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Abstract

In this paper, we count a dual set of Stirling permutations by the number of alternating runs and study
properties of the generating functions, including recurrence relations, grammatical interpretations and
convolution formulas.
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1. Introduction

Denote by {Z} the Stirling number of the second kind, which is the number of ways to
partition [n] = {1,2,...,n} into k blocks. Let D be the differential operator d/dx and
let ¥ = xD. It is clear that Dx = xD + 1. A classical result in the theory of normal
ordering is the following (see [15]):

n

9 = Z {Z})/‘Dk forn > 1.

k=1

Let

By induction, one can easily verify that

2n—1 k
LT (0 k
9 (r(x)) = i1 T x forn> 1,

(1= (1 + 01 V1 = 22

where the T'(n, k), k € [2n — 1], are positive integers. It is clear that the numbers
T(n, k) satisfy the initial conditions 7(1,1) =1 and T(1,k) =0 for k# 1. Let
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T,.(x) = Ziﬁ]l T(n, k)x*. Using 9" (r(x)) = 99 (r(x))), we see that the polynomials
T,(x) satisfy the recurrence relation

Thi1(x) = Cnx + DxT,(x) + x(1 — xz)T,'l(x) (1.1)
for n > 0, with the initial values To(x) = 1. In particular, T,(1) = =T 1(-1) =
2n — D!! for n > 1. The first few T,,(x) are

Ti(x) = x,

Tr(x) = x+ x>+ x°,
Ts3(x) = x + 3x% + 7 + 32 + 2,
Ts(x)=x+ 7x2 +29x° + 31x* +29x° + 72° + &7,

Equating the coefficients of x* on both sides of (1.1), we see that the numbers T (n, k)
satisfy the recurrence relation

Tn+1,k)=kT(n,k) + T(n, k= 1)+ 2n -k +2)T(n,k—2). (1.2)

The motivating goal of this paper is to find a combinatorial interpretation of the
numbers 7'(n, k).
In [5], Carlitz introduced C,,(x) defined by

i {n + k}xn G

— k (] _ x)2k+l
and asked for a combinatorial interpretation of C,(x). Riordan [16] noted that C,(x) is
the enumerator of trapezoidal words with n elements by number of distinct elements,
where trapezoidal words are such that the ith element takes the values 1,2,...,2i — 1.
Gessel and Stanley [7] gave another combinatorial interpretation of C,(x) in terms of
descents of Stirling permutations. A Stirling permutation of order n is a permutation
oc=0c(1)oc®2)---0c(2n - 1)o(2n) of the multiset {1, 1,2,2,...,n,n} such that for each
i, 1 <i< n, all entries between the two occurrences of i are larger than i. Denote by
Q, the set of Stirling permutations of order n. For o € Q,, let 0(0) = c(2n+1)=0
and let

des (o) =#{i| o(i) > o(i + 1)},
asc(o)=#i|o(—-1) <o@)},
plat(o) =#{i| o)) = o(@ + 1)}
denote the number of descents, ascents and plateaux of o, respectively. Gessel and
Stanley [7] proved that
Co(x)= D 2.

oeQ,
Boéna [3, Theorem 1] introduced the plateau statistic on @,, and proved that descents,
ascents and plateaux are equidistributed over Q. The reader is referred to [8, 9, 13, 14]
for recent progress on the study of Stirling permutations.
In the next section, we show that 7,(x) is the enumerator of a dual set of Stirling
permutations of order n by the number of alternating runs.
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2. Combinatorial interpretation of 7'(n, k)

Let 0 = 0(1)o(2)---0(2n) € Q,. Let ® be an injection which maps each first
occurrence of entry jin o to 2j and the second j to 2j — 1, where j € [n]. For example,
®(221331) = 432651. The dual set D(Q,) of @, is defined by

Q) ={r|oceQ, ®()=nr.

Clearly, ®(Q,) is a subset of S,,. For m € ®(Q,), the entry 2j is to the left of
2j—1, and the entries in 7 between 2j and 2j — 1 are all larger than 2j, where
1 < j<n. Let ab be an ascent in o, that is, a < b. Using ®, we see that ab maps
into 2a — 1)(2b — 1), 2a — 1)(2b), (2a)(2b — 1) or (2a)(2b) and vice versa. Note that
asc (o) = asc (®(0)) = asc (7). Therefore,

C.(x) = Z xsem,

ned(Q,)

Let S, denote the symmetric group of all permutations of [r]. We say that 7 € S,
changes direction at position i if either 7(i — 1) < (i) > n(i + 1) or n(i — 1) > n(i) <
(i + 1), where i € {2,3,...,n— 1}. We say that 7 has k alternating runs if there are
k — 1 indices i such that 7 changes direction at these positions. Denote by altrun (rr) the
number of alternating runs in 7. It should be noted that 7 € ®(Q,) always ends with a
descending run. We now present the following result.

THEOREM 2.1. We have T (n, k) = #{r € ®(Q,) | altrun () = k}.

Proor. There are three ways in which a permutation 7 € ®(Q,,.1) with altrun () = k
can be obtained from a permutation o € ®(Q,) by inserting the pair (2n + 2)(2n + 1)
into consecutive positions.

(a) If altrun (o) = k, then we can insert the pair (2n + 2)(2n + 1) right before the
beginning of each descending run, and right after the end of each ascending run.
This accounts for kT (n, k) possibilities.

(b) If altrun (o) = k — 1, then we distinguish two cases: when o starts in an
ascending run, we insert the pair (2n + 2)(2n + 1) to the front of o; when o
starts in a descending run, we insert the pair (2n + 2)(2n + 1) right after the first
entry of . This gives T'(n, kK — 1) possibilities.

(c) If altrun (o) = k — 2, then we can insert the pair (2n + 2)(2n + 1) into the
remaining (2n + 1) — (k—2) — 1 =2n — k + 2 positions. This gives (2n —
k + 2)T (n, k — 2) possibilities.

Therefore, the numbers 7T'(n, k) satisfy the recurrence relation (1.2), and this completes
the proof. O

A polynomial f(x) =}, aix* is symmetric if a, = a,—; for all 0 < k < n, while it
is unimodal if there exists an index m such that

ay< a1 < Sy LAy 2 Ayl 20 2 Ay

TueorREM 2.2. The polynomial T,(x) is symmetric and unimodal.
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Proor. It is immediate from (3.1) that T,(x) is a symmetric polynomial. We show
the unimodality by induction on n. Note that T)(x) = x, T»(x) = x + x> + x> and
T3(x) = x 4+ 3x> + 7x° + 3x* + x° are all unimodal. Thus, it suffices to consider the
case n > 3. Assume that T,,(x) is symmetric and unimodal. For 1 <k <n + 1, it follows
from (1.2) that

T+ 1,k)=Tn+1,k=1)
= (k- )T, k) — T(n,k— 1) + (T(n,k — 1) — T(n, k — 2))
+Q2n—k+2)(T(n,k—2)— T(n,k - 3)) + (T(n, k) — T(n,k — 3)) > 0,

where the inequalities follow from the induction hypothesis. This completes the
proof. ]

3. Grammatical interpretations

The grammatical method was introduced by Chen [6] in the study of exponential
structures in combinatorics. For an alphabet A, let Q[[A]] be the rational commutative
ring of formal power series in monomials formed from letters in A. A context-free
grammar over A is a function G : A — Q[[A]] that replaces a letter in A by a formal
function over A. The formal derivative D is a linear operator defined with respect to
a context-free grammar G. More precisely, the derivative D = Dg: Q[[A]] — Q[[A]]
is defined as follows: for x € A, we have D(x) = G(x); for a monomial u in Q[[A]],
D(u) is defined so that D is a derivation and, for a general element g € Q[[A]], D(q)
is defined by linearity. In the rest of this section, we first recall some definitions of
permutation statistics and then present grammatical interpretations and convolution
formulas related to T,,(x).

Letr =n(1)n(2)---n(n) € S,. An interior peak in ris anindex i€ {2,3,...,n— 1}
such that 7(i — 1) < (i) > n(i + 1). A left peak in & is an index i € [n — 1] such that
(i — 1) < n(i) > n(i + 1), where we take m(0) = 0. Let ipk (1) (respectively Ipk (7)) be
the number of interior peaks (respectively left peaks) in 7. Define

M, (x) = Z KAPR@ N (x) = Z APk,
ne®(Q,) TeD(Q,)
It follows from [13, Theorem 4] that M,(x) = x"N,(1/x). Moreover, from [13,
Theorem 5],
(1 + 0T (x) = XM, (x*) + Ny(x?).
We now recall some properties of N,(x). Let N,(x) = 2;_, N(n, k)x*. Apart from
counting permutations in the set ®(Q,) with k left peaks, the number N(n, k) also has
the following combinatorial interpretations.

(m;) Lete=(ej,e2,...,e,) €Z" and let I, ={e € Z" | 0 < e; < (i — 1)k}, the set of
n-dimensional k-inversion sequences (see [17]). The number of ascents of e is
defined by

. . €; €it+1
—#li1<i<n-1 .
asc (e) {l stsn (i—l)k+1<ik+1}

Savage and Viswanathan [18] found N(n, k) = #{e € I, : asc(e) = n — k}.
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(m) We say that an index i € [2n — 1] is an ascent plateau of m € Q, if n(i — 1) <
7(i) = n(i + 1). The number N(n, k) counts Stirling permutations in @, with k
ascent plateaux (see [13, Theorem 3]).

(m3) The number N(n, k) counts perfect matching on [2n] with the restriction that
there are only k matching pairs with even maximal elements (see [14]).

The polynomials N,(x) satisfy the recurrence relation
Nut1(x) = 2n + 1)xN, (x) + 2x(1 — X)N;(x)
with initial value Ny(x) = 1. The first few of the N,(x) are

Ni(x)=x, Na(x)=2x+2%,
N3(x) = 4x + 1022 + X3, Na(x) = 8x + 60x2 + 36x° + x*.

The exponential generating function for N,(x) is given by (see [10, Section 5])

7" [ 1-x
N(x,z)= ZNn(X); = PR ETEE 3.1

n>0
Let
n—1
Ry(x)= ) xMmn® =" Rin, k).
eSS, k=1

The study of alternating runs of permutations was initiated by André [2] and he proved
that the numbers R(n, k) satisfy the recurrence relation

R(n,k)=kR(n—1,k) + 2R — 1,k— 1)+ (n — H)R(n — 1,k — 2)

for n,k > 1, where R(1,0) =1 and R(1,k) =0 for k > 1. There is a large literature
devoted to the numbers R(n, k) (see [19, A059427]). The reader is referred to [4, 11]
for recent results on this subject.

Recall that a descent of a permutation 7w € &, is a position i such that 7(i) > 7(i + 1).
Denote by des (i) the number of descents of 7. Then the equations

= 3= 3 )

nes, k=1

define the Eulerian polynomial A,(x) and the Eulerian number <Z> Denote by B,

the hyperoctahedral group which is the group of signed permutations of the set +[n]
such that (i) = —n(i) for all i, where +[n] = {x1,+2,...,+n}. For each n € B,,
we define

desg(m) :=#{ie{1,2,...,n— 1} | x(@) > n(i + 1)},

des g(m) :=#{i €{0,1,2,...,n— 1} | n(i) > n(i + 1)},
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where (0) = 0. Following [1], the flag descent number of r is defined by

2des a(m)+ 1 ifn(1) <O,
2des 4 () otherwise.

fdes (7) := {
Let

B (x) = Z desa(m) — Z B(n, k),
k=0

neB,

2n
S,(x) = Z xfdes () _ Z S(n, k)X,
k=1

neB,

The polynomial B,(x) is called an Eulerian polynomial of type B, while B(n, k) is called
an Eulerian number of type B (see [19, A060187]). It follows from [1, Theorem 4.3]
that the numbers S (n, k) satisfy the recurrence relation

Smk)=kSh-1,k)+Sn-1,k-1)+2n—-k+1)S(n—-1,k-2)

for n,k > 1, where S(1,1) =S(1,2) =1 and S(1,k) =0 for kK > 3. The polynomial
S,(x) is closely related to the Eulerian polynomial A,(x):

1
S,(x)=-(1+x)"A,(x) forn>1,
X

which was established by Adin et al. [1].
Consider the context-free grammar

A={xy,z, G={x—-pxy2,y = qxy,2,2—rxy 2}

where p(x,y,z),q(x,y,2z) and r(x,y,z) are polynomials in x,y and z. The diamond
product of z with the grammar G is defined by

Goz={x—= p(xy, 27y = qx,y,2)z,2 = 1(x,y,2)z}.
We now recall two results on context-free grammars.
Proposition 3.1 [11, Theorem 6]. If
G ={x— xy,y > yz,z -y}, 3.2)
then

n
D'(x%) = x* Z R(n + 1, k)y* "+,
k=0

Setting x = z = 1, we have D"(x*)|y=-=1 = Rpys1(9).
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Prorosition 3.2 [12, Theorem 10]. Consider the context-free grammar

G’ ={x—> xyz,y = y22,z = y°z}, (3.3)
which is the diamond product of z with the grammar G defined by (3.2). Forn > 1,
2n
Dn(.xy) — xZ S(n, k)y2n_k+lzk,
k=1
Dn(yZ) — Z B(Vl, k)y2n72k+lz2k+l’
k=0
Dn(y) — Z N(I’l, k)yZn—2k+1Z2k’
k=1

n
D”(Z) — Z N(n, n—rk+ 1)y2n72k+2Z2k71’
k=1

n n ~
D'y = 2" Z <k>y2n 22 2k
k=1

We can now deduce the following result.

TueorREM 3.3. Let G’ be the context-free grammar given by (3.3). Then, for n > 1,
2n-1
D'(x)=x ) T(n k2",
k=1

k=1 k

D) = 223(y + 2! Z <”>ykzn—k+1_

Setting x = z = 1, we have D'(x)|y=.=1 = Tn(y) and D"(x*)]x=.=1 = 2(1 + y)"1A,(y).
Proor. Note that D(x) = xyz and D?*(x) = xyz> + xy°z> + xy°z. For n > 1, we define
t(n, k) by
Dn(X) =x Z t(n, k)ykZZn—k'
k=1
Then
Dn+1(x) = D(D"(x)) = x Z 1(n, k)yk+lz2n—k+1 x Z ke(n, k)ykZZn—k+2
k=1 k=1
+Xx Z(Zn — k)t(n, )y,
k=1

Hence,

tn+ 1,k) =kt(n, k) + tin,k— 1) + Cn — k + 2)t(n, k — 2). (3.4)

By comparing (3.4) with (1.2), we see that the numbers #(n, k) satisfy the same
recurrence relation and initial conditions as 7'(n, k), so they agree. The assertion for
D"(x?) can be proved in a similar way. O
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It follows from Leibniz’s formula that

D)= (:)Dk(u)D”_k(v).

k=0

Hence,

HITSEDY (Z)D"(x)D""‘(xx
k=0

n

D"(x) = D" (xyz) = Z (Z)Dk(x)D"k(yz) = Z (Z)Dk(xy)D"k(z).

k=0 k=0

n

Therefore, we can use Proposition 3.2 and Theorem 3.3 to get several convolution
identities.

CoroLLARY 3.4. Forn > 1,

21 + 0" An(x) = Zig ()T Toi(x), (3.5)
Toi1 () = x Lo (})Te(x) Baoi(62),
T (%) = x Sz (7)SkCONak (62).

Let T'(x,2) = X2y Tn(x)(z"/n!). Recall that the exponential generating function for
A, (x) is given as follows (see [19, A008292]):

1-x
1 — xet1-9"

A = ) A = (3.6)

n=0

Combining (3.5) and (3.6),

Pe(Ca VeSS VI 1—x2
T(x2) = ; - S
1+x e zZ(x—1)(x+1) _ x2
n n 2
2 Z_ _ 2n i Z_ — 1——X
Z Mn(x )l’l‘ = Z-x Nn(xz)n! - ezz(x—l)(erl) _ x2'

n=0 n=>0

From (3.1),

Note that
ez(x— D(x+1) +x

=1+ Z(x— 1)"(x + 1)”*‘}11—';.

1+x
n>1

Therefore, from (3.7),

n—1

T,(x) = M,(x%) + Z (Z)Mk(xz)(x — D%+ )Y forn> 1.
k=0
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4. Concluding remarks

Let f(x) and F(x) be two polynomials with real coefficients. We say that f(x)
separates F(x) if deg F = deg f + 2 and the sequences of real and imaginary parts
of the zeros of f(x) respectively separate those of F(x). In other words, if we set
f(x)=a I—[;f;]l(x +pj+qi)x+p;j—gq;i)and F(x)=b ]—[’J’.:](x + 5+ i) (x + 55— 1),
where a, b are respectively leading coefficients of f(x), F(x), py = p> =+ = pn-1,
qIZ2q> - 2qn1,51 =85 =2--=2s,andt) >t >+ >t,, then

S| 2P12822P22 2 Sp—1 = Pn—1 = Sy
hzq1z2bz2qy>- 2l 2qp-1 21y

Based on empirical evidence, we propose the following conjecture.

Consecture 4.1. For n > 2, all zeros of T,(x)/x are imaginary and T,(x)/x separates
Tn+l (x)/x-
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