ENUMERATION OF A DUAL SET OF STIRLING PERMUTATIONS BY THEIR ALTERNATING RUNS

SHI-MEI MA[™] and HAI-NA WANG

(Received 5 December 2015; accepted 8 February 2016; first published online 1 April 2016)

Abstract

In this paper, we count a dual set of Stirling permutations by the number of alternating runs and study properties of the generating functions, including recurrence relations, grammatical interpretations and convolution formulas.

2010 Mathematics subject classification: primary 05A15; secondary 05A19.

Keywords and phrases: alternating runs, context-free grammars, Eulerian polynomials, Stirling permutations.

1. Introduction

Denote by $\binom{n}{k}$ the *Stirling number of the second kind*, which is the number of ways to partition $[n] = \{1, 2, ..., n\}$ into k blocks. Let D be the differential operator d/dx and let $\vartheta = xD$. It is clear that Dx = xD + 1. A classical result in the theory of normal ordering is the following (see [15]):

$$\vartheta^n = \sum_{k=1}^n {n \brace k} x^k D^k \quad \text{for } n \ge 1.$$

Let

$$r(x) = \frac{\sqrt{1+x}}{\sqrt{1-x}}.$$

By induction, one can easily verify that

$$\vartheta^{n}(r(x)) = \frac{\sum_{k=1}^{2n-1} T(n,k) x^{k}}{(1-x)^{n} (1+x)^{n-1} \sqrt{1-x^{2}}} \quad \text{for } n \ge 1,$$

where the T(n,k), $k \in [2n-1]$, are positive integers. It is clear that the numbers T(n,k) satisfy the initial conditions T(1,1) = 1 and T(1,k) = 0 for $k \ne 1$. Let

This paper is supported by NSFC (11401083).

^{© 2016} Australian Mathematical Publishing Association Inc. 0004-9727/2016 \$16.00

 $T_n(x) = \sum_{k=1}^{2n-1} T(n,k) x^k$. Using $\vartheta^{n+1}(r(x)) = \vartheta(\vartheta^n(r(x)))$, we see that the polynomials $T_n(x)$ satisfy the recurrence relation

$$T_{n+1}(x) = (2nx+1)xT_n(x) + x(1-x^2)T_n'(x)$$
(1.1)

for $n \ge 0$, with the initial values $T_0(x) = 1$. In particular, $T_n(1) = -T_{n+1}(-1) = (2n-1)!!$ for $n \ge 1$. The first few $T_n(x)$ are

$$T_1(x) = x,$$

$$T_2(x) = x + x^2 + x^3,$$

$$T_3(x) = x + 3x^2 + 7x^3 + 3x^4 + x^5,$$

$$T_4(x) = x + 7x^2 + 29x^3 + 31x^4 + 29x^5 + 7x^6 + x^7.$$

Equating the coefficients of x^k on both sides of (1.1), we see that the numbers T(n, k) satisfy the recurrence relation

$$T(n+1,k) = kT(n,k) + T(n,k-1) + (2n-k+2)T(n,k-2).$$
 (1.2)

The motivating goal of this paper is to find a combinatorial interpretation of the numbers T(n, k).

In [5], Carlitz introduced $C_n(x)$ defined by

$$\sum_{n=0}^{\infty} {n+k \choose k} x^n = \frac{C_n(x)}{(1-x)^{2k+1}}$$

and asked for a combinatorial interpretation of $C_n(x)$. Riordan [16] noted that $C_n(x)$ is the enumerator of trapezoidal words with n elements by number of distinct elements, where trapezoidal words are such that the ith element takes the values $1, 2, \ldots, 2i - 1$. Gessel and Stanley [7] gave another combinatorial interpretation of $C_n(x)$ in terms of descents of Stirling permutations. A *Stirling permutation* of order n is a permutation $\sigma = \sigma(1)\sigma(2)\cdots\sigma(2n-1)\sigma(2n)$ of the multiset $\{1,1,2,2,\ldots,n,n\}$ such that for each $i,1 \leq i \leq n$, all entries between the two occurrences of i are larger than i. Denote by Q_n the set of Stirling permutations of order n. For $\sigma \in Q_n$, let $\sigma(0) = \sigma(2n+1) = 0$ and let

$$des(\sigma) = \#\{i \mid \sigma(i) > \sigma(i+1)\},$$

$$asc(\sigma) = \#\{i \mid \sigma(i-1) < \sigma(i)\},$$

$$plat(\sigma) = \#\{i \mid \sigma(i) = \sigma(i+1)\}$$

denote the number of descents, ascents and plateaux of σ , respectively. Gessel and Stanley [7] proved that

$$C_n(x) = \sum_{\sigma \in Q_n} x^{\operatorname{des} \sigma}.$$

Bóna [3, Theorem 1] introduced the plateau statistic on Q_n , and proved that descents, ascents and plateaux are equidistributed over Q_n . The reader is referred to [8, 9, 13, 14] for recent progress on the study of Stirling permutations.

In the next section, we show that $T_n(x)$ is the enumerator of a dual set of Stirling permutations of order n by the number of alternating runs.

2. Combinatorial interpretation of T(n, k)

Let $\sigma = \sigma(1)\sigma(2)\cdots\sigma(2n) \in Q_n$. Let Φ be an injection which maps each first occurrence of entry j in σ to 2j and the second j to 2j-1, where $j \in [n]$. For example, $\Phi(221331) = 432651$. The *dual set* $\Phi(Q_n)$ of Q_n is defined by

$$\Phi(Q_n) = \{ \pi \mid \sigma \in Q_n, \Phi(\sigma) = \pi \}.$$

Clearly, $\Phi(Q_n)$ is a subset of \mathfrak{S}_{2n} . For $\pi \in \Phi(Q_n)$, the entry 2j is to the left of 2j-1, and the entries in π between 2j and 2j-1 are all larger than 2j, where $1 \le j \le n$. Let ab be an ascent in σ , that is, a < b. Using Φ , we see that ab maps into (2a-1)(2b-1), (2a-1)(2b), (2a)(2b-1) or (2a)(2b) and vice versa. Note that asc $(\sigma) = \operatorname{asc}(\Phi(\sigma)) = \operatorname{asc}(\pi)$. Therefore,

$$C_n(x) = \sum_{\pi \in \Phi(Q_n)} x^{\operatorname{asc}(\pi)}.$$

Let \mathfrak{S}_n denote the symmetric group of all permutations of [n]. We say that $\pi \in \mathfrak{S}_n$ changes direction at position i if either $\pi(i-1) < \pi(i) > \pi(i+1)$ or $\pi(i-1) > \pi(i) < \pi(i+1)$, where $i \in \{2,3,\ldots,n-1\}$. We say that π has k alternating runs if there are k-1 indices i such that π changes direction at these positions. Denote by altrun (π) the number of alternating runs in π . It should be noted that $\pi \in \Phi(Q_n)$ always ends with a descending run. We now present the following result.

THEOREM 2.1. We have $T(n, k) = \#\{\pi \in \Phi(Q_n) \mid \operatorname{altrun}(\pi) = k\}$.

PROOF. There are three ways in which a permutation $\pi \in \Phi(Q_{n+1})$ with altrun $(\pi) = k$ can be obtained from a permutation $\sigma \in \Phi(Q_n)$ by inserting the pair (2n+2)(2n+1) into consecutive positions.

- (a) If altrun $(\sigma) = k$, then we can insert the pair (2n + 2)(2n + 1) right before the beginning of each descending run, and right after the end of each ascending run. This accounts for kT(n,k) possibilities.
- (b) If altrun $(\sigma) = k 1$, then we distinguish two cases: when σ starts in an ascending run, we insert the pair (2n + 2)(2n + 1) to the front of σ ; when σ starts in a descending run, we insert the pair (2n + 2)(2n + 1) right after the first entry of σ . This gives T(n, k 1) possibilities.
- (c) If altrun $(\sigma) = k 2$, then we can insert the pair (2n + 2)(2n + 1) into the remaining (2n + 1) (k 2) 1 = 2n k + 2 positions. This gives (2n k + 2)T(n, k 2) possibilities.

Therefore, the numbers T(n, k) satisfy the recurrence relation (1.2), and this completes the proof.

A polynomial $f(x) = \sum_{k=0}^{n} a_k x^k$ is *symmetric* if $a_k = a_{n-k}$ for all $0 \le k \le n$, while it is *unimodal* if there exists an index m such that

$$a_0 \le a_1 \le \cdots \le a_{m-1} \le a_m \ge a_{m+1} \ge \cdots \ge a_n$$
.

THEOREM 2.2. The polynomial $T_n(x)$ is symmetric and unimodal.

PROOF. It is immediate from (3.1) that $T_n(x)$ is a symmetric polynomial. We show the unimodality by induction on n. Note that $T_1(x) = x$, $T_2(x) = x + x^2 + x^3$ and $T_3(x) = x + 3x^2 + 7x^3 + 3x^4 + x^5$ are all unimodal. Thus, it suffices to consider the case $n \ge 3$. Assume that $T_n(x)$ is symmetric and unimodal. For $1 \le k \le n + 1$, it follows from (1.2) that

$$T(n+1,k) - T(n+1,k-1)$$

$$= (k-1)(T(n,k) - T(n,k-1)) + (T(n,k-1) - T(n,k-2))$$

$$+ (2n-k+2)(T(n,k-2) - T(n,k-3)) + (T(n,k) - T(n,k-3)) \ge 0,$$

where the inequalities follow from the induction hypothesis. This completes the proof.

3. Grammatical interpretations

The grammatical method was introduced by Chen [6] in the study of exponential structures in combinatorics. For an alphabet A, let $\mathbb{Q}[[A]]$ be the rational commutative ring of formal power series in monomials formed from letters in A. A context-free grammar over A is a function $G: A \to \mathbb{Q}[[A]]$ that replaces a letter in A by a formal function over A. The formal derivative D is a linear operator defined with respect to a context-free grammar G. More precisely, the derivative $D = D_G: \mathbb{Q}[[A]] \to \mathbb{Q}[[A]]$ is defined as follows: for $x \in A$, we have D(x) = G(x); for a monomial u in $\mathbb{Q}[[A]]$, D(u) is defined so that D is a derivation and, for a general element $q \in \mathbb{Q}[[A]]$, D(q) is defined by linearity. In the rest of this section, we first recall some definitions of permutation statistics and then present grammatical interpretations and convolution formulas related to $T_n(x)$.

Let $\pi = \pi(1)\pi(2)\cdots\pi(n) \in \mathfrak{S}_n$. An *interior peak* in π is an index $i \in \{2,3,\ldots,n-1\}$ such that $\pi(i-1) < \pi(i) > \pi(i+1)$. A *left peak* in π is an index $i \in [n-1]$ such that $\pi(i-1) < \pi(i) > \pi(i+1)$, where we take $\pi(0) = 0$. Let ipk (π) (respectively lpk (π)) be the number of interior peaks (respectively left peaks) in π . Define

$$M_n(x) = \sum_{\pi \in \Phi(Q_n)} x^{\operatorname{ipk}(\pi)}, \quad N_n(x) = \sum_{\pi \in \Phi(Q_n)} x^{\operatorname{lpk}(\pi)}.$$

It follows from [13, Theorem 4] that $M_n(x) = x^n N_n(1/x)$. Moreover, from [13, Theorem 5],

$$(1+x)T_n(x) = xM_n(x^2) + N_n(x^2).$$

We now recall some properties of $N_n(x)$. Let $N_n(x) = \sum_{k=1}^n N(n,k)x^k$. Apart from counting permutations in the set $\Phi(Q_n)$ with k left peaks, the number N(n,k) also has the following combinatorial interpretations.

(m₁) Let $e = (e_1, e_2, \dots, e_n) \in \mathbb{Z}^n$ and let $I_{n,k} = \{e \in \mathbb{Z}^n \mid 0 \le e_i \le (i-1)k\}$, the set of n-dimensional k-inversion sequences (see [17]). The number of ascents of e is defined by

$$\mathrm{asc}\,(e) = \# \bigg\{ i : 1 \leq i \leq n-1 \ \bigg| \ \frac{e_i}{(i-1)k+1} < \frac{e_{i+1}}{ik+1} \bigg\}.$$

Savage and Viswanathan [18] found $N(n, k) = \#\{e \in I_{n,2} : asc(e) = n - k\}$.

- (m₂) We say that an index $i \in [2n-1]$ is an ascent plateau of $\pi \in Q_n$ if $\pi(i-1) < \pi(i) = \pi(i+1)$. The number N(n,k) counts Stirling permutations in Q_n with k ascent plateaux (see [13, Theorem 3]).
- (m₃) The number N(n, k) counts perfect matching on [2n] with the restriction that there are only k matching pairs with even maximal elements (see [14]).

The polynomials $N_n(x)$ satisfy the recurrence relation

$$N_{n+1}(x) = (2n+1)xN_n(x) + 2x(1-x)N'_n(x)$$

with initial value $N_0(x) = 1$. The first few of the $N_n(x)$ are

$$N_1(x) = x$$
, $N_2(x) = 2x + x^2$,
 $N_3(x) = 4x + 10x^2 + x^3$, $N_4(x) = 8x + 60x^2 + 36x^3 + x^4$.

The exponential generating function for $N_n(x)$ is given by (see [10, Section 5])

$$N(x,z) = \sum_{n \ge 0} N_n(x) \frac{z^n}{n!} = \sqrt{\frac{1-x}{1-xe^{2z(1-x)}}}.$$
 (3.1)

Let

$$R_n(x) = \sum_{\pi \in \mathfrak{S}_n} x^{\operatorname{altrun}(\pi)} = \sum_{k=1}^{n-1} R(n, k) x^k.$$

The study of alternating runs of permutations was initiated by André [2] and he proved that the numbers R(n, k) satisfy the recurrence relation

$$R(n,k) = kR(n-1,k) + 2R(n-1,k-1) + (n-k)R(n-1,k-2)$$

for $n, k \ge 1$, where R(1, 0) = 1 and R(1, k) = 0 for $k \ge 1$. There is a large literature devoted to the numbers R(n, k) (see [19, A059427]). The reader is referred to [4, 11] for recent results on this subject.

Recall that a *descent* of a permutation $\pi \in \mathfrak{S}_n$ is a position i such that $\pi(i) > \pi(i+1)$. Denote by des (π) the number of descents of π . Then the equations

$$A_n(x) = \sum_{\pi \in \mathfrak{S}_n} x^{\operatorname{des}(\pi)+1} = \sum_{k=1}^n \binom{n}{k} x^k$$

define the *Eulerian polynomial* $A_n(x)$ and the *Eulerian number* $\binom{n}{k}$. Denote by B_n the hyperoctahedral group which is the group of signed permutations of the set $\pm [n]$ such that $\pi(-i) = -\pi(i)$ for all i, where $\pm [n] = \{\pm 1, \pm 2, \dots, \pm n\}$. For each $\pi \in B_n$, we define

$$\operatorname{des}_{A}(\pi) := \#\{i \in \{1, 2, \dots, n-1\} \mid \pi(i) > \pi(i+1)\},$$

$$\operatorname{des}_{B}(\pi) := \#\{i \in \{0, 1, 2, \dots, n-1\} \mid \pi(i) > \pi(i+1)\},$$

where $\pi(0) = 0$. Following [1], the flag descent number of π is defined by

fdes
$$(\pi)$$
 :=
$$\begin{cases} 2\text{des }_A(\pi) + 1 & \text{if } \pi(1) < 0, \\ 2\text{des }_A(\pi) & \text{otherwise.} \end{cases}$$

Let

$$B_n(x) = \sum_{\pi \in B_n} x^{\text{des } B(\pi)} = \sum_{k=0}^n B(n, k) x^k,$$

$$S_n(x) = \sum_{\pi \in B_n} x^{\text{fdes}(\pi)} = \sum_{k=1}^{2n} S(n, k) x^{k-1}.$$

The polynomial $B_n(x)$ is called an *Eulerian polynomial of type B*, while B(n,k) is called an *Eulerian number of type B* (see [19, A060187]). It follows from [1, Theorem 4.3] that the numbers S(n,k) satisfy the recurrence relation

$$S(n,k) = kS(n-1,k) + S(n-1,k-1) + (2n-k+1)S(n-1,k-2)$$

for $n, k \ge 1$, where S(1, 1) = S(1, 2) = 1 and S(1, k) = 0 for $k \ge 3$. The polynomial $S_n(x)$ is closely related to the Eulerian polynomial $A_n(x)$:

$$S_n(x) = \frac{1}{x}(1+x)^n A_n(x)$$
 for $n \ge 1$,

which was established by Adin et al. [1].

Consider the context-free grammar

$$A = \{x, y, z\}, G = \{x \to p(x, y, z), y \to q(x, y, z), z \to r(x, y, z)\},\$$

where p(x, y, z), q(x, y, z) and r(x, y, z) are polynomials in x, y and z. The diamond product of z with the grammar G is defined by

$$G \diamond z = \{x \rightarrow p(x, y, z)z, y \rightarrow q(x, y, z)z, z \rightarrow r(x, y, z)z\}.$$

We now recall two results on context-free grammars.

Proposition 3.1 [11, Theorem 6]. If

$$G = \{x \to xy, y \to yz, z \to y^2\},\tag{3.2}$$

then

$$D^{n}(x^{2}) = x^{2} \sum_{k=0}^{n} R(n+1, k) y^{k} z^{n-k}.$$

Setting x = z = 1, we have $D^{n}(x^{2})|_{x=z=1} = R_{n+1}(y)$.

Proposition 3.2 [12, Theorem 10]. Consider the context-free grammar

$$G' = \{x \to xyz, y \to yz^2, z \to y^2z\},\tag{3.3}$$

which is the diamond product of z with the grammar G defined by (3.2). For $n \ge 1$,

$$D^{n}(xy) = x \sum_{k=1}^{2n} S(n,k) y^{2n-k+1} z^{k},$$

$$D^{n}(yz) = \sum_{k=0}^{n} B(n,k) y^{2n-2k+1} z^{2k+1},$$

$$D^{n}(y) = \sum_{k=1}^{n} N(n,k) y^{2n-2k+1} z^{2k},$$

$$D^{n}(z) = \sum_{k=1}^{n} N(n,n-k+1) y^{2n-2k+2} z^{2k-1},$$

$$D^{n}(y^{2}) = 2^{n} \sum_{k=1}^{n} \binom{n}{k} y^{2n-2k+2} z^{2k}.$$

We can now deduce the following result.

THEOREM 3.3. Let G' be the context-free grammar given by (3.3). Then, for $n \ge 1$,

$$D^{n}(x) = x \sum_{k=1}^{2n-1} T(n,k) y^{k} z^{2n-k},$$

$$D^{n}(x^{2}) = 2x^{2} (y+z)^{n-1} \sum_{k=1}^{n} \binom{n}{k} y^{k} z^{n-k+1}.$$

Setting x = z = 1, we have $D^n(x)|_{x=z=1} = T_n(y)$ and $D^n(x^2)|_{x=z=1} = 2(1+y)^{n-1}A_n(y)$.

PROOF. Note that D(x) = xyz and $D^2(x) = xyz^3 + xy^2z^2 + xy^3z$. For $n \ge 1$, we define t(n,k) by

$$D^{n}(x) = x \sum_{k>1} t(n,k) y^{k} z^{2n-k}.$$

Then

$$D^{n+1}(x) = D(D^n(x)) = x \sum_{k \ge 1} t(n,k) y^{k+1} z^{2n-k+1} + x \sum_{k \ge 1} k t(n,k) y^k z^{2n-k+2}$$
$$+ x \sum_{k \ge 1} (2n-k) t(n,k) y^{k+2} z^{2n-k}.$$

Hence,

$$t(n+1,k) = kt(n,k) + t(n,k-1) + (2n-k+2)t(n,k-2).$$
(3.4)

By comparing (3.4) with (1.2), we see that the numbers t(n, k) satisfy the same recurrence relation and initial conditions as T(n, k), so they agree. The assertion for $D^n(x^2)$ can be proved in a similar way.

It follows from Leibniz's formula that

$$D^{n}(uv) = \sum_{k=0}^{n} \binom{n}{k} D^{k}(u) D^{n-k}(v).$$

Hence,

$$D^{n}(x^{2}) = \sum_{k=0}^{n} \binom{n}{k} D^{k}(x) D^{n-k}(x),$$

$$D^{n+1}(x) = D^{n}(xyz) = \sum_{k=0}^{n} \binom{n}{k} D^{k}(x) D^{n-k}(yz) = \sum_{k=0}^{n} \binom{n}{k} D^{k}(xy) D^{n-k}(z).$$

Therefore, we can use Proposition 3.2 and Theorem 3.3 to get several convolution identities.

COROLLARY 3.4. For $n \ge 1$,

$$2(1+x)^{n-1}A_n(x) = \sum_{k=0}^n \binom{n}{k} T_k(x) T_{n-k}(x),$$

$$T_{n+1}(x) = x \sum_{k=0}^n \binom{n}{k} T_k(x) B_{n-k}(x^2),$$

$$T_{n+1}(x) = x \sum_{k=0}^n \binom{n}{k} S_k(x) N_{n-k}(x^2).$$
(3.5)

Let $T(x, z) = \sum_{n=0}^{\infty} T_n(x)(z^n/n!)$. Recall that the exponential generating function for $A_n(x)$ is given as follows (see [19, A008292]):

$$A(x,t) = \sum_{n\geq 0} A_n(x) \frac{t^n}{n!} = \frac{1-x}{1-xe^{t(1-x)}}.$$
 (3.6)

Combining (3.5) and (3.6),

$$T(x,z) = \frac{e^{z(x-1)(x+1)} + x}{1+x} \sqrt{\frac{1-x^2}{e^{2z(x-1)(x+1)} - x^2}}.$$
 (3.7)

From (3.1),

$$\sum_{n \geq 0} M_n(x^2) \frac{z^n}{n!} = \sum_{n \geq 0} x^{2n} N_n \left(\frac{1}{x^2} \right) \frac{z^n}{n!} = \sqrt{\frac{1 - x^2}{e^{2z(x-1)(x+1)} - x^2}}.$$

Note that

$$\frac{e^{z(x-1)(x+1)} + x}{1+x} = 1 + \sum_{n>1} (x-1)^n (x+1)^{n-1} \frac{z^n}{n!}.$$

Therefore, from (3.7),

$$T_n(x) = M_n(x^2) + \sum_{k=0}^{n-1} \binom{n}{k} M_k(x^2) (x-1)^{n-k} (x+1)^{n-k-1} \quad \text{for } n \ge 1.$$

4. Concluding remarks

Let f(x) and F(x) be two polynomials with real coefficients. We say that f(x) separates F(x) if deg $F = \deg f + 2$ and the sequences of real and imaginary parts of the zeros of f(x) respectively separate those of F(x). In other words, if we set $f(x) = a \prod_{j=1}^{n-1} (x + p_j + q_j \mathbf{i})(x + p_j - q_j \mathbf{i})$ and $F(x) = b \prod_{j=1}^{n} (x + s_j + t_j \mathbf{i})(x + s_j - t_j \mathbf{i})$, where a, b are respectively leading coefficients of f(x), F(x), $p_1 \ge p_2 \ge \cdots \ge p_{n-1}$, $q_1 \ge q_2 \ge \cdots \ge q_{n-1}$, $s_1 \ge s_2 \ge \cdots \ge s_n$ and $s_1 \ge s_2 \ge \cdots \ge s_n$, then

$$s_1 \ge p_1 \ge s_2 \ge p_2 \ge \dots \ge s_{n-1} \ge p_{n-1} \ge s_n,$$

 $t_1 \ge q_1 \ge t_2 \ge q_2 \ge \dots \ge t_{n-1} \ge q_{n-1} \ge t_n.$

Based on empirical evidence, we propose the following conjecture.

Conjecture 4.1. For $n \ge 2$, all zeros of $T_n(x)/x$ are imaginary and $T_n(x)/x$ separates $T_{n+1}(x)/x$.

References

- [1] R. Adin, F. Brenti and Y. Roichman, 'Descent numbers and major indices for the hyperoctahedral group', *Adv. Appl. Math.* **27** (2001), 210–224.
- [2] D. André, 'Étude sur les maxima, minima et séquences des permutations', Ann. Sci. Éc. Norm. Supér. 3(1) (1884), 121–135.
- [3] M. Bóna, 'Real zeros and normal distribution for statistics on Stirling permutations defined by Gessel and Stanley', SIAM J. Discrete Math. 23 (2008–2009), 401–406.
- [4] E. R. Canfield and H. Wilf, 'Counting permutations by their alternating runs', J. Combin. Theory Ser. A 115 (2008), 213–225.
- [5] L. Carlitz, 'The coefficients in an asymptotic expansion', Proc. Amer. Math. Soc. 16 (1965), 248–252.
- [6] W. Y. C. Chen, 'Context-free grammars, differential operators and formal power series', *Theoret. Comput. Sci.* 117 (1993), 113–129.
- [7] I. Gessel and R. P. Stanley, 'Stirling polynomials', J. Combin. Theory Ser. A 24 (1978), 25–33.
- [8] S. Janson, M. Kuba and A. Panholzer, 'Generalized Stirling permutations, families of increasing trees and urn models', J. Combin. Theory Ser. A 118 (2011), 94–114.
- [9] M. Kuba and A. Panholzer, 'Enumeration formulae for pattern restricted Stirling permutations', Discrete Math. 312 (2012), 3179–3194.
- [10] S.-M. Ma, 'A family of two-variable derivative polynomials for tangent and secant', *Electron. J. Combin.* 20(1) (2013), #P11.
- [11] S.-M. Ma, 'Enumeration of permutations by number of alternating runs', *Discrete Math.* **313** (2013), 1816–1822.
- [12] S.-M. Ma, 'Some combinatorial arrays generated by context-free grammars', *European J. Combin.* **34** (2013), 1081–1091.
- [13] S.-M. Ma and T. Mansour, 'The 1/k-Eulerian polynomials and k-Stirling permutations', Discrete Math. 338 (2015), 1468–1472.
- [14] S.-M. Ma and Y.-N. Yeh, 'Stirling permutations, cycle structure of permutations and perfect matchings', *Electron. J. Combin.* 22(4) (2015), #P4.42.
- [15] T. Mansour and M. Schork, Commutation Relations, Normal Ordering and Stirling Numbers, Discrete Mathematics and its Applications Series (Chapman and Hall, CRC Press, Taylor and Francis, Boca Raton, FL, 2015).
- [16] J. Riordan, 'The blossoming of Schröder's fourth problem', Acta Math. 137(1–2) (1976), 1–16.

- [17] C. D. Savage and M. J. Schuster, 'Ehrhart series of lecture hall polytopes and Eulerian polynomials for inversion sequences', J. Combin. Theory Ser. A 119 (2012), 850–870.
- [18] C. D. Savage and G. Viswanathan, 'The 1/k-Eulerian polynomials', *Electron. J. Combin.* **19** (2012), #P9.
- [19] N. J. A. Sloane, The On-Line Encyclopedia of Integer Sequences (2010), http://oeis.org.

SHI-MEI MA, Department of Mathematics, Northeastern University, Shenyang 110004, China e-mail: shimeimapapers@163.com

e man. simmemapapers e 105.com

HAI-NA WANG, Department of Mathematics, Northeastern University, Shenyang 110004, China

e-mail: hainawangpapers@163.com