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Abstract

Let G be a compact group. The aim of this note is to show that the only continuous *-homomorphism from
L1(G) to `∞-

⊕
[π]∈Ĝ B2(Hπ) that transforms a convolution product into a pointwise product is, essentially,

a Fourier transform. A similar result is also deduced for maps from L2(G) to `2-
⊕

[π]∈Ĝ B2(Hπ).
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1. Introduction

The study of the Fourier transform on function spaces over Rn is a classical topic in
harmonic analysis and the behaviour of the Fourier transform under various operations
is well known. A most striking aspect is that these properties can also characterise the
Fourier transform. One of the well-known properties of the Fourier transform is that it
takes a convolution product into a pointwise product. So, it is natural to ask: suppose
that there exists a map which converts convolution products into pointwise products.
Does it have any relation to the Fourier transform?

In [1, 2], Alesker et al. tried to characterise the Fourier transform in this way. In [5],
Jaming proved such a characterisation for the Fourier transform on the groups Z,Zn,R

n

and Tn. A similar characterisation of the Fourier transform on the Heisenberg group
was proved by Lakshmi Lavanya and Thangavelu [6]. In fact, their work serves as a
motivation for the proof of the main results of this article.

Now let G be a compact group. In Section 3, after some preliminaries in Section 2,
we prove a similar result for the Fourier transform on a compact group. We also
characterise the Fourier transform on L2(G).

2. Preliminaries

Throughout this paper, G will always denote a compact group. It is well known that
G possesses a unique Haar measure dx such that

∫
G dx = 1. The convolution of two
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functions f , g ∈ L1(G), denoted f ∗ g, is defined by

f ∗ g(x) =

∫
G

f (xy−1)g(y) dy, x ∈ G.

An irreducible unitary representation of G is always finite dimensional. Let Ĝ
denote the set of unitary equivalence classes of irreducible unitary representations of
G. Then Ĝ is called the unitary dual of G and Ĝ is given the discrete topology.

Given a representation π and u, v ∈ Hπ, the mapping x 7→ 〈π(x)u, v〉Hπ
is called a

coefficient function of π. Let Eπ denote the space of all coefficient functions of the
representation π. The space Eπ depends only on the equivalence class containing π and
not on the choice of a particular representative.

Let {(Xα, ‖ · ‖α)}α∈∧ be a collection of Banach spaces. For 1 ≤ p <∞,we shall denote
by `p-

⊕
α∈∧ Xα the Banach space{

(xα) ∈
∏
α∈∧

Xα :
∑
α∈∧

‖xα‖
p
α <∞

}
equipped with the norm ‖(xα)‖p :=

( ∑
α∈∧ ‖xα‖

p
α

)1/p. Similarly, we shall denote by
`∞-

⊕
α∈∧ Xα the Banach space

{
(xα) ∈

∏
α∈∧ Xα : supα∈∧ ‖xα‖α < ∞

}
equipped with

the norm ‖(xα)‖∞ := supα∈∧ ‖xα‖α.

Theorem 2.1. Let G be a compact group.

(i) The coefficient function arising out of an irreducible unitary representation
belongs to L2(G).

(ii) (Schur’s orthogonality relations.) If [π], [σ] ∈ Ĝ and [π] , [σ], then the spaces
Eπ and Eσ are mutually orthogonal subspaces of L2(G).

(iii) (Peter–Weyl theorem.) The space L2(G) is equal to the closure of the direct sum
of the coefficient spaces of the irreducible unitary representations of G, that is,

L2(G) = `2-
⊕
[π]∈Ĝ

Eπ.

Definition 2.2. Let f ∈ L1(G). Then the Fourier transform of f is defined by

f̂ (π) = dim(π)
∫

G
f (x)π∗(x) dx, [π] ∈ Ĝ.

Let B2(H) denote the Hilbert space of all Hilbert–Schmidt operators on a Hilbert
spaceH , with the inner product defined by

〈T, S 〉B2(H) := tr(TS ∗), T, S ∈ B2(H).

As a consequence of the Peter–Weyl theorem, we have the following theorems.

Theorem 2.3 (Plancherel theorem). The Fourier transform is a unitary map from L2(G)
onto `2-

⊕
[π]∈Ĝ B2(Hπ) and

‖ f ‖22 =
∑

[π]∈Ĝ

1
dim(π)

‖ f̂ (π)‖2
B2(Hπ), f ∈ L2(G).
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Theorem 2.4 (Fourier inversion formula). Let f ∈ L2(G). The inversion formula

f (x) =
∑

[π]∈Ĝ

tr( f̂ (π)π(x))

holds in the L2(G) norm.

We refer to [3, 4] for more details of harmonic analysis on compact groups.

3. Characterisation of the Fourier transform

In this section, we characterise the Fourier transform on compact groups. The main
theorems of this section generalise the results of [5, 6] to the context of compact
groups. The idea behind the proof is analogous to the one given in [6].

Before stating the main theorem, we introduce some notation. For [π] ∈ Ĝ, let Hπ

be the representation space of π of dimension dπ and {eπ1, e
π
2, . . . , e

π
dπ
} an orthonormal

basis for Hπ. For 1 ≤ i, j ≤ dπ, let Eπ
i j be the linear transformation on Hπ given by

Eπ
i j(e

π
k ) = δ jkeπi . Again, for 1 ≤ i, j ≤ dπ, let πi j = 〈π(.)eπj , e

π
i 〉 be coefficient functions of

π. Notice that the space Eπ is equal to span{πi j : 1 ≤ i, j ≤ dπ}. Further, the πi j have the
following properties:

(i) π̂αβ(σ) = δ[σ][π]Eπ
αβ (1 ≤ α, β ≤ dπ);

(ii) παβ ∗ πγη = δαηπγβ (1 ≤ α, β, γ, δ ≤ dπ).

Moreover, the space L = span{πi j : [π] ∈ Ĝ, 1 ≤ i, j ≤ dπ} is dense in L1(G).

Theorem 3.1. Suppose that the map T : L1(G) → `∞-
⊕

[π]∈Ĝ B2(Hπ) is nonzero
continuous and *-preserving and such that:

(i) T ( f ∗ g)(π) = T ( f )(π)T (g)(π) for all f , g ∈ L1(G); and
(ii) T (Rx f )(π) = T ( f )(π)π∗(x) for all f ∈ L1(G), x ∈ G, [π] ∈ Ĝ.

Let E := {[π] ∈ Ĝ : T ( f )(π) , 0 for some f ∈ L1(G)}. Then, for each [π] ∈ E, T ( f )(π)
is equal to f̂ (π) for all f ∈ L1(G).

Proof. In order to prove the theorem, it is enough to prove it for a dense subset
of L1(G). In the light of the comments above, we prove the theorem for the dense
subspace L. Again, as L is just the span of all Eπ for [π] ∈ Ĝ, it is enough to study the
action of T on each Eπ.

Since T is nonzero, there exist [π], [σ] ∈ Ĝ and f ∈ Eπ such that T ( f )(σ) , 0. For
each 1 ≤ α, β ≤ dπ, let Qσ

αβ := T (π̄αβ)(σ). Note that Qσ
αβ has the following properties:

(i) Qσ
αβQσ

γη = δαηQσ
γβ;

(ii) (Qσ
αβ)
∗ = Qσ

βα.

Further, for each 1 ≤ α ≤ dπ, we claim that Qσ
αα , 0. On the contrary, suppose that

Qσ
αα = 0 for some α with 1 ≤ α ≤ dπ. Then, for any v ∈ Hσ,

Qσ
αβv = Qσ

αβQσ
ααv = 0 (1 ≤ β ≤ dπ).
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Similarly,
Qσ
βαv = Qσ

ααQσ
βαv = 0 (1 ≤ β ≤ dπ).

Thus,
Qσ
γβ = Qσ

αβQσ
γα = 0 (1 ≤ γ, β ≤ dπ).

This implies that T ( f )(σ) = 0 for f ∈ Eπ, which is a contradiction. Therefore, by (i)
and (ii), it follows that Qσ

αα is a nonzero projection onHσ (1 ≤ α ≤ dπ).
Let {u j

α,σ} be an orthonormal basis for the range of Qσ
αα and let

v j
αβ,σ := Qσ

αβu
j
α,σ, 1 ≤ β ≤ dπ.

The system {v j
αβ,σ} is an orthonormal system for each fixed α. Indeed,

〈v j
αβ,σ, v

k
αγ,σ〉Hσ

= 〈Qσ
αβu

j
α,σ,Qσ

αγu
k
α,σ〉Hσ

= 〈Qσ
γαQσ

αβu
j
α,σ, uk

α,σ〉Hσ

= δγβ〈Qσ
ααu j

α,σ, uk
α,σ〉Hσ

= δγβδ jk.

Define the Hilbert space H j
α = span{v j

αβ,σ : 1 ≤ β ≤ dπ} and define the operator Uπ,σ :

Hπ →H
j
α by Uπ,σ(eπβ) = v j

αβ,σ. Then Uπ,σ is a unitary operator. Further, let S j
α,σ( f ) :=

Uπ,σ f̂ (π)(Uπ,σ)∗ for f ∈ Eπ. Then

S j
α,σ(π̄γη)(v

j
αβ,σ) = Uπ,σ ˆ̄πγη(π)(Uπ,σ)∗(v j

αβ,σ)

= Uπ,σ ˆ̄πγη(π)eπβ = Uπ,σEηγeπβ
= Uπ,σδγβeπη = δγβv

j
αη,σ.

On the other hand,

T (π̄γη)(σ)(v j
αβ,σ) = Qσ

γηQ
σ
αβu

j
α = δγβQσ

αηu
j
α = δγβv

j
αη,σ.

Hence, for any f ∈ Eπ, we have T ( f )(σ) = Uπ,σ f̂ (π)(Uπ,σ)∗. Further, note that the
action of T ( f )(σ) on the orthogonal complement ofH j

α inHσ is 0.
We now claim that H j

α is invariant under σ. Since σ is a unitary representation,
it is enough to prove that the complement (H j

α)⊥ is invariant under σ. To see this,
take v ∈ (H j

α)⊥. Then, for any f ∈ Eπ, T ( f )(σ)(v) = 0. As Eπ is invariant under
translations, it follows that, for all x ∈ G, T (Rx f )(σ)v = 0, which by our assumption is
equivalent to T ( f )(σ)σ∗(x)v = 0 for all f ∈ Eπ and x ∈G. Thus, σ∗(x)v ∈ ker(T ( f )(σ)).
Hence, (H j

α)⊥ is invariant under σ. It now follows that Uπ,σ is a unitary isomorphism
betweenHπ andHσ.

We next claim that Uπ,σ is an intertwining operator between the representations π
and σ. Note that, by our assumption, for any f ∈ Eπ and x ∈ G,

T (Rx f )(σ) = T ( f )(σ)σ∗(x) = Uπ,σ f̂ (π)(Uπ,σ)∗σ∗(x).
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On the other hand,

T (Rx f )(σ) = Uπ,σR̂x f (π)(Uπ,σ)∗ = Uπ,σ f̂ (π)π∗(x)(Uπ,σ)∗.

Therefore, π∗(x)(Uπ,σ)∗ = (Uπ,σ)∗σ∗(x) for all x ∈ G, or equivalently,

Uπ,σπ(x) = σ(x)Uπ,σ for all x ∈ G.

Therefore, [σ] = [π] and T ( f )(π) = f̂ (π) for all f ∈ Eπ. Thus, if T |Eπ , 0, then, for
each f ∈ Eπ, T ( f )(σ) = δ[σ][π] f̂ (π) for all [π] ∈ Ĝ. �

Our next result is about maps from L2. It is worth mentioning that we do not assume
continuity of the map but, rather, this is one of the consequences.

Corollary 3.2. Let T : L2(G) → `2-
⊕

[π]∈Ĝ B2(Hπ) be a surjective *-preserving
linear operator such that:

(i) T ( f ∗ g)(π) = T ( f )(π)T (g)(π) for all f , g ∈ L2(G); and
(ii) T (Rx f )(π) = T ( f )(π)π∗(x) for all f ∈ L2(G), x ∈ G, [π] ∈ Ĝ.

Then T ( f )(π) = f̂ (π) for all [π] ∈ Ĝ, f ∈ L2(G).

Proof. Although the proof given for the case of the Heisenberg group [6] works very
well in our case also if we assume boundedness of T, we would like to give a proof
based on Theorem 3.1.

We know that, by the Peter–Weyl theorem, L2(G) = `2-
⊕

[π]∈Ĝ Eπ. Since T is
surjective, it is nonzero. Thus, there exists [π] ∈ Ĝ such that T |Eπ , 0. Hence, by
Theorem 3.1, for all f ∈ Eπ, T ( f )(σ) = δ[σ][π] f̂ (σ) for [σ] ∈ Ĝ. Again, since T is
surjective, it follows that T is nonzero on each Eπ. Hence, the proof is completed. �
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