall-normal velocity
fluctuation as its energy-weighted centre of gravity

x2,g :=

∫ 1

0
‖u2(tmax)‖2x2 dx2∫ 1

0
‖u2(tmax)‖2 dx2

, (3.5)

where tmax is the time of maximum amplitude for u2, we find that x2,g ≈ 0.21, farther
away from the wall than the inviscid and optimal growth solutions in Jiménez (2013) and
Encinar & Jiménez (2020) located at x2,g ≈ 0.16λ1 ≈ 0.11. Defining a shear time scale
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S−1 as

S := dU1

dx2
(x2 = x2,g), (3.6)

we find that the mode grows and decays in tS ≈ 13 local shear units, much more slowly
than the inviscid and optimal growth solutions, which grow and decay in tS ≈ 1 and
tS ≈ 3.5, respectively. Moreover, the Orr mechanism studied in Encinar & Jiménez (2020)
is linked more broadly to energetic bursting events, which have been considered in
Jiménez (2015), and which exhibit a bursting period of t = 0.2 for the wall-normal mode
corresponding to (λx, λz) = (0.7, 0.7), again faster than the growth time scale for ψ̆2. In
an attempt to explain the discrepancies between the optimal growth solution in Encinar &
Jiménez (2020) and the principal resolvent mode, we note that the measures of optimality
differ between the optimal growth and wavelet-based resolvent analysis frameworks; while
the optimal growth framework measures energy amplification as a ratio between the initial
condition and the solution at a given time, wavelet-based resolvent analysis maximises the
integrated kinetic energy of the entire time interval considered. This may better capture
energetic structures that persist in time. Moreover, resolvent analysis additionally provides
the optimal forcing that produces the response in the velocity field, which is helpful in
studying mechanisms that drive linear transient growth in turbulent flows.

However, the bursting time scales of the principal resolvent mode agree with those found
using turbulent channel flow data in Encinar & Jiménez (2020). Using an average shear
time scale defined as

SΛ := (U1(x2 = yb)− U1(x2 = ya))

yb − ya
, ya = 0.7, yb = 0.25, (3.7)

where Λ = [ya, yb] captures a section of the logarithmic region, we find that ψ̆2 takes
tSΛ ≈ 1.87 average shear units to grow to half its maximum amplitude, compared with
tSΛ ≈ 1 in Encinar & Jiménez (2020). The amplitude and time scale of the process
captured by ψ̆ can be further compared with other studies of bursting in the near-wall
region of turbulent channel flow at moderate Reτ . In Flores & Jiménez (2010), turbulent
energy is found to peak at time intervals of approximately 6x2, and given that our resolvent
modes are centred at x2 ≈ 0.2, the trend would predict a bursting period of t = 1.2. This
roughly matches the time scale t ≈ 1.5 for the growth and decay of ψ̆2. Likewise, in
Hwang & Bengana (2016), which studies bursting in the logarithmic region of the channel,
the relation t = 2λ3 is found to describe the bursting period. For our case where λ3 = 0.7,
this would correspond to a bursting period of t = 1.4, again matching the lifetime of ψ̆2.
Thus, the Orr bursting period predicted by ψ̆2 roughly agrees with the bursting time scale
detected in turbulent channel flow, though this time scale tends to be significantly longer
than the shear time scale found to govern the Orr mechanism in linear inviscid and linear
optimal growth analyses.

4. Application to non-stationary flow

We now apply wavelet-based resolvent analysis to problems with a time-varying mean
flow. In particular, we study the turbulent Stokes boundary layer and a turbulent channel
flow with a sudden lateral pressure gradient. The Stokes boundary layer is a purely
oscillatory flow in time, and thus, Fourier-based resolvent analysis (Padovan et al. 2020)
still may be used. However, in the case of the temporally changing channel flow, the flow
is truly unsteady, and a Fourier transform in time is not applicable.
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4.1. Turbulent Stokes boundary layer
The Stokes boundary layer is simulated through a channel flow with the lower and
upper walls oscillating in tandem at a velocity of U∗

w(t) = U∗
max cos(Ω∗t∗) with no

imposed pressure gradient. We non-dimensionalise velocities by U∗
max and lengths by

δ∗Ω := √
2ν/Ω∗, which denotes the laminar Stokes boundary layer thickness. Though

time and frequency are both non-dimensionalised with U∗
max and δ∗Ω , we will use tΩ

as our preferred time variable for a clearer comparison with the period, and ω/Ω as
our preferred frequency variable as it represents temporal wavenumber in this case. The
relevant non-dimensional number is ReΩ = U∗

maxδ
∗
Ω/ν. For the current case, we consider

ReΩ = 1500, which lies within the intermittently turbulent regime (Hino, Sawamoto
& Takasu 1976; Akhavan, Kamm & Shapiro 1991; Verzicco & Vittori 1996; Vittori
& Verzicco 1998; Costamagna, Vittori & Blondeaux 2003). This problem has been
well-studied numerically and experimentally in the literature (Von Kerczek & Davis 1974;
Hino et al. 1976; Jensen, Sumer & Fredsøe 1989; Spalart & Baldwin 1989; Akhavan
et al. 1991; Sarpkaya 1993; Blondeaux & Vittori 1994; Verzicco & Vittori 1996; Vittori
& Verzicco 1998; Costamagna et al. 2003; Carstensen, Sumer & Fredsøe 2010; Ozdemir,
Hsu & Balachandar 2014).

To generate the mean profile and second-order statistics, we run a DNS using a
second-order staggered finite-difference (Orlandi 2000) and a fractional-step method (Kim
& Moin 1985) with a third-order Runge–Kutta time-advancing scheme (Wray 1990).
Periodic boundary conditions are imposed in the streamwise and spanwise directions and
the no-slip and no-penetration boundary conditions are used at the top and bottom walls.
The code has been validated in previous studies in turbulent channel flows (Bae et al.
2018, 2019; Lozano-Durán & Bae 2019) and flat-plate boundary layers (Lozano-Durán,
Hack & Moin 2018), though we note that, for this problem, we modify the boundary
conditions to accommodate the oscillating walls. The domain size of the channel for
the DNS is given by 6π × 80 × 3π. The domain is discretised uniformly in the x1-
and x3-directions using 64 points, which corresponds to non-dimensionalised spacings
of �x ≈ 0.29 and �x3 ≈ 0.15. For the x2-direction, a hyperbolic tangent grid with 385
points is used, resulting in min(�x2) ≈ 0.01 and max(�x2) ≈ 0.91. We compute the mean
velocity profiles by averaging in homogeneous directions and phase. Figure 7 shows the
mean and the streamwise root-mean-square (r.m.s.) velocity profiles at different times.
Using Ω to denote the non-dimensionalised wall oscillation frequency, we note that
U1(tΩ + π) = −U(tΩ) and Ui,rms(tΩ + π) = Ui,rms(tΩ). We observe that the turbulent
energy peak occurs near the wall at x2 = 1.43 and tΩ = 2.65, and propagates away from
the wall thereafter.

To construct the resolvent operator, we first choose the spatial scales for the
homogeneous directions. Using the DNS data, we calculate the streamwise energy
spectrum at x2 = 1.43 and tΩ = 2.65, the wall-normal location and phase of the peak
U1,rms. The most energetic streamwise and spanwise scales at that location are k1 = 0.67
and k3 = 4.22, which we choose as the streamwise and spanwise scales for the resolvent
operator. To solve the discrete system, we use a Chebyshev grid in the wall-normal
direction, with N2 = 80, and a uniform temporal discretisation over one period TΩ = 2π,
with Nt = 1600. As in the previous section, U3, U2, dU2,2 and dU3,2 are zero.

We choose the first-order derivative matrix in time Dt and the wall-normal spatial
derivative matrices to be second-order-accurate centred finite difference matrices. We
additionally choose Dt to be circulant to enforce periodicity in time. We compute the
modes for the half-channel and enforce a no-slip and no-penetration boundary condition
at the wall, and a free-slip and no-penetration boundary condition at the centreline.
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Figure 7. (a) Mean streamwise velocity profile and (b) streamwise r.m.s. velocity from tΩ = 0 (blue) to
tΩ = π (red). The profiles shown are at tΩ = nπ/8, n = 0, 1, . . . 8.

Because Dt is a finite difference matrix rather than a Fourier differentiation matrix,
we must implement a filtering step, detailed in § 2.2.5, to exclude the high temporal
wavenumbers. To apply this filtering step, we must assume that the high-frequency waves
are not physically significant for the turbulent Stokes boundary layer problem. We use a
two-stage Daubechies-16 wavelet transform, which is a sparse unitary operator. We note
that the Daubechies-16 operator is not a perfect bandpass filter, and the numerical filtering
operation simply attenuates the high-frequency waves that produce spurious SVD modes
instead of excluding them outright. Nevertheless, due to the high dimensionality of the
problem, it remains advantageous to use sparse transforms. We choose to constrain the
forcing and response modes to the scaling functions and their shifts, which roughly cover
the first quarter of all temporal wavenumbers kt = 0 . . . ,Nt/8.

We compare the results obtained with the wavelet-based resolvent modes with the
results from harmonic resolvent analysis (Padovan et al. 2020). The latter computes a
Fourier-based resolvent analysis simultaneously for multiple temporal wavenumbers and
includes the interactions between them as they are coupled by the temporally evolving
mean profile. For the harmonic resolvent analysis, we use the same Chebyshev grid
as in the wavelet-based method, with N2 = 80. For the sake of comparing with the
wavelet-based method and to account for the filtering step, we choose a frequency
resolution of Nt = 1600/4 = 400. We expect the two methods to produce similar singular
values and modes. The singular values and modes would be equivalent in both cases if we
use a Fourier differentiation operator for the wavelet-based method as in § 3.1.

The modes obtained from harmonic resolvent analysis agree well with those obtained
from wavelet-based resolvent analysis. They occur at the same x2 location, and time
(figure 8a,b), and exhibit roughly the same frequency content (figure 8c). Moreover, the
SVD of the wavelet-based and harmonic resolvent operators yield very similar singular
values. The first twenty singular values are shown in figure 8(d). Despite Daubechies-16
wavelets being imperfect bandpass filters, filtering-out high-frequency waves using the
sparse wavelet transform succeeds in producing resolvent modes that match the leading
modes from harmonic resolvent analysis. We consider that the results for harmonic
resolvent analysis shown in figure 8 are converged: the ones that use a coarser grid
with N2 = 80 and Nt = 300 produced the same 10 leading singular values up to 10−4.
Moreover, the windowed wavelet-based resolvent operator exhibits significant sparsity
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Figure 8. Magnitude contours (25 %, 50 %, 75 % and 90 % of the maximum value) of (a) the wall-normal
component of the principal resolvent forcing mode and (b) the streamwise component of the principal resolvent
response mode for the turbulent Stokes boundary layer; (c) the x2-integrated Fourier spectrum in time for the
principal response modes; (d) singular values from the SVD of the resolvent operators. Results from harmonic
resolvent analysis are shown in red, and those from wavelet-based resolvent analysis in black.

and can be analysed efficiently, despite the larger dimension of the system. Indeed, the
harmonic and wavelet-based resolvent analyses run in similar wall times.

The principal input and output modes corresponding to the chosen spatial scales and
boundary conditions in time are shown in figure 9(a). We observe that the modes are
located at roughly the same wall normal height as the peaks in U1,rms, i.e. x2 ≈ 0.5. We
also observe that the principal input and output modes are synchronised with the peaks in
U1,rms, though the modes tend to peak slightly earlier than U1,rms. This suggests that linear
amplification might provoke the transition to turbulence. The preliminary results presented
in figure 9 suggest that the study of energy amplification in the Stokes boundary layer is
a good candidate for the use of linearised methods, similarly to the turbulent channel flow
(Jiménez 2013).

We also observe that the principal input mode precedes the principal output mode in
time, with the peak of the former occurring �tΩ ≈ 0.063 before the peak of the latter.
Wavelet-based resolvent analysis is able to capture the natural response time between
forcing and response terms under the dynamics of the linearised Navier–Stokes equations.
This time delay is also in line with a physical interpretation of the modes in which the
input modes cause the output modes and must thus occur earlier. The extent to which
this captures important causal mechanisms within the full nonlinear system is yet to be
determined. In future works, it would be interesting to project flow fields onto these
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Figure 9. Real part of (a) φ̆1, and (b) ψ̆1 for the turbulent Stokes boundary layer. The black contour lines are
U1,rms with the levels indicating 50 %, 75 %, 95 % of its maximum value. The vertical dashed lines show the
times of the amplitude peak for the input mode (tΩ = 2.11) and output mode (tΩ = 2.18).

time-separated resolvent forcing and response modes to test whether better correlations
can be obtained between them in the transformed bases.

Additionally, we notice that the only non-zero wavelet coefficients of both the principal
forcing and response modes are those corresponding to the bottom quarter of the set of
resolved frequencies i.e. the lowest four bands in the scalograms shown in figure 10(a).
This validates the windowing step described above. We also see in figure 10(a) that the
frequency content of the principal modes varies with time. The principal forcing mode is
initially composed of lower-frequency waves, whose frequencies are centred in a band
[0, 25Ω]; these waves are gradually shifted up to frequencies centred in [25Ω, 50Ω].
Likewise, the waves composing the principal response mode, initially at frequencies
centred in [25Ω, 50Ω] are also shifted up to higher frequencies. We propose that this
frequency shift is due to the time-varying mean streamwise velocity U1, which acts as
a convection velocity and accelerates the resolvent forcing and response waves. Thus,
we expect the frequency content of the forcing and response modes to vary in tandem
with the changing mean streamwise velocity profile. We define the average location of the
streamwise modes as

xresp.
2,avg :=

∫ T

0

∫ 1

0
x2|ψ̆1|2 dx2 dt∫ T

0

∫ 1

0
|ψ̆1|2 dx2 dt

, (4.1)

and

xforc.
2,avg :=

∫ T

0

∫ 1

0
x2|φ̆1|2 dx2 dt∫ T

0

∫ 1

0
|φ̆1|2 dx2 dt

, (4.2)
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Figure 10. (a) Principal (i) forcing and (ii) response modes in the time-frequency plane; the blue line indicates
U1k1/Ω at xresp.

2,avg = xforc.
2,avg ≈ 0.46; (b) the x2-integrated frequency content in the streamwise component of the

forcing (red) and response (black) modes.

and plot the frequency shift due to the mean convection U1k1/Ω at the average mode
locations in figure 10(a). We observe a good correlation between the shift in the frequency
content of the forcing and response modes and the change in the mean velocity.

We can also use the changing mean velocity profile to explain the difference in
the frequency content between the forcing and response modes. We propose that this
difference in frequency content is due to the different peaking times of the forcing and
response modes: since the modes occur at difference phases of the oscillating mean profile,
they will be convected at different velocities. To verify this, we first Fourier-transform φ̆

and ψ̆ in time to extract their frequency content with better precision, and observe in
figure 10(b) that the average frequency shift between the forcing and response modes is

�ω :=

∫ ΩNt/2

0
ω[ψ̂1] dω∫ ΩNt/2

0
[ψ̂1] dω

−

∫ ΩNt/2

0
ω[φ̂1] dω∫ ΩNt/2

0
[φ̂1] dω

≈ 10.2Ω. (4.3)

We then define the average temporal location of the modes as

tresp.
avg :=

∫ T

0
t[ψ̆1] dt∫ T

0
[ψ̆1] dt

, (4.4)

and

tforc.
avg :=

∫ T

0
t[φ̆1] dt∫ T

0

∫ 1

0
[φ̆1] dt

. (4.5)
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Assuming that both the optimal forcing and response prefer the same natural frequency ω0
with a corresponding streamwise wave speed c0 = ω0/k1, we estimate the shift with

(|U(xresp.
2,avg, tresp.

avg )| − |U(xforc.
2,avg, tforc.

avg |))k1/Ω ≈ 10.5, (4.6)

which roughly matches the observed shift. We repeat this analysis for two other sets of
spatial parameters, (k1, k3) = (0.67, 2.67) and (k1, k3) = (1.33, 2.67), though the plots are
not shown. For the first set, the estimated frequency shift is found to be�ω/Ω ≈ 27 using
(4.6), roughly matching the measured mean frequency shift of �ω/Ω ≈ 26 computed
using a Fourier transform of the response and forcing modes. Similarly, for the second set
of these length scales, the estimated frequency shift due to convection by the mean flow is
�ω/Ω ≈ 14.6 and the measured mean frequency shift is �ω/Ω ≈ 13.4.

Wavelet-based resolvent analysis for this non-stationary flow thus reveals how a
time-varying mean profile affects the linear amplification of perturbations. The mean
velocity profile not only determines the spatial structure of the modes like in § 3.1, but
also their transient behaviour, and in this case, acts as a convection velocity that modulates
their frequency content and wave speeds.

4.2. Channel flow with sudden lateral pressure gradient
Finally, we study a fully developed turbulent channel flow at Reτ = 186 that is subjected
to a sudden lateral pressure gradient dP/dx3 = Π dP/dx1 at t = 0 with Π = 30
(Moin et al. 1990; Lozano-Durán et al. 2021). This flow, commonly referred to as a
three-dimensional (3-D) channel flow, has an initial transient period dominated by 3-D
non-equilibrium effects. Eventually, the flow will reach a new statistically steady state
with the mean flow in the (dP/dx1, dP/dx3) direction parallel to the wall. In the transient
period, the tangential Reynolds stress initially decreases before increasing linearly, with
depletion and increase rate that scales as Πx2/δ (Lozano-Durán et al. 2021).

The mean flow profiles are obtained from Lozano-Durán et al. (2021) and have
non-zero streamwise and spanwise components U1 and U3 (figure 11) as well as non-zero
wall-normal gradients of streamwise and spanwise components dU1,2 and dU3,2. In this
section, we non-dimensionalise velocity by initial friction velocity u∗

τ,0, lengths by the
channel half-height δ∗ and time by δ∗/u∗

τ,0. The Reynolds number for this problem is
Re = Reτ,0 := u∗

τ,0δ
∗/ν. The time domain of the simulation is T = 2.34. To construct the

discrete resolvent operator, we use a Chebyshev grid of size N2 = 65 in the x2-direction
extending from x2 = 0 to x2 = 1. For the spatial derivatives in the x2-direction, we choose
second-order-accurate finite difference matrices. We enforce a no-slip and no-penetration
boundary condition at the wall and a free-slip and no-penetration condition at the
centreline. The boundary condition for the temporal finite difference operator Dt is chosen
to enforce a Neumann-type condition, ∂t(·)|t=0 = ∂t(·)|t=T = 0. To reduce the impact of
the boundary condition on the modes at t = 0 we extend U1 and U3 to the time interval
t ∈ [−0.58, 2.34] and assume Ui(t ≤ 0, y) = Ui(t = 0, y) and dP/dx3(t < 0) = 0. When
the modes are plotted, we only show the original time domain t ∈ [0, 2.34] and exclude
the contribution from negative times. We use a temporal resolution of Nt = 1000 for the
extended time frame. In this case, we note that we do not obtain spurious modes due to the
distortion of high frequency waves, and that filtering-out those waves as in § 4.1 has little
effect on the results.

Regarding the spatial scales for the homogeneous directions, we choose them to capture
near-wall streaks at three different times: t = 0, 1.3 and 1.94. We thus tune them to
represent the aspect ratio characteristic of near wall streaks, i.e. λ+1 ≈ 10λ+3 for a mean
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Figure 11. Mean (a) streamwise and (b) spanwise velocity profile from t = 0 (blue) to t = 2.34 (red).
The times shown are t = 0, 0.58, 1.17, 1.76, 2.34. Data taken from Lozano-Durán et al. (2021). Time t is
non-dimensionalised with uτ,0/δ.
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Figure 12. (a) Friction velocity uτ and (b) wall shear-stress angle γ = tan−1(τ3/τ1) as a function of time.
Data taken from Lozano-Durán et al. (2021). The vertical dashed lines are at t = 0, 1.38, 1.94, and correspond
to the choice of λ+1 and λ+3 for the modes plotted in figure 13.

flow with a dominant streamwise component, and λ+3 ≈ 10λ+1 for a mean flow with a
dominant spanwise component. Here, (·)+ indicates the wall scaling with Reτ,0, before
the lateral pressure gradient is applied. To capture near-wall streaks at t = 0, we choose
(λ+1 , λ

+
3 ) = (λ+1,0, λ

+
3,0) := (1000, 100) as in § 3.1, which corresponds to the spatial scales

preferred by the near-wall streaks at Reτ = 186 prior to the lateral pressure gradient.
Under the shear conditions at t = 1.3, 1.94, we must take into account the stronger mean
shear in the spanwise direction (Lozano-Durán et al. 2021) by multiplying by a factor
of Reτ (t)/Reτ,0 = u∗

τ (t)/u
∗
τ,0 = uτ , plotted in figure 12(a). We also take into account

the new orientation of the streaks by applying a rotation by the wall-shear stress angle
γ (t) = tan−1(τ3/τ1), where τi is the instantaneous wall-shear stress in the xi direction
(see figure 12b). Using the expressions λ+1 ≈ (λ+1,0 cos(γ (t))− λ+3,0 sin(γ (t)))uτ (t) and
λ+3 ≈ (λ+1,0 sin(γ (t))+ λ+3,0 cos(γ (t)))uτ (t), we obtain spatial parameters (λ+1 , λ

+
3 ) =

(264, 1827) corresponding to t = 1.3, and (λ+1 , λ
+
3 ) = (329, 2898) corresponding to t =

1.94.
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Figure 13. Real part of (a,c,e) ψ̆1 and (b,d, f ) ψ̆3 for the turbulent channel subject to a spanwise pressure
gradient. The chosen spatial scales are (a,b) λ+1 = 1000, λ+3 = 100, (c,d) λ+1 = 264, λ+3 = 1827 and (e, f ) λ+1 =
329, λ+3 = 2898. The vertical dashed lines mark (a,b) t = 0, (c,d) t = 1.38 and (e, f ) t = 1.94.

The resolvent modes for the first wavelength pair (λ+1 , λ
+
3 ) = (1000, 100) are shown

in figure 13(a,b). The magnitude of the modes in frequency-time space is also plotted
in figure 14(a,b). The resolvent modes are temporally centred around t = 0 and exhibit a
predominant streamwise component. The modes are located in a region x2 < 0.25, which
corresponds to x+

2 < 45, i.e. the buffer region. Thus, at t = 0, the modes capture the
highly energetic near-wall streaks. The subsequent temporal decay of these modes can be
explained by the changing flow conditions, notably the growth of the spanwise wall-shear
stress τ3, and consequently uτ (see figure 12). Under these conditions, the spatial scales
preferred by the near-wall streaks stretch as uτ increases and the wall-shear stress tensor
rotates towards the x3 direction.

The response mode for the second pair of spatial scales, (λ+1 , λ
+
3 ) = (264, 1827),

tuned to conditions at t = 1.38, are plotted in figure 13(c,d). The frequency-time map
of the modes is shown in figure 14(c,d). Similar to the first case, the modes are centred
around t = 1.38, indicating that the wavelet-based resolvent analysis is able to identify the
non-equilibrium effects of the non-stationary flow. We note that the spanwise component
of the response mode is much more dominant than the streamwise component, which
reflects the new wall-shear angle γ = 75.7◦. Finally, for the third case, (λ+1 , λ

+
3 ) =

(329, 2898), tuned to conditions at t = 1.94, we observe that the modes (figures 13e, f and
14e, f ) are not centred around the target time. We speculate that this is due to the temporal
boundary condition at t = 2.34. As the flow is not at a statistically steady state at this time,
a Neumann boundary condition may not be the most suitable boundary condition. The
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Figure 14. Principal (a,c,e) forcing (b,d, f ) response modes in the frequency-time plane for the turbulent
channel subject to a spanwise pressure gradient, for (a,b) λ+1 = 1000, λ+3 = 100, (c,d) λ+1 = 264, λ+3 = 1827
and (e, f ) λ+1 = 329, λ+3 = 2898.

modes cannot grow beyond the boundary due to the boundary condition and are artificially
damped near the end of the temporal domain.

Figure 15 shows the principal response mode in the physical domain for the three
target length scale pairs, in the reference frame rotated by γ about the x2-axis. We
denote the streamwise and spanwise directions in the rotated reference frame by y1
and y3, respectively, with y1 = x1 cos(γ )− x3 sin(γ ) and y3 = x1 sin(γ )+ x3 cos(γ ) The
modes resemble each other qualitatively, and capture elongated near-wall streaks in the
direction of the rotated flow. The length and spanwise spacing of the streaks increases with
wall shear stress, as expected. Moreover, the response modes for (λ+1 , λ

+
3 ) = (264, 1827)

and (λ+1 , λ
+
3 ) = (329, 2898) (figure 15b) are concentrated closer to the wall than for

999 A53-30

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

90
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.903


Wavelet-based resolvent analysis

0

0.5

5

0

–5

5

0

–5

0.5

0

–0.5

1.0

0.5

1.0

0.5

1.0

0.5 1.0

y3

x2

0 5 10

y3

0 5 10 15

y3

(b)(a) (c)

Figure 15. Principal response mode in the reference frame rotated about x2 by an angle γ , at (a) t = 0, (b) t =
1.38 and (c) t = 1.94. The contours represent the streamwise component; the arrows represent the velocity field
in the wall-parallel plane.

(λ+1 , λ
+
3 ) = (1000, 100) (figure 15a), which indicates that the region of high-sensitivity

to forcing moves closer to the wall as Reτ increases. This is in line with the behaviour of
near-wall turbulence: for higher Reτ , the buffer and logarithmic layers, which contain the
bulk of turbulent energy in channel flow, are closer to the wall. We note, however, that
the mode corresponding to (λ+1 , λ

+
3 ) = (329, 2898) is expected to be located at an even

lower wall-normal height than the mode corresponding to (λ+1 , λ
+
3 ) = (264, 1827), and

attribute its higher location to the effect of the temporal boundary condition at the end of
the temporal domain.

We can compute flow and shear angles from the principal resolvent mode and compare
them to the wall shear stress angle γ extracted from DNS. We define the mode shear angle
as

γ̆ (x2, t) =
∣∣∣∣tan−1

(
dψ3/dx2

dψ1/dx2

)∣∣∣∣
x1=x1,max,x3=x3,max

, (4.7)

where ψi denotes the inverse Fourier and wavelet transform of the ith mode component,
and (x1,max, x3,max) denotes the location in the x1–x3 plane where the amplitude of the
response mode ψ is maximal at each x2. We plot the results for the three spatial parameters
at their respective target times (figure 16). For the mode corresponding to (λ+1 , λ

+
3 ) =

(1000, 100), the mode shear angle γ̆ matches the wall shear angle of zero from DNS at
a wall-normal location slightly farther from the wall than the location of peak amplitude.
For (λ+1 , λ

+
3 ) = (264, 1827) and (λ+1 , λ

+
3 ) = (329, 2898), we observe that γ̆ matches γ

well at the amplitude peaks. For all three sets of spatial parameters, the mode angles at the
wall itself differ significantly from the wall shear angle from DNS, though this is expected
since the modes obtained are lifted from the wall and decay to match the wall boundary
condition.

The amplification of the response mode given by the leading singular value of
the resolvent operator differs across the chosen spatial parameters. The energy of the
principal response mode corresponding to (λ+1 , λ

+
3 ) = (1000, 100), which peaks for t < 0,

is amplified by a factor of σ 2
1 ≈ 8, while the energy of the modes corresponding to

(λ+1 , λ
+
3 ) = (264, 1827) and (λ+1 , λ

+
3 ) = (329, 2898), respectively, peaking at t = 1.34

and t = 1.94, are, respectively, amplified by a factor of σ 2
1 ≈ 0.4 and σ 2

1 ≈ 0.6, indicating
an effective energy suppression. A decrease in Reynolds stresses was similarly observed
in the fully turbulent system simulated during the development of the spanwise mean flow
(Lozano-Durán et al. 2021), and it was proposed that the developing spanwise mean flow
generates smaller transverse structures close to the wall which disrupt the coherence of
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Figure 16. Shear angle of the principal response mode for (a) (λ+1 , λ
+
3 ) = (1000, 100) at t = 0, (b) (λ+1 , λ

+
3 ) =

(264, 1827) at t = 1.38, and (c) (λ+1 , λ
+
3 ) = (329, 2898) at t = 1.94. The red vertical line (- -, red) indicates

the wall shear-stress angle at the chosen times; the horizontal black line indicates the location of the peak of
kinetic energy |ψ̆1|2 + |ψ̆2|2 + |ψ̆3|2 at the target times, and the dashed horizontal lines indicate where the
mode energy is at 10 % of the peak.
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Figure 17. Flow angle of the principal forcing (red) and response (black) modes for (a) (λ+1 , λ
+
3 ) =

(1000, 100), (b) (λ+1 , λ
+
3 ) = (264, 1827) and (c) (λ+1 , λ

+
3 ) = (329, 2898). The vertical lines indicates the

amplitude peaks for the forcing (red) and response (black) modes, and the dotted black line represents γ (t).

the dominant streamwise rolls and inhibit them from vertically transporting momentum
upward from the near-wall region.

The behaviour of the wavelet-based resolvent modes allows us to expand this proposed
explanation. The optimal forcing for the mean flow conditions at a time t is in the form of
rolls approximately pointing in the direction γ (t), and its corresponding response mode
will eventually align itself with the forcing angle after a period of transient growth as
shown in figure 17(a,b). Due to the non-normality of the linearised system, the optimal
forcing peaks before the target time t, and thus the optimal forcing may be instantaneously
misaligned with the rotating mean flow during the transient growth period of the response.
Indeed, the forcing mode is not computed to maximise the instantaneous kinetic energy
amplification, but maximises instead the time-integrated kinetic energy of the response
over the entire temporal domain.

More insight can be gained by considering the linearised equation governing the
wall-normal vorticity v2,

(
∂t + U1∂x1 + U3∂x3 − 1

Re
(∂2

x1
+ ∂2

x2
+ ∂2

x3
)

)
v2 =

(
−dU1

dx2
∂x3 + dU3

dx2
∂x1

)
u2 + g2,

(4.8)
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Figure 18. Amplitudes for the streamwise (blue •), spanwise (red �) and wall-normal (green �) components
of the principal forcing (dotted line, hollow markers) and response (solid line, filled markers) modes, for
(a) (λ+1 , λ

+
3 ) = (1000, 100), (b) (λ+1 , λ

+
3 ) = (264, 1827) and (c) (λ+1 , λ

+
3 ) = (329, 2898).

where g2 := ∂x3 f1 − ∂x1 f3 denotes the external forcing. We note that in this problem,
the mean wall-normal flow U2, and the wall-normal gradients dU1/dx2 and dU3/dx2
are zero. Introducing a flow angle μ := tan−1(U3/U1) and a shear angle υ :=
tan−1((dU3/dx2)/(dU1/dx2)), we can rewrite (4.8) in the reference frame locally rotated
by μ as(

∂t + (U2
1 + U2

3)
1/2∂x′

1
− 1

Re
(∂2

x′
1
+ ∂2

x2
+ ∂2

x′
3
)

)
v2

=
(

dU2
1

dx2
+ dU2

3
dx2

)1/2 (
− cos(μ− υ)∂x′

3
+ sin(μ− υ)∂x′

1

)
u2 + g2, (4.9)

where (x′
1, x2, x′

3) denote the coordinates rotated anticlockwise by angle μ in the x1–x3
plane. The left-hand side of (4.9) is identical to the classical Squire equation for
perturbations about a one-dimensional streamwise mean flow, with an effective advection
velocity of (U2

1 + U2
3)

1/2. The right-hand side includes a lift-up term modified by the
misalignment between the mean shear and velocity profiles. If the mean flow is at
equilibrium and μ = υ, we obtain an identical lift-up term to the classical Squire
equation, with an effective mean shear of ((dU1/dx2)

2 + (dU3/dx2)
2)1/2. The lift-up

term in the Squire equation constitutes a way for the wall-normal velocity perturbations
to force the streamwise and spanwise components, as discussed in § 3.2 and Jiménez
(2013, 2018). Through this coupling, the streamwise and spanwise velocity components
can be efficiently forced by f2 along with f1 and f3. However, in a non-equilibrium
rotating flow, the mean shear profile lags behind the mean velocity, i.e. μ /= υ, causing a
misalignment between the two profiles which is particularly pronounced for regions farther
away from the wall. The term pertaining to the misalignment in (4.9) damps the effect of
the wall-normal velocity perturbation u2 on the wall-normal vorticity, and consequently,
the streamwise and spanwise velocity perturbations. This is illustrated by figure 18: for
the initial one-dimensional mean flow configuration in figure 18(a), the optimal forcing
mode exploits the lift-up mechanism via a strong wall-normal component; for the rotated
configurations in figure 18(b,c), the wall-normal component of the optimal forcing is
significantly attenuated.

Thus, the lag of the mean shear profile disrupts the coupling between the
wall-normal, and the streamwise and spanwise velocity perturbations. In a non-equilibrium
rotating mean flow, wall-normal velocity perturbations are less efficient at producing
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slow-decaying streaks in the flow direction (than in § 3.2, for example), and the mean
flow selects rolls with a much weaker wall-normal component.

5. Conclusion

This work expands the resolvent analysis framework to non-stationary flow problems.
The resolvent operator is traditionally constructed for flow quantities that are
Fourier-transformed in the homogeneous spatial directions and in time. Such a resolvent
operator cannot be used to study time-localised nonlinear forcing or a time-varying mean
flow. Instead, we construct a wavelet-based resolvent operator by applying a wavelet
transform in time while keeping the Fourier transform for the homogeneous spatial
directions, thus trading the functional dependence on time with a dependence on α and β.

This resolvent operator, provided we use an orthonormal wavelet basis, is equivalent
to the Fourier-based resolvent analysis for statistically stationary flows. Even in such
cases, wavelet-based resolvent analysis can be modified through windowing in order
to explore the effects of transient forcing localised to time scales of interest, such as
those characterising the logarithmic layer. In the case of transiently forced channel flow,
the wavelet-based resolvent analysis with windowing reveals that the optimal response
modes are transiently amplified rolls. The significant transient energy growth of these
streaks is expected of non-normal systems. Moreover, the optimal forcing and response
modes exhibit characteristics of the Orr mechanism, which supports the claim that this
mechanism plays an important role in the linear amplification of velocity perturbations.

The wavelet-based resolvent analysis is notable in its ability to reflect the effects of
a non-stationary mean flow. In the case of the turbulent Stokes boundary layer, the
wavelet-based resolvent modes, which encode time, allow us to track the spatial and
temporal location of the peak amplification alongside the varying mean flow. The resolvent
modes reveal an increased sensitivity to forcing and perturbation amplification near the
peaks of the streamwise r.m.s. velocity. This suggests that linear mechanisms may be an
important source of energy amplification in this type of flow, as is believed for channel
flow. We also observe that the input modes precede the output modes, opening the
possibility to study causality in turbulent flows using resolvent analysis. Wavelet-based
resolvent modes also encode frequency information. This ability sheds new light on
the properties of linear amplification in the Stokes oscillating boundary layer: there
exists an optimal forcing frequency to which the linearised flow is most sensitive, but
the corresponding optimal response trajectory is shifted to higher frequencies by the
decelerating mean flow. Wavelet-based resolvent analysis can thus be a useful tool for
analysing systems in which forcing and response prefer different frequencies.

Finally, for the 3-D channel flow, the resolvent modes are able to identify the effect
of the varying flow conditions, mainly the increasing shear velocity and rotating wall
shear stress, on the principal resolvent modes. We compute the resolvent modes using
the length scales preferred by near-wall streaks for flow conditions at three different
times. The resulting resolvent response modes peak around the chosen times, with the
exception of the time close to the end of the temporal domain. The predominant velocity
component for the resolvent modes progressively shifts from the streamwise component to
the spanwise one, mirroring the reorientation of the mean flow. Wavelet resolvent modes
reflect time-varying mean flow conditions and help locate energetic near-wall streaks in
space and time, and identify their preferred spatial scales. This can shed light on the
flow conditions that amplify these coherent structures, or, conversely, suppress them. The
wavelet-based modes reflect a damping of the effectiveness of the lift-up mechanism at
energising streamwise near-wall streaks, which mirrors the reduction of the wall-normal
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transport of streamwise momentum observed in DNS. Thus, the cases considered in this
work showcase the versatility of the wavelet-based formulation in analysing transient linear
energy amplification in flows with either statistically stationary and non-stationary mean
profiles.
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