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Abstract

We prove the quasiinvariance of Gaussian measures (supported by functions of increasing Sobolev
regularity) under the flow of one-dimensional Hamiltonian partial differential equations such as the
regularized long wave, also known as the Benjamin–Bona–Mahony (BBM) equation.

2010 Mathematics Subject Classification: 35Q53

1. Introduction

1.1. Motivation. Our motivation for this work is twofold. On the one hand,
there is an extensive literature about the transport of Gaussian measures under
nonlinear transformations (see, for example, [4, 5, 18, 19, 32]). These works
treat either general nonlinear transformations close to the identity (see, for
example, [32]) or transformations generated by vector fields, under an exponential
integrability assumption (see, for example, [19]). It was however not clarified
how much these results apply in the context of Hamiltonian partial differential
equations (PDEs).

On the other hand, there is an extensive literature about invariant Gaussian type
measures (absolutely continuous with respect to Gaussian measures) under the
flows of Hamiltonian PDEs (see, for example, [7–11, 13, 15, 16, 20, 21, 23, 26, 27,
29, 30, 33, 35–38, 40]). In most cases the support of the measure consists of low-
regularity functions. Two exceptions are the Korteweg–de Vries (KdV) and the
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Benjamin–Ono equations, where one can use the high-order (that is, controlling
high-order Sobolev norms) conservation laws in order to get invariant Gaussian
type measures supported by fairly smooth functions (see [36, 37, 40]).

In recent work [27, 28, 34] on invariant Gibbs measures for the derivative
nonlinear Schrödinger equation, both the above aspects were involved. Namely,
the analysis of [27] combined with the remarkable description of the transport of
the Brownian loop under gauge transformations performed in [28] led to the proof
of the invariance of the weighted Wiener measure constructed in [34].

The existence of conservation laws controlling higher Sobolev norms is an
exceptional event. Therefore, for Hamiltonian PDEs where conservation laws
of high order are not available, it is not clear how the transport of Gaussian
measures, supported by functions of high Sobolev regularity, behaves under
the corresponding Hamiltonian flow. Our goal here is to make a progress in
this direction. Namely, we will show that, in the case of regularized long
wave equations, Gaussian measures supported by functions of arbitrary high
Sobolev regularities are quasiinvariant by the flow of the corresponding equations.
We recall that a measure µ on a space X is called quasiinvariant under a
transformation Φ : X → X if its image under Φ is absolutely continuous with
respect to µ.

The existence of a quasiinvariant measure in the context of a Hamiltonian
PDE represents a step in the macroscopic description of the corresponding flow:
in particular, a set of a positive measure is always transported to a set of a
positive measure. If in addition the quasiinvariance is proved together with good
quantitative bounds, then it may have consequences concerning the long-time
behaviour of the solutions (see, for example, Remark 7.4 below).

1.2. Derivation of a Benjamin–Bona–Mahony (BBM) type model. If
one considers shallow small-amplitude long water waves, one obtains that the
evolution of the water surfaces u satisfies (formally) the equation

∂t u + ∂x u + ε1∂
3
x u + ε2∂x(u2) = O(ε2

1 + ε
2
2). (1.1)

In (1.1), ε1 represents the square of the ratio between the depth of the fluid and
the typical wavelength while ε2 represents the ratio between the wave amplitude
and the depth (see, for example, [25]). Both ε1 and ε2 are small parameters. In
the regime ε1 ≈ ε2, one takes into account both linear and nonlinear effects.
Therefore by neglecting the error in the right-hand side of (1.1) one ends up with
the famous KdV equation. The KdV equation has a highly oscillating linear part
and a nonlinear part with a strong effect (derivative loss). Since at first order
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∂t u ≈ −∂x u, in [3] the authors introduced the model

∂t u + ∂x u − ∂t∂
2
x u + ∂x(u2) = 0 (1.2)

as an alternative of the KdV model (in (1.2), we dropped the ε1,2 dependence). If
we write (1.2) in the form

∂t u + (1− ∂2
x )
−1∂x u + (1− ∂2

x )
−1∂x(u2) = 0,

we observe that the model (1.2) has a slowly oscillating linear part coupled with
a weak nonlinearity (with smoothing of degree one). Despite this difference with
respect to the KdV model, (1.2) is supposed to describe a similar balance between
linear and nonlinear effects.

One may naturally consider the following generalization (generalized
dispersion) of the KdV equation:

∂t u + ∂x u − |Dx |
γ ∂x u + ∂x(u2) = 0. (1.3)

For γ = 2, we recover the KdV model, but for γ = 1 one gets the Benjamin–Ono
equation, which is a model that can be derived similarly to the KdV model, but in
the context of internal waves.

Following the same argument as for deriving (1.2), we end up with the
following generalization of (1.2):

∂t u + ∂t |Dx |
γ u + ∂x u + ∂x(u2) = 0. (1.4)

For γ = 2 we recover (1.2), while for γ = 1 we deal with a Benjamin–Ono
type model. The goal of this work is to study (1.4) with initial data distributed
by Gaussian measures in Sobolev spaces of an arbitrary regularity. Observe
that, at least formally, if we multiply (1.4) by u and integrate in x , we obtain
that a Sobolev type norm of order γ /2 of u is conserved by (1.4). This global
information is the only useful a priori bound for (1.4) we are aware of, and it
will play an important role in the analysis below. In fact, one does not expect
to have a priori bounds controlling higher Sobolev norms in the context of (1.4).
Indeed, in the case when γ = 2 it is shown in [31] that (1.2) has three conservation
laws (of order 0, 0, and 1, respectively) but no higher-order laws, in contrast to
completely integrable equations such as the KdV equation and the Benjamin–
Ono equation. As a consequence there are only a limited number of Gibbs type
measures available for the BBM equation (1.2). Therefore, at least for γ = 2, our
results concerning the existence of quasiinvariant Gaussian measures for (1.4)
cannot be obtained by the approach of [36, 37, 40] exploiting the existence of
Gibbs type measures associated with higher-order conservation laws.
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1.3. Statement of the results. We consider (1.4), posed on the one-
dimensional torus. Since the x mean value is preserved by (1.4), we shall
consider (1.4) as a dynamical system on the Sobolev spaces of zero x mean value
functions (equivalently functions having vanishing zero Fourier coefficient). We
denote by H s the Sobolev space of zero mean functions (see the notation section
below for a precise definition). The next statement shows that (1.4) defines a
dynamical system on H s , s > γ /2.

PROPOSITION 1.1. Let γ > 1, and let σ > γ /2. Then for every u0 ∈ H σ there
is a unique global solution of (1.4) in C(R; H σ ). Moreover, if we denote by Φ(t)
the flow of (1.4), then, for every t ∈ R, Φ(t) is a continuous bijection on H σ .

Once this result is established one may naturally ask qualitative questions of
the global behaviour of (Φ(t))t∈R as a dynamical system on H σ . As already
mentioned, in this work we will study the transport of some Gaussian measures
by Φ(t) (for σ not necessarily small).

We next introduce these measures. Let s > 1 be an integer. Denote by µs the
Gaussian measure induced by the random Fourier series

ϕs(ω, x) =
∑
n 6=0

gn(ω)

|n|s+γ /2
einx ,

where gn = g−n and (gn)n>0 is a system of independent and identically distributed
standard complex Gaussians; that is,

gn =
1
√

2
(hn + iln),

where hn, ln ∈ N (0, 1) are independent. Strictly speaking, the measure µs also
depends on γ , but we do not make this dependence explicit. For γ > 1, the
measure µs can be seen as a Gaussian measure on H s . Therefore, thanks to
Proposition 1.1, for every γ > 1 the flow Φ(t) is defined to be µs almost surely,
provided s > γ /2. Our main goal is to prove the following statement.

THEOREM 1.2. Let γ > 4
3 . Then for every integer s > γ /2 the measure µs is

quasiinvariant by the flow Φ(t), for every t ∈ R.

We also obtain some quantitative bounds on the densities of the transported
measures (see, for example, Lemma 8.1 below). However, the present information
these bounds give on the densities at time t seems quite weak to be useful for
giving new long-time bounds on the solutions a.s. with respect to µs (see, for
example, Remark 7.4 below). It would be interesting to improve on these bounds.
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For that reason, we decided to keep the quantitative part of our argument, hoping
that it may be of some interest in eventual further developments.

We did not try to optimize the restriction γ > 4
3 , our goal being to achieve

a value of γ smaller than 3
2 which allows us to go beyond the Cameron–Martin

threshold (see also Proposition 1.3 below). The assumption that s is an integer is
not essential, and most probably can be removed.

The measure µs can be seen as a normalized version of the formal object

exp(−‖u‖2
H s+γ /2) du.

For γ > 1, the triple (Id, H s+γ /2, H s) forms a Wiener space, and µs is the
standard Gaussian measure on H s with variance parameter 1. The space H s+γ /2

is the canonical Hilbert space (the so-called Cameron–Martin space) in this
construction, but the space H s may be replaced by any H σ with σ < s+γ /2−1/2.

In the case when s = 0, thanks to the conservation of the Sobolev norm of
order γ /2 one can get the invariance of the measure µ0, by employing the well-
established methods of invariance of Gibbs measures, at least for γ > 2 (see [22]
for the case when γ = 2). The extension to some values of γ < 2 would require
some elaborations on the local-in-time analysis in the proof of Proposition 1.1
(to obtain the existence of the dynamics, locally in time, on the support of the
measure µ0).

1.4. Comparison with Cameron–Martin type of results. It is instructive to
compare the result of Theorem 1.2 with the Cameron–Martin theorem [17] and
a result by Ramer [32]. Denote by S(t) the free evolution associated to (1.4);
that is,

S(t) = exp(−t (1+ |Dx |
γ )−1∂x).

Then, thanks to the Duhamel formula, the map Φ(t) can be written as

Φ(t)(u0) = S(t)(u0)+ ((γ − 1) smoother part depending on u0).

The free evolution S(t) preserves the Sobolev regularity and the measure µs

(thanks to the invariance of the Gaussians by rotations). Therefore the Cameron–
Martin theorem implies that µs is quasiinvariant by maps of the form

S(t)(u0)+
((

1
2 + ε

)
smoother part independent of u0

)
,

for some ε > 0. Therefore in the range γ ∈ ( 4
3 ,

3
2 ] the result of Theorem 1.2 goes

beyond the naive intuition dictated by the Cameron–Martin theorem. We find this
phenomenon interesting (see also Proposition 1.3 below).
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Let us next compare the result of Theorem 1.2 with a result by Ramer. Using
once again the above-mentioned properties of S(t), one gets that the result of
Ramer implies that µs is quasiinvariant by maps of the form

S(t)(u0)+ ((1+ ε) smoother part which may depend on u0),

for some ε > 0. Therefore for γ > 2 the result of Theorem 1.2 follows from
the work by Ramer [32]; that is, the BBM model [3] is the border line (but
not covered by [32]). The assumption that γ > 2 is done in order to ensure
the Hilbert–Schmidt property of the perturbation imposed in [32] (see Section 3
below). The work of Ramer deals with general maps, and in this setting the
1+ ε regularization condition (in dimension one) looks optimal. The reason why
Theorem 1.2 goes beyond the result of [32] is that we deal with very particular
nonlinear maps induced by Hamiltonian flows. Here our work is close in spirit
to the articles by Cruzeiro [18, 19], which prove abstract results concerning
the existence of quasiinvariant measures under the flows of (not necessarily
smooth) vector fields. In the work of Cruzeiro, the existence of the dynamics (the
analogue of Proposition 1.1) is already a nontrivial issue (see also [1, 5] for more
recent works). Concerning the quasiinvariance statement in [19], it is done under
an exponential integrability assumption of the divergence of the corresponding
vector field. One may wish to see the result of Theorem 1.2 as an instance where
such an integrability condition is checked ‘in practice’.

We end the discussion about the comparison between Theorem 1.2 and the
Cameron–Martin type of results by the following statement.

PROPOSITION 1.3. Let γ ∈ ( 4
3 ,

3
2 ). Consider the linear PDE

∂t u + ∂t |Dx |
γ u + ∂x u + ∂x(h) = 0, (1.5)

where h ∈ H σ (independent of t) for some σ < s + γ /2 − 1/2 is fixed. Suppose
that h /∈ H s+γ /2−1/2. Denote by Σ(t) the (well-defined) flow of (1.5). Then for
t 6= 0 the transport of µs byΣ(t) is a measure that is singular with respect to µs .

In Proposition 1.3, the fixed function h is supposed to have the typical
regularity on the support of µs . In other words, if u is a solution of (1.4) with
data on the support of µs , then we take h with the regularity of u2 obtained by
the deterministic estimates of Section 2 below (and not more). Therefore, for
γ ∈ ( 4

3 ,
3
2 ), the result of Theorem 1.2 seems to go beyond a Cameron–Martin type

result, and it relies on a ‘regularization property’ of the flow associated with (1.4).

1.5. Organization of the paper. The remaining part of this paper is organized
as follows. We complete this introduction by introducing some notation.
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In Section 2, we prove the existence of the dynamics and some useful
approximation properties. In Section 3 we obtain the result of Theorem 1.2
for γ > 2 as a consequence of [32]. Next, in Section 4, we establish a useful
infinite-dimensional change of variables formula. In Section 5, we get the suitable
for our purposes (deterministic) energy estimate. In Section 6, we establish the
averaging with respect to µs properties, needed for our analysis. In Section 7,
we establish the measure evolution property by an argument in the spirit of
the proof of the global regularity for the two-dimensional Euler equation. In
Section 8, we complete the proof of the main result by some basic measure
theory considerations. Finally, in Section 9, we prove Proposition 1.3 as a simple
consequence of the Cameron–Martin argument.

1.6. Notation. If a real-valued f is given by its Fourier expansion

f (x) =
∑
n∈Z

f̂ (n)einx , f̂ (n) = f̂ (−n),

for s ∈ R, we define its Sobolev norm as

‖f‖Hs = ‖f‖s =

(∑
n∈Z

〈n〉2s
| f̂ (n)|2

)1/2

, (1.6)

where 〈n〉 = 1 + |n|. We denote by Hs the space of real-valued f such that
(1.6) is finite. It is well known that Hs is a Hilbert space (with the natural scalar
product). We denote by H s the closed subspace of Hs of functions with zero
Fourier coefficient; that is,

H s
= { f ∈ Hs

: f̂ (0) = 0}.

Since the mean value is preserved by (1.4), we have that H s is a natural space for
the solutions of (1.4). We consider H s , equipped with the norm

‖f‖H s =
1
√

2

(∑
n∈Z

|n|2s
| f̂ (n)|2

)1/2

=

( ∞∑
n=1

|n|2s
| f̂ (n)|2

)1/2

. (1.7)

For elements in H s , the norms (1.6) and (1.7) are equivalent. We define the Fourier
multipliers |Dx |

s as

|Dx |
s( f )(x) =

∑
n∈Z

|n|s f̂ (n)einx .

Then
‖f‖H s =

1
2
√
π
‖|Dx |

s f ‖L2 .
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Observe that ‖ · ‖H0 differs slightly from ‖ · ‖L2 (which ‘explains’ the appearance
of the 4π factor in the definition of χr (u) below). We denote by πN the Dirichlet
projector; that is,

πN ( f ) =
∑
|n|6N

f̂ (n)einx .

We denote by µs,r , the measure defined by

dµs,r (u) = χr (u) dµs(u),

where
χr (u) = χ

(
r−1(
‖u‖2

L2 + 4π‖u‖2
Hγ /2

))
and χ : R→ R denotes the characteristic function of the set [0, 1].

For s ∈ R and R > 0, we set BR,s = {u ∈ H s
: ‖u‖H s 6 R}.

2. Construction and general properties of the flows and the approximated
flows

2.1. Existence of the dynamics. We assume γ > 1 throughout this section.
Consider the truncated version of (1.4),

∂t u + ∂t |Dx |
γ u + ∂x u + ∂xπN ((πN u)2) = 0. (2.1)

We consider (2.1), posed on the one-dimensional torus and with (nontruncated)
initial data in H s .

LEMMA 2.1. Let γ > 1. Then, for every σ > 0,

‖(1+ |Dx |
γ )−1∂x(uv)‖σ 6 Cσ (‖u‖σ‖v‖γ /2 + ‖u‖γ /2‖v‖σ ).

Proof. Since (1+ |Dx |
γ )−1∂x is bounded on Hσ , the proof of direct consequence

of the classical product estimate

‖uv‖σ 6 Cσ (‖u‖σ‖v‖L∞ + ‖u‖L∞‖v‖σ ) (2.2)

and the Sobolev embedding Hγ /2
⊂ L∞.

Using Lemma 2.1, one gets the following uniform in N local well-posedness
result for (2.1).

LEMMA 2.2. Let σ > γ /2. Then for every u(0) ∈ H σ there is a time τ > 0
depending only on ‖u(0)‖Hγ /2 and there is a unique solution of (2.1) in C([−τ,
τ ]; H σ ) with initial data u(0). Moreover, ‖u‖L∞([−τ,τ ];Hσ ) 6 2‖u(0)‖Hσ .
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Proof. We proceed by a fixed point argument. One may rewrite (2.1) as the
integral equation

u(t) = S(t)(u(0))−
∫ t

0
S(t − τ)((1+ |Dx |

γ )−1∂xπN ((πN u(τ ))2)) dτ. (2.3)

Using Lemma 2.1, one can look for a fixed point of the map Fu(0)(u), defined by
the right-hand side of (2.3) in a suitable ball of the space C([−τ, τ ]; H γ /2), where
τ = c(1+ ‖u(0)‖Hγ /2)−1 and c is a small constant. Indeed, using Lemma 2.1 and
the uniform bounds for πN on H γ /2, we can obtain that, for u ∈ C([−τ, τ ]; H γ /2),

‖Fu(0)(u)‖L∞([−τ,τ ];Hγ /2) 6 ‖u0‖Hγ /2 + Cτ‖u‖2
L∞([−τ,τ ];Hγ /2).

Therefore, the space E defined by

E ≡ {u ∈ C([−τ, τ ]; H γ /2) : ‖u‖L∞([−τ,τ ];Hγ /2) 6 2‖u(0)‖Hγ /2}

is such that Fu(0)(E) ⊂ E , provided the constant c in the definition of τ is small
enough. By invoking once again Lemma 2.1 and the uniform bounds for πN on
H γ /2, we can obtain that, for u, v ∈ E ,

‖Fu(0)(u)− Fu(0)(v)‖L∞([−τ,τ ];Hγ /2) 6
1
2‖u − v‖L∞([−τ,τ ];Hγ /2),

by possibly taking an even smaller value of the constant c involved in the
definition of τ . Therefore Fu(0) is a contraction on E . The fixed point of this
contraction provides the solution of (2.1) we are looking for.

Let us now turn the propagation the H σ -regularity of the obtained solution
u. This regularity is preserved for very small times of order (1 + ‖u(0)‖Hσ )−1

by the fixed-point argument that we have just presented. In order to show that
the regularity is preserved for longer times, we use Lemma 2.1 and the uniform
bounds for πN on H σ in order to obtain that

‖u‖L∞([−τ,τ ];Hσ ) 6 ‖u0‖Hσ + Cσ τ‖u‖L∞([−τ,τ ];Hσ )‖u‖L∞([−τ,τ ];Hγ /2).

Therefore the H σ -regularity is preserved for time τ = c(1+‖u(0)‖Hγ /2)−1, where
the constant c is sufficiently small, depending only on σ .

The uniqueness statement follows by using that, if u1 and u2 are two solutions
of (2.1) in C([−τ, τ ]; H σ ), then, by using Lemma 2.1 and the uniform bounds
for πN on H σ , we can obtain that, for any interval [−τ1, τ1], τ1 6 τ ,

‖u1 − u2‖L∞([−τ1,τ1];Hσ ) 6 Cσ τ1‖u1 − u2‖L∞([−τ1,τ1];Hσ )‖u1 + u2‖L∞([−τ,τ ];Hσ ).

We therefore conclude that u1 = u2 on [−τ1, τ1], where τ1 is such that

τ1Cσ (‖u1‖L∞([−τ,τ ];Hσ ) + ‖u2‖L∞([−τ,τ ];Hσ )) <
1
2 .
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Then we cover [−τ, τ ] by intervals of size τ1, and we repeat the previous reason-
ing to conclude that u1 = u2 on [−τ, τ ]. The continuity statements are con-
sequences of the previous analysis. This completes the proof of Lemma 2.2.

By the invariance of (1.4) with respect to time translations, the statement of
Lemma 2.2 holds true with initial data given at any time t0 ∈ R on the interval
[t0 − τ, t0 + τ ], where τ depends only on ‖u(t0)‖Hγ /2 .

One can similarly obtain the following local well-posedness result for (1.4).

LEMMA 2.3. Let σ > γ /2. Then for every u(0) ∈ H σ there is a time τ > 0
depending only on ‖u(0)‖Hγ /2 and there is a unique solution of (1.4) in C([−τ,
τ ]; H σ ) with initial data u(0). Moreover,

‖u‖L∞([−τ,τ ];Hσ ) 6 2‖u(0)‖Hσ . (2.4)

The next lemma is of key importance.

LEMMA 2.4. Let u be a local solution of (2.1), given by Lemma 2.2. Then

d
dt

(
‖u(t)‖2

L2 + 4π‖u(t)‖2
Hγ /2

)
= 0. (2.5)

A similar statement holds for the solutions of (1.4).

Proof. Let u be a local solution of (2.1), given by Lemma 2.2. Then we take the
L2 scalar product of (2.1) with u, and using that

(∂xπN ((πN u)2), u) =
1
3

∫
∂x((πN u)3) = 0, (u, ∂x u) = 0,

and
(∂t u, u) = 1

2∂t‖u‖2
L2, (∂t |Dx |

γ u, u) = 1
2∂t‖|Dx |

γ /2u‖2
L2,

we obtain that (2.5) holds.

Using Lemmas 2.2, 2.3, and the conservation law displayed by Lemma 2.4,
one readily gets Proposition 1.1 and also the global well-posedness in H σ of
(2.1), ‘uniformly’ in N . Let us denote by Φ(t) and ΦN (t) the global flows on
H σ , σ > γ /2 of (1.4) and (2.1), respectively. By iterating the local bounds we get
the following statement.

PROPOSITION 2.5. Let σ > γ /2. For every R > 0 there is a constant C such
that, for every v ∈ H σ such that ‖v‖Hγ /2 6 R, and every N > 1, one has the
bound

‖Φ(t)(v)‖Hσ + ‖ΦN (t)(v)‖Hσ 6 eC(1+|t |)
‖v‖Hσ .
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Proof. Let u be a solution of (2.1). Using (2.5) for every t , we can iterate the local
bound (2.4) [|t |/τ ] + 1 times to obtain that

‖u(t)‖Hσ 6 2[|t |/τ ]+1
‖u(0)‖Hσ .

A similar analysis applies for the solutions of (1.4). This completes the proof of
Proposition 2.5.

As a consequence of Proposition 2.5, one also gets the following statement.

PROPOSITION 2.6. Let σ > γ /2. Then for every T > 0 and R > 0 there exists
R′ > 0 such that⋃

N∈N

⋃
t∈[−T,T ]

(ΦN (t)(BR,σ ) ∪Φ(t)(BR,σ )) ⊂ BR′,σ .

2.2. Approximation properties. We have the following basic approximation
property.

PROPOSITION 2.7. Let σ > γ /2. Fix t ∈ R, R > 0, and a compact K ⊂ BR,σ .
Then for every ε > 0 there exists N0 such that, for every N > N0,

‖Φ(t)(v)−ΦN (t)(v)‖Hσ < ε, ∀ v ∈ K .

Proof. Let u and uN be solutions of (1.4) and (2.1) with the same initial data
v ∈ K . Then wN ≡ u − πN uN solves the equation

∂twN + ∂t |Dx |
γwN + ∂xwN + ∂x(u2

− πN ((πN u)2)) = 0. (2.6)

Next, we can write

u2
− πN ((πN uN )

2) = (1− πN )(u2)+ πN (wN (u + πN uN )).

By using the estimate of Lemma 2.1 and Proposition 2.6, we obtain that there is
a constant C only depending on σ , t , and R such that

‖wN‖L∞([−τ,τ ];Hσ ) 6 Cτ‖wN‖L∞([−τ,τ ];Hσ ) +C‖(1− πN )(u2)‖L∞([−τ,τ ];Hσ ). (2.7)

We are now in a position to use the following lemma.

LEMMA 2.8. For every ε > 0 there is N0 such that, for every N > N0 and every
v ∈ K ,

‖(1− πN )((Φ(t)(v))2)‖L∞([−τ,τ ];Hσ ) < ε.
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Proof. Let ε > 0. Since the map v 7→ Φ(t)(v) is continuous from H σ to
C([−τ, τ ]; H σ ), we obtain that the image of K under this map is a compact in
C([−τ, τ ]; H σ ). Therefore, using Lemma 2.1 and Proposition 2.6, we obtain that
there exists a finite set J such that (Φ(t)(v j)) j∈J has the property

∀ v ∈ K , ∃ j ∈ J, ‖(Φ(t)(v))2 − (Φ(t)(v j))
2
‖L∞([−τ,τ ];Hσ ) <

ε

2
.

Therefore, it remains to show that, for every j in the finite set J , there is N0 such
that, for every N > N0,

‖(1− πN )((Φ(t)(v j))
2)‖L∞([−τ,τ ];Hσ ) <

ε

2
.

Now, thanks to the (uniform) continuity of the map t 7→ (Φ(t)(v j))
2 from [−τ, τ ]

to H σ , we obtain that there is a finite set (tl)l∈Λ of [−τ, τ ] such that

∀ t ∈ [−τ, τ ], ∃ l ∈ Λ, ‖(Φ(t)(v j))
2
− (Φ(tl)(v j))

2
‖Hσ <

ε

4
.

We are therefore reduced to showing that, for every j ∈ J and every l ∈ Λ, there
is N0 such that, for every N > N0,

‖(1− πN )((Φ(tl)(v j))
2)‖Hσ <

ε

4
.

The last statement is a direct consequence of the definition of the Sobolev
space H σ . This completes the proof of Lemma 2.8.

Using Lemma 2.8, we obtain that, if the constant C involved in (2.7) satisfies
Cτ < 1

2 , then
‖wN‖L∞([−τ,τ ];Hσ ) 6 Λ(N , v).

Here and in the remainder of the proof we denote by Λ(N , v) a generic quantity
such that, for every ε > 0, there is N0 such that, for every N > N0 and every
v ∈ K , Λ(N , v) < ε.

Next, we can perform the same analysis to arrive at the bound

‖wN‖L∞([τ,2τ ];Hσ ) 6 ‖u(τ )− πN uN (τ )‖Hσ + Cτ‖wN‖L∞([−τ,τ ];Hσ ) +Λ(N , v),

which implies that
‖wN‖L∞([τ,2τ ];Hσ ) 6 Λ(N , v).

Now we can cover the interval [−t, t] by intervals of size τ , and repeat the
previous analysis to arrive at the bound

‖u(t)− πN uN (t)‖Hσ 6 Λ(N , v). (2.8)
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Next, we write
u − uN = u − πN uN − (1− πN )uN . (2.9)

We now invoke the following lemma.

LEMMA 2.9. Fix t ∈ R. For every ε > 0 there is N0 such that, for every N > N0

and every v ∈ K ,
‖(1− πN )(ΦN (t)(v))‖Hσ ) < ε.

The proof of Lemma 2.9 is similar to (and simpler than) the proof of
Lemma 2.8, and therefore will be omitted. We now come back to (2.9), and we
use (2.8) and Lemma 2.9. This completes the proof of Proposition 2.7.

As a consequence of Proposition 2.7, we also have the following approximation
property.

PROPOSITION 2.10. Let σ > γ /2. Fix t ∈ R, R > 0, and a compact A ⊂ BR,σ .
For every ε > 0 there exists N0 such that, for every N > N0,

Φ(t)(A) ⊂ ΦN (t)(A + Bε,σ ).

Proof. Let u ∈ Φ(t)(A). This means that there exists v ∈ A such that u =
Φ(t)(v). Write

u = ΦN (t)(ΦN (−t)Φ(t)(v)).

Set wN = ΦN (−t)Φ(t)(v). The goal is to show that wN ∈ A + Bε,σ for every
N > N0(ε, t, A). For that purpose, we can write

wN = v + zN , zN ≡ ΦN (−t)Φ(t)(v)− v.

Since v ∈ A, the issue is to check that zN ∈ Bε,σ for every N > N0(ε, t, A). We
can write

zN = ΦN (−t)(Φ(t)(v)−ΦN (t)(v)).

Using Proposition 2.5, we obtain that

‖ΦN (−t)(Φ(t)(v)−ΦN (t)(v))‖Hσ 6 C(t, R)‖Φ(t)(v)−ΦN (t)(v)‖Hσ . (2.10)

Using Proposition 2.7, we obtain that

‖Φ(t)(v)−ΦN (t)(v)‖Hσ 6 Λ(N , v), (2.11)

where for every ε > 0 there is N0 such that, for every N > N0 and every v ∈ A,
Λ(N , v) < ε. A combination of (2.10) and (2.11) implies that ‖zN‖Hσ < ε,
provided that N > N0(ε, t, A). This completes the proof of Proposition 2.10.
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3. The case when γ > 2 as a consequence of Ramer’s result

We will show in this section that in the case when γ > 2 the result of
Theorem 1.2 follows from [32]. Thanks to the Duhamel formula, we can write

Φ(t) = S(t) ◦ Ψ (t),

where

Ψ (t)(u0) = u0 −

∫ t

0
S(−τ)((1+ |Dx |

γ )−1∂x((Φ(τ)(u0))
2)) dτ. (3.1)

Thanks to the invariance of the complex Gaussians under rotations, the measure
µs is invariant under S(t) (see Lemma 4.3 below). Therefore, we need to show the
quasiinvariance of µs under Ψ (t). Take σ1 >

1
2 to be chosen later. Write Ψ (t) =

Id+ K (t), where K (t) is defined via (3.1). Thanks to [32] and the analysis of the
previous section, the measure µs is quasiinvariant under Ψ (t), if we can show that
for u0 in a bounded set of H s+γ /2−σ1 and |t | 6 1 small enough (depending only
on the fixed bounded set) we have that the map (DK (t))u0 is a Hilbert–Schmidt
map on H s+γ /2. After a direct computation we arrive at

(DK (t))u0(v0) = −2
∫ t

0
S(−τ)((1+ |Dx |

γ )−1∂x(Φ(τ)(u0)v(τ )) dτ,

where v is a solution of the linear problem

∂tv + ∂t |Dx |
γ v + ∂xv + 2∂x(Φ(t)(u0)v) = 0, v|t=0 = v0. (3.2)

Next, for σ2 > 1/2 to be chosen later, we write

(DK (t))u0 = (1+ |Dx |)
−σ2 ◦ A,

where

A(v0) ≡ −2
∫ t

0
S(−τ)((1+ |Dx |)

σ2(1+ |Dx |
γ )−1∂x(Φ(τ)(u0)v(τ )) dτ.

Since (1+|Dx |)
−σ2 is a Hilbert–Schmidt map on H s+γ /2 and the Hilbert–Schmidt

property is preserved by compositions with bounded maps, we are reduced to
showing that the map A is bounded on H s+γ /2. The assumption that γ > 2 will
be used in the verification of this property. Using (2.2), we can write

‖A(v0)‖H s+γ /2 6 C sup
τ∈[0,t]
‖Φ(τ)(u0)v(τ )‖H s−γ /2+σ2+1

6 C sup
τ∈[0,t]

(
‖Φ(τ)(u0)‖H s−γ /2+σ2+1‖v(τ)‖H s−γ /2+σ2+1

)
.
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We now estimate each of the factors. Thanks to the assumption that γ > 2 for σ1

and σ2 close enough to 1
2 , we have

s −
γ

2
+ σ2 + 1 < s +

γ

2
− σ1.

Therefore, using the results of the previous section, we obtain that, for τ ∈ [0, t],

‖Φ(τ)(u0)‖H s−γ /2+σ2+1 6 ‖Φ(τ)(u0)‖H s+γ /2−σ1 6 C‖u0‖H s+γ /2−σ1 .

Next, coming back to (3.2), and using (2.2), we get that, for τ ∈ [0, t],

‖v(τ)‖H s−γ /2+σ2+1 6 ‖v0‖H s−γ /2+σ2+1 + C |t | sup
τ∈[0,t]
‖Φ(τ)(u0)v(τ )‖H s−γ /2+σ2+1

(here we only use that γ > 1). Therefore using that, for σ2 close enough to 1
2 ,

s − γ /2+ σ2 + 1 < s + γ /2, we obtain

‖v(τ)‖H s−γ /2+σ2+1 6 ‖v0‖H s+γ /2 + C |t |‖u0‖H s+γ /2−σ1 sup
τ∈[0,t]
‖v(τ)‖H s−γ /2+σ2+1 .

Hence we get that, for t small enough, but still only depending on the bounded
set of H s+γ /2−σ1 where u0 ranges, one has the bound

‖v(τ)‖H s−γ /2+σ2+1 6 2‖v0‖H s+γ /2, τ ∈ [0, t].

Therefore, we obtain that the map A is bounded on H s+γ /2. This in turn implies
that (DK (t))u0 is a Hilbert–Schmidt map, and consequently we can apply the
result of [32] to get the result of Theorem 1.2 for γ > 2.

From now on we shall suppose that γ ∈ ( 4
3 , 2]. This is the range of γ which

does not seem covered by [32]. In this region of γ , we shall use more involved
properties of the transformationΦ(t). These considerations seem to go beyond the
analysis of general maps close to the identity done in [32]. Let us also mention
that the result of [32] under the Hilbert–Schmidt assumption is already a quite
nontrivial result using a stochastic interpretation of the obtained densities (the
straightforward result being obtained under a trace class assumption).

4. A variable change formula

For every N , we denote by EN the real vector space spanned by

(cos(nx), sin(nx))16n6N .

We equip EN with the natural scalar product. We endow EN with a Lebesgue
measure L N as follows. If

(πN u)(x) =
∑

0<|n|6N

un einx , un = u−n
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and un = an + ibn , (an, bn) ∈ R2, then

(πN u)(x) =
N∑

n=1

(an(2 cos(nx))+ bn(−2 sin(nx))).

Therefore, we denote by L N the Lebesgue measure on EN built with respect to
the orthogonal basis

(2 cos(nx),−2 sin(nx))16n6N .

Next, we denote by E⊥N the orthogonal complement of EN in H s . We endow E⊥N
with the measure µ⊥s;N , which is the image measure under the map

ω 7−→
∑
|n|>N

gn(ω)

|n|s+γ /2
einx .

We can now see the measure µs as a product measure on EN × E⊥N as follows:

dµs = γN e−
∑N

n=1 |n|
2s+γ (a2

n+b2
n)d L N (a1, b1, . . . , aN , bN ) dµ⊥s;N

= γN e−‖πN u‖2
Hs+γ /2 du1 . . . duN dµ⊥s;N ,

where γN is a suitable renormalization factor and

(πN u)(x) =
∑

0<|n|6N

un einx , un = u−n, un = an + ibn, (an, bn) ∈ R2.

We have the following ‘change of variables rule’.

PROPOSITION 4.1. For A a Borel set of H s , one has the identity

µs,r (ΦN (t)(A)) =
∫
ΦN (t)(A)

χr (u)dµs(u)

= γN

∫
A
χr (u)e

−‖πN (ΦN (t)(u))‖2Hs+γ /2 du1 . . . duN dµ⊥s;N .

Proof. We follow [36]. A difference with [36] is that, in Proposition 4.1, we deal
with χr (u) and not χr (πN u). As we will see below, thanks to the conservation law
of Lemma 2.4, the analysis is not affected by the lack of the projector πN . Let
us denote by Φ̃N (t) the (well-defined) flow of the following ordinary differential
equation (ODE) on EN ,

∂t u + ∂t |Dx |
γ u + ∂x u + ∂xπN (u2) = 0, u(0, x) ∈ EN . (4.1)
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Observe that, since for the solution of (4.1) we have u = πN u, we also have that
∂xπN (u2) = ∂xπN ((πN u)2). Therefore, we have the following relation:

ΦN (t)(u0) = Φ̃N (t)(πN u0)+ S(t)((1− πN )u0). (4.2)

We have the following lemma.

LEMMA 4.2. The measure du1 . . . duN is invariant under the flow Φ̃N (t).

Proof. If
u(x) =

∑
0<|n|6N

un einx , un = u−n,

then Equation (4.1) can be rewritten as

∂t un = −
in

1+ |n|γ

(
un +

∑
n1+n2=n

0<|n1|,|n2|6N

un1 un2

)
, 1 6 n 6 N ,

and thus, if un = an + ibn , we arrive at the equations

∂tan =
n

1+ |n|γ

(
bn +

∑
n1+n2=n

0<|n1|,|n2|6N

(an1 bn2 + an2 bn1)

)
,

∂t bn = −
n

1+ |n|γ

(
an +

∑
n1+n2=n

0<|n1|,|n2|6N

(an1an2 − bn1 bn2)

)
.

We now observe that if we write the last equations as

∂tan = Fn(a1, . . . , aN , b1 . . . , bN ), ∂t bn = Gn(a1, . . . , aN , b1 . . . , bN ),

then we have the remarkable property that

∂Fn

∂an
=
∂Gn

∂bn
= 0, 1 6 n 6 N .

In particular, the ODE (4.1) is generated by a divergence-free vector field.
Therefore the statement of Lemma 4.2 follows from the Liouville theorem.

We also have the following statement.

LEMMA 4.3. The measure µ⊥s;N on E⊥N is invariant under the map S(t). In
particular, µs is invariant under S(t).
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Proof. The proof of Lemma 4.3 follows from the invariance of the complex
Gaussian under rotations. We follow closely [36, Lemma 5.3], where the proof
of an analogous statement is given. For M > N , we denote by E M

N the finite-
dimensional real vector space spanned by (cos(nx), sin(nx)), where N < n 6 M .
We denote by µM

N the centred Gaussian measure on E M
N induced by the series

M∑
|n|=N+1

gn(ω)

|n|s+γ /2
einx .

By using the Fatou lemma, we obtain that, if U is an open set of E⊥N , then we have

µ⊥N (U ) 6 lim inf
M→∞

µM
N (U ∩ E M

N ). (4.3)

By passing to a complementary set in (4.3), we get that, for F a closed set of E⊥N ,

µ⊥N (F) > lim sup
M→∞

µM
N (F ∩ E M

N ). (4.4)

By the definition of S(t), we get

S(t)(cos(nx)) = cos
(
−

tn
1+ |n|γ

+ nx
)
,

S(t)(sin(nx)) = sin
(
−

tn
1+ |n|γ

+ nx
)
.

Therefore, for fixed t , the map S(t) acts as a rotation on the vector space spanned
by cos(nx) and sin(nx). Consequently, by the invariance of centred Gaussians by
rotations, we obtain that the measure µM

N is invariant under S(t). Let F be a closed
set of E⊥N . Then S(t)(F) is also closed, and, thanks to (4.4),

µ⊥N (S(t)(F)+ Bε) > lim sup
M→∞

µM
N ((S(t)F + Bε) ∩ E M

N ),

where Bε denotes the open ball of radius ε in E⊥N (E⊥N is equipped with the H s

topology). Using that S(t) acts as an isometry on H s and the invariance of E M
N

under S(t), we obtain that, for every ε and every M ,

S(t)((F + Bε) ∩ E M
N ) ⊂ (S(t)F + Bε) ∩ E M

N .

Therefore, using the invariance of µM
N under S(t) and (4.3), we get

µ⊥N (S(t)(F)+ Bε) > lim sup
M→∞

µM
N (S(t)((F + Bε) ∩ E M

N ))

= lim sup
M→∞

µM
N ((F + Bε) ∩ E M

N )

> µ⊥N (F + Bε) > µ⊥N (F).
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Letting ε→ 0, and using the Lebesgue theorem, we get µ⊥N (F) 6 µ⊥N (S(t)(F)).
By the time reversibility of S(t), we get µ⊥N (F) = µ⊥N (S(t)(F)) for every
closed set F of E N . Finally, by approximation arguments, we obtain that
µ⊥N (A) = µ⊥N (S(t)(A)) for every Borel set A of E⊥N . This completes the proof
of Lemma 4.3.

Let us now complete the proof of Proposition 4.1. Again, we follow closely
[36]. Recall that d L N = du1 . . . duN . We can write∫

ΦN (t)(A)
χr (u)e

−‖πN u‖2
Hs+γ /2 d L N dµ⊥s;N (4.5)

as ∫
EN

∫
E⊥N

1l(ΦN (t)(A))(u)χr (u)e
−‖πN u‖2

Hs+γ /2 d L N dµ⊥s;N ,

where 1l denotes the indicator function of a measurable set. Using the Fubini
theorem, we obtain that (4.5) can be written as∫

EN

e−‖πN u‖2
Hs+γ /2

(∫
E⊥N

1l(ΦN (t)(A))(πN (u)

+π>N (u))χr (πN (u)+ π>N (u)) dµ⊥s;N

)
d L N ,

where π>N = Id− πN . Thanks to Lemma 4.3, we can write the last expression as∫
EN

e−‖πN u‖2
Hs+γ /2

(∫
E⊥N

1l(ΦN (t)(A))(πN (u)

+ S(t)π>N (u))χr (πN (u)+ S(t)π>N (u)) dµ⊥s;N

)
d L N .

Using once again the Fubini theorem, we get that (4.5) is equal to∫
E⊥N

(∫
EN

e−‖πN u‖2
Hs+γ /2 1l(ΦN (t)(A))(πN (u)

+ S(t)π>N (u))χr (πN (u)+ S(t)π>N (u))d L N

)
dµ⊥s;N .

Now, using Lemma 4.2, we obtain that the last expression is equal to∫
E⊥N

(∫
EN

e−‖Φ̃N (t)(πN u)‖2
Hs+γ /2 1l(ΦN (t)(A))(Φ̃N (t)(πN u)

+ S(t)π>N (u))χr (Φ̃N (t)(πN u)+ S(t)π>N (u)) d L N

)
dµ⊥s;N .
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Coming back to (4.2), we observe that Φ̃N (t)(πN u) = πNΦN (t)(u), and therefore
(4.5) is equal to∫

E⊥N

(∫
EN

e−‖πNΦN (t)(u)‖2Hs+γ /2 1l(ΦN (t)(A))(ΦN (t)(u))χr (ΦN (t)(u)) d L N

)
dµ⊥s;N .

Since ΦN (t) is a bijection, we have that 1l(ΦN (t)(A))(ΦN (t)(u)) = 1l(A)(u).
Moreover, using Lemma 2.4, we obtain that χr (ΦN (t)(u)) = χr (u). Therefore,
we finally obtain that (4.5) is equal to∫

E⊥N

(∫
EN

e−‖πNΦN (t)(u)‖2Hs+γ /2 1l(A)(u)χr (u) d L N

)
dµ⊥s;N ,

which is equal to∫
A
χr (u)e

−‖πN (ΦN (t)(u))‖2Hs+γ /2 du1 . . . duN dµ⊥s;N .

This completes the proof of Proposition 4.1.

5. An energy estimate

The following energy estimate is of importance in the study of the transport of
the measure µs by Φ(t).

PROPOSITION 5.1. Let γ ∈ ( 4
3 , 2], and let s > 1. Then there exist κ < 2, ε > 0,

and a constant C such that, for every N and every solution u of (2.1),

d
dt
‖πN u(t)‖2

H s+γ /2 6 C(1+ ‖πN u(t)‖3−κ
Hγ /2)(1+ ‖|Dx |

s+γ /2−1/2−επN u(t)‖κL∞).

Proof. We first observe that πN u is a solution of

∂tπN u + ∂t |Dx |
γπN u + ∂xπN u + ∂xπN ((πN u)2) = 0.

Therefore, we can compute

d
dt
‖πN u(t)‖2

H s+γ /2 =
1

2π

∫
(|Dx |

s+γ /2πN u)|Dx |
s+γ /2(−(1+ |Dx |

γ )−1∂xπN u

− (1+ |Dx |
γ )−1∂xπN (πN u)2).

Since ∫
(|Dx |

s+γ /2πN u)(|Dx |
s+γ /2(1+ |Dx |

γ )−1∂xπN u) = 0,
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and using that πN is a projector, we obtain that

d
dt
‖πN u(t)‖2

H s+γ /2 = −
1

2π

∫
(|Dx |

s+γ /2πN u) |Dx |
s+γ /2((1+ |Dx |

γ )−1∂x(πN u)2)

= −
1

2π

∫
((1+ |Dx |

γ )−1
|Dx |

s+γπN u) |Dx |
s(∂x(πN u)2).

By writing
(1+ |Dx |

γ )−1
|Dx |

γ
= Id− (1+ |Dx |

γ )−1,

we arrive at
d
dt
‖πN u(t)‖2

H s+γ /2 = I1 + I2,

where

I1 = −
1

2π

∫
(|Dx |

sπN u) |Dx |
s(∂x(πN u)2) = −

1
2π

∫
(∂ s

xπN u) ∂ s
x (∂x(πN u)2)

and

I2 =
1

2π

∫
((1+ |Dx |

γ )−1
|Dx |

sπN u) |Dx |
s(∂x(πN u)2).

Let us first estimate the more regular contribution of I2. Using that γ > 1 and
s > 1/2, we obtain that

I2 . ‖πN u‖H s‖(πN u)2‖H s . ‖πN u‖2
H s‖πN u‖L∞ . ‖πN u‖2

H s‖πN u‖Hγ /2 .

Thanks to a suitable use of the Hölder inequality, we obtain that, for some θ > 0,

‖πN u‖H s 6 ‖πN u‖θHγ /2‖πN u‖1−θ
H s+γ /2−1/2−ε ,

provided that ε is small enough. Now, since our spatial domain is compact, we
have that

‖πN u‖H s+γ /2−1/2−ε . ‖|Dx |
s+γ /2−1/2−επN u‖L∞ .

Therefore we arrive at

I2 . ‖πN u‖1+2θ
Hγ /2 ‖|Dx |

s+γ /2−1/2−επN u‖2−2θ
L∞ ,

which is an acceptable bound.
Let us next turn to the more delicate analysis of I1. We can write

I1 = −
1
π

∫
∂ s

xv ∂
s
x (∂xvv),
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where, for brevity, we set v = πN u. When applying the Leibniz rule, the most
delicate term which appears is the one when all s derivatives hit on ∂xv. Namely,
we have to deal with the term ∫

(∂ s
xv)(∂

s+1
x v)v. (5.1)

In the spirit of the local well-posedness theory of quasilinear hyperbolic PDEs,
the main observation is that one may rewrite (5.1) as

−
1
2

∫
∂xv(∂

s
xv)

2.

Therefore, thanks to the last key argument and the Leibniz rule, we obtain that, in
order to estimate I1, it suffices to estimate the expressions∫

(∂ s
xv)(∂

σ1
x v)(∂

σ2
x v), (5.2)

where
σ1 + σ2 = s + 1, σ1 6 s, σ2 6 s

(the important point being that σ1 and σ2 are not allowed to be s + 1). For that
purpose, we will use the following lemma.

LEMMA 5.2. Let σ ∈ [γ /2, s + γ /2− 1/2− ε]. Suppose that θ ∈ [0, 1] is such
that

σ < θ
γ

2
+ (1− θ)

(
s +

γ

2
−

1
2
− ε

)
. (5.3)

Then, for u such that û(0) = 0, we have the bound

‖∂σx u‖L p . ‖u‖θHγ /2‖|Dx |
s+γ /2−1/2−εu‖1−θ

L∞ ,

provided that ε > 0 is sufficiently small, where 1/p = θ/2+ (1− θ)/∞; that is,
p = 2/θ .

Proof. Consider a Littlewood–Paley decomposition of the unity

Id =
∑
λ

∆λ, (5.4)

where the summation is taken over the dyadic values of λ, that is, λ= 2 j , j = 0, 1,
2, . . . , and ∆λ are Littlewood–Paley projectors. More precisely, they are defined
as Fourier multipliers as ∆0 = ψ0(|Dx |), and, for λ > 1, ∆λ = ψ(|Dx |/λ),
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where ψ0 ∈ C∞0 (−
1
2 ,

1
2 ) and ψ ∈ C∞0 (R\{0}) are suitable functions such that

(5.4) holds. In what follows, we shall use that for every ϕ ∈ C∞0 (R\{0}) one has
the bound

‖ϕ(|Dx |/λ)( f )‖L p 6 C‖f‖L p , p ∈ [1,∞], λ > 1, (5.5)

where the constant C is independent of λ. The bound (5.5) is a consequence of the
Schur lemma. Indeed, one needs to invoke the following estimate for the kernel
of ϕ(|Dx |/λ), ∣∣∣∣∑

n

ϕ

(
|n|
λ

)
ein(x−y)

∣∣∣∣ 6 Cλ
(1+ λ|x − y|)2

,

which follows after two summations by parts. We notice that the extension of
(5.5) when the circle is replaced by a compact Riemannian manifold is known to
hold (see, for example, [12]).

For u such that û(0) = 0, we have ∆0(u) = 0, and therefore

‖∂σx u‖L p 6
∑
λ>1

‖∂σx ∆λu‖L p . (5.6)

Similarly to (5.5), using the Schur lemma, we can write

‖∂σx ∆λu‖L p . λσ‖∆λu‖L p . (5.7)

Using (5.6), (5.7), and the Hölder inequality, we arrive at the bound

‖∂σx u‖L p .
∑
λ>1

λσ‖∆λu‖θL2‖∆λu‖1−θ
L∞ , (5.8)

where p = 2/θ . Now we can write

λs+γ /2−1/2−ε∆λ = ψ̃(|Dx |/λ)|Dx |
s+γ /2−1/2−ε,

where ψ̃ ∈ C∞0 (R\{0}) is chosen such that, for x > 0, ψ̃(x) = ψ(x)/x s+γ /2−1/2−ε.
Therefore, using (5.5), we get

‖∆λu‖L∞ . λ−(s+γ /2−1/2−ε)
‖|Dx |

s+γ /2−1/2−εu‖L∞ .

Similarly, one obtains

‖∆λu‖L2 . λ−γ /2‖|Dx |
γ /2u‖L2 .

Therefore, coming back to (5.8), we get the bound

‖∂σx u‖L p . ‖|Dx |
γ /2u‖θL2‖|Dx |

s+γ /2−1/2−εu‖1−θ
L∞

(∑
λ>1

λσ−θ(γ /2)−(1−θ)(s+γ /2−1/2−ε)

)
.
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Thanks to (5.3), the sum appearing in the right-hand side of the last inequality
is convergent. Thus we arrive at the required bound. This completes the proof of
Lemma 5.2.

Let us estimate the expressions (5.2). Suppose first that s > 2. For ε1 and ε
sufficiently small to be fixed, we define the numbers θ1, θ2, θ3 in the interval (0, 1)
as

s + ε1 = θ1
γ

2
+ (1− θ1)

(
s +

γ

2
−

1
2
− ε

)
(5.9)

σ1 + ε1 = θ2
γ

2
+ (1− θ2)

(
s +

γ

2
−

1
2
− ε

)
(5.10)

σ2 + ε1 = θ3
γ

2
+ (1− θ3)

(
s +

γ

2
−

1
2
− ε

)
(5.11)

(observe that s, σ1, σ2 ∈ [1, s] and 1/2 6 γ /2 6 1). We next define p1, p2, p3 as
p j = 2/θ j , j = 1, 2, 3. We now check that, under our assumptions of γ and s for
ε1 and ε sufficiently small, we have

1
p1
+

1
p2
+

1
p3

6 1. (5.12)

Clearly (5.12) is equivalent to θ1 + θ2 + θ3 6 2. But coming back to (5.9)–(5.11),
and using that σ1 + σ2 = s + 1, we obtain that

θ1 + θ2 + θ3 =
s + 3γ

2 −
5
2 − 3ε1 − 3ε

s − 1
2 − ε

.

Therefore, for ε1 and ε sufficiently small, condition (5.12) follows from s+3/2 >
3γ /2, which is satisfied thanks to the assumption that s > 2.

Thanks to (5.12), we can apply the Hölder inequality and Lemma 5.2 to write∣∣∣∣ ∫ (∂ s
xv)(∂

σ1
x v)(∂

σ2
x v)

∣∣∣∣ 6 ‖∂ s
xv‖L p1‖∂

σ1
x v‖L p2‖∂

σ2
x v‖L p3

. ‖v‖θ1+θ2+θ3
Hγ /2 ‖|Dx |

s+γ /2−1/2−εv‖
3−θ1−θ2−θ3
L∞ .

Therefore it remains to verify that θ1 + θ2 + θ3 > 1. But for ε1 and ε sufficiently
small this condition follows from our assumption that γ > 4

3 .
Let us finally consider the case when s = 1, which is not covered by the above

analysis. In this case, we only need to estimate
∫
(∂xv)

3. Therefore, in the case
when s = 1 one gets an acceptable bound for I1 thanks to the following lemma.

https://doi.org/10.1017/fms.2015.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.27


Quasiinvariant measures 25

LEMMA 5.3. For every γ > 4
3 there is θ > 1

3 such that, for u satisfying û(0) = 0,
we have the bound

‖∂x u‖L3 . ‖u‖θHγ /2‖|Dx |
1/2+γ /2−εu‖1−θ

L∞ ,

provided that ε > 0 is sufficiently small.

Proof. As in the proof of Lemma 5.2, we perform a Littlewood–Paley
decomposition. We can write

‖∂x u‖L3 .
∑
λ>1

λ‖∆λu‖
2/3
L2 ‖∆λu‖

1/3
L∞ .

We now choose σ such that
2
3
σ +

1
3

(
1
2
+
γ

2
− ε

)
> 1. (5.13)

Thanks to (5.13) as in the proof of Lemma 5.2, we arrive at the bound

‖∂x u‖L3 . ‖u‖2/3
Hσ ‖|Dx |

1/2+γ /2−εu‖1/3
L∞ . (5.14)

We choose σ more precisely such that

2
3
σ +

1
3

(
1
2
+
γ

2
− ε

)
= 1+ ε,

which leads to
σ =

5− γ + 8ε
4

.

We first observe that for γ > 1, we have σ < 1/2+ γ /2− ε, provided ε is small
enough. If σ 6 γ /2 (that is, γ > 5

3 ) then the bound (5.14) is already sufficient
to complete the proof of Lemma 5.3 (with θ = 2

3 ). We can therefore suppose that
σ ∈ [γ /2, 1/2+ γ /2− ε]. Now, thanks to a suitable use of the Hölder inequality,
we can write

‖u‖Hσ 6 ‖u‖αHγ /2‖u‖1−α
H1/2+γ /2−ε . ‖u‖αHγ /2‖|Dx |

1/2+γ /2−εu‖1−α
L∞ ,

where

σ = α
γ

2
+ (1− α)

(
1
2
+
γ

2
− ε

)
.

Now the claim of the lemma follows if we can ensure that 2
3α >

1
3 . A direct

computation shows that the last inequality is equivalent to γ > 4/3 + 10ε/3,
which can be assured for ε small enough, thanks to our assumption that γ > 4

3 .
This completes the proof of Lemma 5.3

Summarizing the previous discussion provides the required bound for I1. This
completes the proof of Proposition 5.1.
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REMARK 5.4. Let us observe that for γ > 2 one may obtain the analogue of
Proposition 5.1 by using an argument which does not require the integration by
parts trick on the quantity (5.1). Indeed, for γ > 2, the expression∫

((1+ |Dx |
γ )−1
|Dx |

s+γπN u)|Dx |
s(∂x(πN u)2)

has enough smoothing that we can employ a semilinear technique to achieve the
desired bound. Interestingly, γ = 2 is also the border line of the applicability of
the result of [32].

6. A large-deviation bound

We can now invoke the following large-deviation estimate for the quantity
appearing in the energy estimate.

LEMMA 6.1. Let ε > 0. There exists C such that, for every r > 0, every p > 2,
and every N > 1,∥∥‖|Dx |

s+γ /2−1/2−επN u‖L∞
∥∥

L p(µs,r (u))
6 Cp1/2.

Proof. We first observe that∥∥‖|Dx |
s+γ /2−1/2−επN u‖L∞

∥∥
L p(µs,r (u))

6
∥∥‖|Dx |

s+γ /2−1/2−επN u‖L∞
∥∥

L p(µs (u))
.

Therefore, we need to prove that∥∥‖|Dx |
s+γ /2−1/2−επN u‖L∞

∥∥
L p(µs (u))

6 Cp1/2.

Coming back to the definition of µs , the last inequality can be rewritten as∥∥∥‖|Dx |
s+γ /2−1/2−ε

∑
n 6=0,|n|6N

gn(ω)

|n|s+γ /2
einx
‖L∞

∥∥∥
L p
ω

6 Cp1/2,

which would follow from∥∥∥∥∥∥ ∑
n 6=0,|n|6N

gn(ω)

|n|1/2+ε
einx

∥∥∥
L∞

∥∥∥
L p
ω

6 Cp1/2.

Now, using the Sobolev embedding, we obtain that the last inequality follows
from ∥∥∥∥∥∥ ∑

n 6=0,|n|6N

gn(ω)

|n|1/2+ε/2
einx

∥∥∥
Lq

∥∥∥
L p
ω

6 Cp1/2, (6.1)

provided that q > 2/ε. The inequality (6.1) is classical (see, for example, [14,
Lemma 3.1]). This completes the proof of Lemma 6.1.

https://doi.org/10.1017/fms.2015.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.27


Quasiinvariant measures 27

7. The measure evolution property

LEMMA 7.1. There is 0 6 β < 1 such that for every r > 0 there is a constant
C > 0 such that, for every p > 2 and every Borel set A of H s , and for every
N > 1,

d
dt
µs,r (ΦN (t)(A)) 6 Cpβ(µs,r (ΦN (t)(A)))1−1/p.

REMARK 7.2. We remark that, in a similar situation in [36], the quantity

(µs,r (ΦN (t)(A)))1−1/p

is simply bounded by one. Thanks to the use of much more subtle energies related
to the remarkable but very particular structure of the Benjamin–Ono equation, in
[36] the contribution corresponding to Cpβ is a (delicate) quantity tending to zero
as N → ∞ (which leads to the invariance of the corresponding measure, while
here we only get quasiinvariance).

Proof of Lemma 7.1. Using the flow properties of ΦN (t), we obtain that

d
dt
µs,r (ΦN (t)(A))

∣∣∣
t=t̄
=

d
dt

∫
ΦN (t)(A)

χr (u)dµs,r (u)
∣∣∣
t=t̄

=
d
dt

∫
ΦN (t)(ΦN (t̄)(A))

χr (u)dµs,r (u)
∣∣∣
t=0
≡ I.

Using Proposition 4.1, we can write I as

I = γN
d
dt

∫
ΦN (t̄)(A)

χr (u)e
−‖πN (ΦN (t)(u))‖2Hs+γ /2 du1 . . . duN dµ⊥s;N

∣∣∣
t=0
.

Therefore

I = −γN

∫
ΦN (t̄)(A)

χr (u)
(

d
dt
‖πN (ΦN (t)(u))‖2

H s+γ /2

∣∣∣
t=0

)
× e−‖πN (u)‖2Hs+γ /2 du1 . . . duN dµ⊥s;N ,

and consequently

I = −
∫
ΦN (t̄)(A)

(
d
dt
‖πN (ΦN (t)(u))‖2

H s+γ /2

∣∣∣
t=0

)
dµs,r (u).

Therefore, using the Hölder inequality, we can write

I 6
∥∥∥ d

dt
‖πN (ΦN (t)(u))‖2

H s+γ /2

∣∣∣
t=0

∥∥∥
L p(µs,r (u))

(µs,r (ΦN (t̄)(A)))1−1/p.
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Therefore, it remains to show that∥∥∥ d
dt
‖πN (ΦN (t)(u))‖2

H s+γ /2

∣∣∣
t=0

∥∥∥
L p(µs,r (u))

6 Cpβ,

for some β < 1. At this point, we shall invoke the energy estimate of
Proposition 5.1. Namely, using Proposition 5.1, we can write∥∥∥ d

dt
‖πN (ΦN (t)(u))‖2

s+γ /2

∣∣∣
t=0

∥∥∥
L p(µs,r (u))

6 C
∥∥(1+ ‖πNΦN (t)(u)‖3−κ

Hγ /2

)
×
(
1+ ‖|Dx |

s+γ /2−1/2−επNΦN (t)(u)‖κL∞
)∣∣

t=0

∥∥
L p(µs,r (u))

6 C(1+ r 3−κ)
(
1+

∥∥‖|Dx |
s+γ /2−1/2−επN u‖L∞

∥∥κ
Lκp(µs,r (u))

)
, (7.1)

for some κ < 2.
Using Lemma 6.1 and (7.1), we obtain that∥∥∥ d

dt
‖πN (ΦN (t)(u))‖2

H s+γ /2

∣∣∣
t=0

∥∥∥
L p(µs,r (u))

6 Cpκ/2.

This completes the proof of Lemma 7.1.

We are now in a position to apply a variant of the Yudovich argument [39].

LEMMA 7.3. Fix t ∈ R, r > 0, and δ > 0. There exists C > 0 such that, for every
Borel set A of H s , and for every N > 1, µs,r (ΦN (t)(A)) 6 C(µs,r (A))1−δ.

Proof. The conclusion of Lemma 7.1 can be written as

d
dt
(µs,r (ΦN (t)(A)))1/p 6 Cp−α,

where α = 1− β > 0. After an integration, we obtain that

µs,r (ΦN (t)(A)) 6 ((µs,r (A))1/p
+ Ctp−α)p

= µs,r (A)ep log(1+Ctp−α(µs,r (A))−1/p).

Using that, for x > 0, one has log(1+ x) 6 x , we arrive at the bound

µs,r (ΦN (t)(A)) 6 µs,r (A)eCtp1−α(µs,r (A))−1/p
.

We now choose p as

p ≡ 2+ log
(

1
µs,r (A)

)
.
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Therefore we obtain that

µs,r (ΦN (t)(A)) 6 µs,r (A)e
Cet (2+log( 1

µs,r (A)
))1−α

. (7.2)

We therefore conclude that for every δ > 0 there is a constant C̃ = C̃(δ, α,C, t)
(that is, depending also on α,C , and t) such that

µs,r (ΦN (t)(A)) 6 C̃(δ, α,C, t)(µs,r (A))1−δ.

This completes the proof of Lemma 7.3.

REMARK 7.4. Using the argument of [7], the bound (7.2) may be used to obtain
that the H s+γ /2−1/2−ε-norms of the solutions with data on the support of µs do not
grow faster than a quantity of type tγ (s) (t � 1) with γ (s)→∞ as s→∞ (γ (s)
may be taken close to s − 1

2 ). However, such a bound may be achieved by purely
deterministic methods. On the other hand, if the bound (7.2) is replaced by the
stronger bound

µs,r (ΦN (t)(A)) 6 µs,r (A)eCt ,

then the argument of [7] would give a bound of type t1/2. Such a bound would be
of greater interest, because the power is independent of s.

8. End of the proof of the main result

LEMMA 8.1. Fix t ∈ R, r > 0, R > 0, and δ > 0. There exists C > 0 such that,
for every Borel set A ⊂ BR,s of H s , µs,r (Φ(t)(A)) 6 C(µs,r (A))1−δ.

Proof. We first show the statement of Lemma 8.1 if A ⊂ BR,s is a compact set. In
this case, using Propositions 2.10 and 7.3, we obtain that, for every ε > 0, there
is N0 such that, for every N > N0,

µs,r (Φ(t)(A)) 6 µs,r (ΦN (t)(A + Bε,s)) 6 C(δ, t, r)(µs,r (A + Bε,s))1−δ.

Now, since A is a compact, using the dominate convergence theorem, we obtain
that, in the limit ε→ 0,

µs,r (Φ(t)(A)) 6 C(δ, t, r)(µs,r (A))1−δ.

Let now A ⊂ BR,s be an arbitrary Borel set. Using the regularity of µs,r , we obtain
that there is a sequence (Kn)

∞

n=1 of compacts of H s such that Kn ⊂ Φ(t)(A) and

lim
n→∞

µs,r (Kn) = µs,r (Φ(t)(A)). (8.1)
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We next observe that
Kn ⊂ Φ(t)(Φ(−t)(Kn)). (8.2)

Indeed, every x ∈ Kn can be written as

x = Φ(t)(Φ(−t)(x)) ∈ Φ(t)(Φ(−t)(Kn)).

Thus we have (8.2). Using (8.2), we infer that

µs,r (Kn) 6 µs,r (Φ(t)(Fn)), Fn = Φ(−t)(Kn). (8.3)

Since Kn is a compact and Φ(−t) is a continuous map, we obtain that Fn is a
compact. We now claim that

Fn ⊂ A. (8.4)

Indeed, let x ∈ Fn . This means that there is y ∈ Kn such that x = Φ(−t)(y).
But Kn ⊂ Φ(t)(A), and therefore y ∈ Φ(t)(A). As a consequence, there exists
z ∈ A such that y = Φ(t)(z). Since x = Φ(−t)(y) and y = Φ(t)(z), we infer
that x = z. Therefore x ∈ A, and the proof of (8.4) is complete. Thanks to the
analysis for compact sets performed at the beginning of the proof, we obtain that

µs,r (Φ(t)(Fn)) 6 C(δ, t, r)(µs,r (Fn))
1−δ 6 C(δ, t, r)(µs,r (A))1−δ.

Coming back to (8.3), we obtain the bound

µs,r (Kn) 6 C(δ, t, r)(µs,r (A))1−δ.

Passing to the limit n→∞ by invoking (8.1) gives

µs,r (Φ(t)(A)) 6 C(δ, t, r)(µs,r (A))1−δ.

This completes the proof of Lemma 8.1.

Let us now complete the proof of Theorem 1.2. Let A be a Borel set of H s such
that µs(A) = 0. Our goal is to show that µs(Φ(t)(A)) = 0. Since µs(A) = 0,
we also have that ,for every R, r > 0, µs,r (A ∩ BR,s) = 0. Therefore, thanks to
Lemma 8.1, for every R, r > 0, µs,r (Φ(t)(A ∩ BR,s)) = 0. On the other hand,
thanks to the dominated convergence theorem, for every Borel set A of H s ,

µs(A) = lim
r→∞

µs,r (A).

This implies that, for every R > 0, µs(Φ(t)(A ∩ BR,s)) = 0. Now, we invoke the
straightforward property

Φ(t)(A) =
∞⋃

R=1

Φ(t)(A ∩ BR,s))

to obtain that µs(Φ(t)(A)) = 0. This completes the proof of Theorem 1.2.
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9. Proof of Proposition 1.3

We have that Σ(t)(u) = S(t)(u)+ f (t), where f (t) is given by

f (t) ≡ −
∫ t

0
S(t − τ)((1+ |Dx |

γ )−1∂x(h)) dτ.

We have that f (t) ∈ H σ , thanks to the hypothesis on h. Since µs is invariant
under S(t), we have that, for every g ∈ L1(dµs(u)),∫

H s
g(S(t)(u)+ f (t)) dµs(u) =

∫
H s

g(u + f (t)) dµs(u),

and therefore we need to show that the image measure of µs under the map u 7→
u + f (t) (seen as a bijection on H σ ) is singular with respect to µs . We now show
that

f (t) /∈ H s+γ /2, t 6= 0. (9.1)

We have

S(t − τ)((1+ |Dx |
γ )−1∂x(h)) =

∑
n

in
1+ |n|γ

ĥ(n)einx e−i(t−τ)n/(1+|n|γ ),

and using that for t 6= 0 there is c > 0 such that, for every n large enough,∣∣∣∣ ∫ t

0
e−i(t−τ)n/(1+|n|γ ) dτ

∣∣∣∣ > c,

we obtain that, for γ < 3
2 ,

‖ f (t)‖H s+γ /2 > c‖h‖H s−γ /2+1 > c‖h‖H s+γ /2−1/2 = +∞.

This completes the proof of (9.1). Therefore we can apply the Cameron–Martin
argument, as we now explain. Thanks to (9.1), for every t 6= 0 there is k ∈ H s+γ /2

such that ∑
n 6=0

|n|2(s+γ /2) f̂ (t)(n)k̂(n) = +∞. (9.2)

The existence of k may be obtained either by invoking the Banach–Steinhaus
theorem or by an explicit construction. Next, we observe that

µs

(
u :

∑
n 6=0

|n|2(s+γ /2)û(n)k̂(n)<∞
)
= p

(
ω :

∑
n 6=0

|n|s+γ /2gn(ω)k̂(n)<∞
)
=1,

(9.3)
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where we used that the basic orthogonality between (gn) yields∥∥∥∥∑
n 6=0

|n|s+γ /2gn(ω)k̂(n)
∥∥∥∥

L2
ω

. ‖k‖H s+γ /2 .

Thanks to (9.3), there is a set A ⊂ H s such that µs(A) = 1 and, for every v ∈ A,∑
n 6=0

|n|2(s+γ /2)v̂(n)k̂(n) <∞. (9.4)

Let us denote by µt
s the image measure of µs under the map u 7→ u + f (t). Then

µt
s(A) = µs(B), B ≡ {v − f (t), v ∈ A}.

Thanks to (9.2) and (9.4), we obtain that, for every u ∈ B,∑
n 6=0

|n|2(s+γ /2)û(n)k̂(n) = ∞.

Therefore B ⊂ Ac, and consequently µs(B) = 0; that is, µt
s(A) = 0. Since

µs(A) = 1, we conclude that µs and µt
s are mutually singular. This completes

the proof of Proposition 1.3.

10. Final remarks

The arguments we presented here can be seen as a combination of the use
of higher-order pseudoenergies and the idea of [36] reducing the analysis of
the transported measure to a property of the random series describing the set
of the initial data. In this work we presented this approach in the simplest
significant setting we found, namely the generalized BBM models. It would be
interested to decide how much the results obtained here can be extended to other
Hamiltonian PDEs. For instance, we believe that a slight modification of the proof
of Theorem 1.2 gives the quasiinvariance of the Gaussian measures µs under the
flow of the one-dimensional Klein–Gordon equation

∂2
t u − ∂2

x u + u + u3
= 0. (10.1)

Such a result would however be at the border line of the Ramer result (there
is 1-derivative smoothing when rewriting (10.1) as a first-order equation) and
moreover it does not go beyond the Cameron–Martin threshold. Consequently,
we find it less interesting than Theorem 1.2. The extension to two dimensions
in the context of (10.1) is an interesting issue, which is not part of our present
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understanding of this set of problems. Another issue which may be interesting
is whether one may incorporate a dispersive effect in measure quasiinvariance
problems; that is, whether one may exploit more subtle smoothing properties
related to dispersion (see, for example, [2, 6, 24]). Finally, it would be very
interesting to find situations where we can prove that the transported measure
is singular with respect to the initial Gaussian measure, and describe the measure
evolution.
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Linéaire 31 (2013), 1267–1288.

[11] J. Bourgain and A. Bulut, ‘Almost sure global well posedness for the radial nonlinear
Schrodinger equation on the unit ball II: the 3D case’, J. Eur. Math. Soc. 16 (2014),
1289–1325.

[12] N. Burq, P. Gérard and N. Tzvetkov, ‘Strichartz inequalities and the nonlinear Schrödinger
equation on compact manifolds’, Amer. J. Math. 126 (2004), 569–605.

https://doi.org/10.1017/fms.2015.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2015.27


N. Tzvetkov 34

[13] N. Burq and N. Tzvetkov, ‘Invariant measure for a three dimensional nonlinear wave
equation’, Int. Math. Res. Not. IMRN (2007), 1–26.

[14] N. Burq and N. Tzvetkov, ‘Random data Cauchy theory for supercritical wave equations I.
Local theory’, Invent. Math. 173 (2008), 449–475.

[15] N. Burq and N. Tzvetkov, ‘Random data Cauchy theory for supercritical wave equations II.
A global existence result’, Invent. Math. 173 (2008), 477–496.

[16] N. Burq, L. Thomann and N. Tzvetkov, ‘Long time dynamics for the one dimensional non
linear Schrödinger equation’, Ann. Inst. Fourier 63 (2013), 2137–2198.

[17] R. H. Cameron and W. T. Martin, ‘Transformation of Wiener integrals under translations’,
Ann. of Math. (2) 45 (1944), 386–396.
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