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Abstract
Currently, most wheel-legged robots need to complete the switching of the wheel-and-leg modal in a stationary
state, and the existing algorithms of statically switching the wheel-leg modal cannot meet the control requirements
of multimodal switching dynamically for robots. In this paper, to achieve efficient switching of the wheel-and-leg
modal for a quadruped robot, the novel transformable mechanism is designed. Then, a multimodal coordination
operation control framework based on multiple algorithms is presented, incorporating the minimum foot force
distribution method (algorithm No.1), the minimum joint torque distribution method (algorithm No.2), and the
method of combining the single rigid body dynamic model with quadratic programming (algorithm No.3). In the
process of switching wheel-leg modal dynamically, the existing algorithm No.3 is prone to produce the wrong
optimal force due to the change of the whole-body rotational inertia. Therefore, an improved algorithm No.1 and
algorithm No.2 are proposed, which do not consider the change in the body’s inertia. The control effects of the
three algorithms are compared and analyzed by simulation. The results show that algorithm No.3 can maintain a
small error in attitude angle and speed tracking regardless of whether the robot is under multilegged support or
omnidirectional walking compared to the other two algorithms. However, proposed algorithms No.1 and No.2 can
more accurately track the target speed when the robot is walking with wheels raising and falling. Finally, a multi-
algorithm combination control scheme formulated based on the above control effects has been demonstrated to be
effective for the dynamic switching of the wheel-and-leg modal.

1. Introduction
Compared with wheeled robots, legged robots have better mobility in high-risk and unstructured
environments such as mountain reconnaissance [1], industrial inspection and search and rescue [2],
construction inspection and monitoring [3], and underground cave exploration [4], but their running
speed on flat roads is limited, and the energy consumption is significant. After comprehensively con-
sidering the advantages of wheeled robots [5, 6] and legged robots, mobile robot researchers worldwide
have designed a new type of wheel-legged robot that combines fast wheeled driving and flexible
leg walking functions [7–9]. Currently, the main types of wheel-legged robots include wheel-legged
series-connected robots and wheel-legged metamorphic robots.

The structure of the wheel-legged series-connected robots is simple, and its technology is relatively
mature. The wheeled structure of this kind of robot is usually distributed at the knee joint or the end
of the mechanical leg, which leads to a correlation between the wheel and leg structure. When the
wheel is distributed at the end of the mechanical leg [10–12], the wheel also acts as the foot of the leg
modal. During the switching process of the wheel modal to the leg modal, the wheel suddenly changes
from high-speed rotation to static, which will significantly impact the robotic stability and lifetime.
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Meanwhile, the wheel installed at the end of the leg is easily stuck or damaged when facing special
terrains such as stones and ruins conditions. When the wheel is distributed at the knee joint of the
mechanical leg [13], the distribution of the wheel and the leg is not at the same height. In the process of
modal switching, the height of the center of mass (CoM) must change rapidly to adapt to the wheeled
height. Therefore, the robot needs to switch the wheel-leg modal after maintaining a stationary state,
which will lead to low operational efficiency.

The wheel-legged metamorphic robot is a novel robot type proposed in recent years, which improves
environmental adaptability by switching the wheel-and-leg motion modal. For example, Chen et al. [14]
developed a deformable robot with four wheels and four legs based on a semi-circular wheel-legged
structure, which realizes wheel-leg switching through the conversion between the half-wheel and the
whole wheel; Kim et al. [15] designed a new wheel-leg hybrid robot that can transform the wheel into a
legged wheel with three legs; Liu et al. [16] constructed a wheel-leg deformation robot by combining two
single closed chain metamorphic mechanisms into a wheel-leg movement module, which can not only
walk in multilegged modal but also switch the leg modal to the wheel modal when the crank and frame
are collinear; Zheng et al. [17] presented a new adaptive wheel-and-leg transformable robot, which can
rotate the gear in the center of the wheel to cause the legs to close or remain closed in a circular shape.
Due to the integration of the wheel structure and leg structure, the metamorphic robot must switch the
wheel-and-leg modal in a stationary state. Meanwhile, the complex wheel-leg structure will also bring
many variables, increasing the control difficulty of the stable robotic operation and reducing the robot’s
operating efficiency.

Aiming at the problems of modal switching of wheel-legged robots caused by the correlation between
wheel and leg structures, our team proposed a wheel-legged separation quadruped robot. From the
mechanism perspective, the robotic wheel structure and leg structure are independent of each other
and parallel connected at the body. Because the height of the wheel and foot of the robot is adjustable,
it is easy to realize the dynamic and smooth switching of the wheel-and-leg motion modal. The novel
robot is complementary to the functions of the existing wheel-legged robot.

In the switching process of the wheel-leg modal, the descent and recovery of the independent wheel
module will affect the gravity position and inertia parameters of the wheel-legged robot in real time,
which can easily lead to significant ground impulse and foot slip. Therefore, it is necessary to consider
the influence of the multiple control algorithms on the ability of dynamic balance, the ability to track
expected speed, and the ability of antiexternal interference force when controlling the walking of the
robot.

In the field of wheeled-legged locomotion, international scholars have done much helpful explo-
ration and gradually generated some multimodal coordination control methods for wheel-legged robots.
In the early stages, a number of authors have proposed multi-algorithm control frameworks for wheeled-
legged locomotion that can adapt to terrain variations and attitude disturbances by adjusting the posture
of the body. For example, He et al. [10] proposed a terrain-adaptive control strategy for the “TAWL”
wheel-legged robot consisting of contact force control, roll-and-pitch control, wheel speed allocation,
steering strategy, and combined the control strategy with kinematics-based to achieve stable control of
the robot in unstructured terrain. Wang et al. applied linear output regulation and model-based linear
quadratic regulator to maintain the robot’s standing state on the ground. Besides, a nonlinear controller
based on the interconnection and damping assignment - passivity-based control (IDA-PBC) method is
exploited to control the wheel-legged robot in more general scenarios [18]. In particular, the “Max”
wheel-legged robot integrates the nonlinear model predictive control (NLMPC) algorithm, quadratic
programming (QP) optimization, and compliance control algorithm to achieve dual wheel rotation, bal-
ance disturbance suppression, and wheel-leg switching control [13]. Due to the lack of consideration
for the simultaneous use of wheels and legs in these methods, the robot’s obstacle-crossing ability will
deteriorate.

Recently, the motion planner has been presented to solve the whole-body planning problem of com-
bining driving and stepping motions. Marko et al. [19] proposed an online trajectory optimization (TO)
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framework for wheel-legged robots, which can operate in model predictive control (MPC) by decom-
posing the problem into wheel and base online TOs. The wheel online TO takes the rolling constraints
of the wheels into account, while the base online TO accounts for the robot’s balance during locomo-
tion using the idea of the zero-moment point (ZMP). The presented method enables the robot to achieve
wheel-and-leg hybrid motion. Subsequently, Marko et al. [20] also proposed a whole-body MPC allow-
ing for online gait sequence adaptation. The “ANYmal” wheel-legged robot can dynamically select the
optimal hybrid gait to fuse wheel rolling and leg stepping without the need for any cameras or LiDAR.
Meanwhile, the robot can quickly transition between rolling and gait based on the perception of the ter-
rain by the wheels. In particular, Vivian S et al. [21] presented an offline TO framework consisting of
a terrain-aware planner and a terrain-aware controller that is an extension of a hierarchical whole-body
controller. The framework allows the “ANYmal” wheel-legged robot to overcome challenging obstacles,
such as a 30◦ slope, 0.5 m half-pipe, and stairs. All of the above approaches prove that the multi-algorithm
combination control can better achieve multimodal coordinated control of wheel-legged robots, but these
approaches are aimed at robots with wheel-legged series-connected structures.

Fortunately, we can integrate the wheel-leg structure and adopt multiple methods to solve the whole-
body force distribution problem in multimodal transformation by drawing on the above ideas. The force
distribution based on the virtual model control (VMC ) is an algorithm with dynamic balance [22] and
anti-interference characteristics. Many scholars have applied virtual force and torque to the CoM and
adopted analytical calculation methods such as the equally proportional distribution [23, 24], the virtual
force vector distribution [25], and the force distribution with increased force constraints [26] to achieve
smooth and stable walking of the quadruped robot on slopes and rough terrain. Moreover, these methods
can enable the quadruped robot to have a strong ability to resist lateral disturbances [27, 28]. However,
compared with all the above-mentioned algorithms, the force distribution algorithm based on the single
rigid body dynamics model can calculate the optimal force to realize the precise control of trajectory
tracking of the CoM by introducing the whole-body balance constraint into the QP [29–32].

Due to the existing VMC force distribution algorithms based on analytical calculation not consider-
ing some factors such as ground friction, sudden force change, and foot-end output force constraints, the
foot end will slip seriously on complex terrain. The force distribution algorithm based on a single rigid
body dynamics model (algorithm No.3) can consider the above constraints, which are more suitable
to be adapted in the robot’s omnidirectional walking and attitude transformation control. Considering
that the modal switching dynamically needs to ensure that the running speed of the wheels and the
legs is consistent, the robot must have good speed tracking ability when walking with the wheels out
of the body. However, algorithm No.3 is prone to produce the wrong optimal force due to the influ-
ence of the change of the body’s inertia. In contrast, the force distribution algorithm based on a virtual
model does not need to consider the problem of inertia change. Therefore, this paper proposes foot-end
force minimization (algorithm No.1) and joint torque minimization (algorithm No.2) based on full rank
decomposition and the least square method. Both algorithms belong to the VMC force distribution algo-
rithm. In order to observe the respective advantages of the three algorithms in the walking and modal
switching of the wheel-legged separation quadruped robot, they are compared and analyzed in the sim-
ulation. According to the performance of three algorithms, a complete walking control scheme of the
wheel-legged separation quadruped robot will be formulated and verified by dynamically switching the
wheel-leg modal.

The manuscript is organized in five sections, including this introductory section. Section 2 provides
an overview of the mechanism design of the wheel-legged separation quadruped robot. Section 3 touches
upon the multimodal coordination operation control framework and the specific solved process of three
algorithms. Section 4 analyzes the simulation of static standing with multilegged support, omnidirec-
tional walking, and walking with wheels raising and falling under three control algorithms. Meanwhile,
a combined control scheme suitable for walking and modal switching of the wheel-legged robot is pro-
posed according to the control advantages of the three algorithms, and this scheme has been proven to be
significantly effective for the dynamic switching of the wheel-leg modal. Section 5 provides a summary
of the entire work and a statement of future plans.
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(a) (b)

(c)

Figure 1. Machine structure of the wheel-legged separation quadruped robot. (a) Structure components
of the robot. (b) Four-bar raising and falling module. (c) Front-wheel steering module.

2. The mechanism design of the wheel-legged separation quadruped robot
The main structure of the wheel-legged separation quadruped robot consists of the leg execution module,
four-link raising and falling module, front wheel steering module, rear wheel driving module, sensing
module, and controller, as shown in Fig. 1(a). The four-bar raising and lowering module in Fig. 1(b) can
lower or raise the front wheel steering and the rear driving module to the specified height. Its mechanical
principle is to use a servo motor to drive the set of bevel gears forward and reverse to make the 2-DOF
planner parallel mechanism move vertically. Moreover, we use the extendable rod to prevent the incline
of the front and rear wheel modules. The front wheel steering module in Fig. 1(c) can use the steering
motor to drive the linkage mechanism to complete the specified turning angle of ordinary wheels. The
sensing module mainly comprises depth cameras and laser radar, which are used to provide environ-
mental information for the robot. All types of robot equipment are powered by a 48V Li-ion battery
installed on both sides. The controller uses a combination of Upboard and two STM32F446 to control
all motors.

3. Multimodal coordination control algorithm of the wheel-legged separation quadruped robot
In this section, we highlight the overview of the control architecture and critical parts of the proposed
framework. The stable walking control framework of the wheel-legged separation quadruped robot is
present in Fig. 2. The user inputs the desired parameters BVd ∈ R3, BVd ∈ R3 of the CoM, which will be
applied to generate the reference trajectory of the CoM. Meanwhile, Ms is used as a switch for dynam-
ically switching the wheel-leg modal. Assuming that the attitude of the quadruped robot is relatively
stable during walking, the roll angle φ and pitch angle θ will approach 0. Therefore, the actual position
OPcom and speed OVcom of the CoM generated by the state estimator [33–35] can be converted to frame
{B} as follows. {

BPcom = Rz(ψ)T · OPcom

BVcom = Rz(ψ)T · OVcom

(1)

where Rz(ψ) ∈ R3×3 is the rotational matrix of the yaw angle ψ .
For the robotic support phase control, the expected force BFcom and torque BTcom are calculated by

combining the state estimation value and the feedback three-axis angle, which is used to maintain the
body’s stability. Then, the joint torque τ z of the support legs can be obtained by using the minimum
foot-end force distribution method, the minimum torque distribution method, and the minimum force
distribution method based on single rigid body dynamics. For the swing phase control, the results of
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Figure 2. The control framework of stable walking in the leg modal. X, Ẋ, Ẍ represent the displacement,
velocity, and acceleration of the planned trajectory, respectively. θ̇d represents the expected acceleration
of the joint motor, which is solved by inverse kinematics (IK). τs, τz represent the output joint torque of
the swing legs and the support legs, respectively.

combining the expected angular velocity Bωd and linear velocity BVd with the expected body’s position
BPcom and speed BVcom are used to plan the swing trajectory. In order to accurately track the swing
trajectory, dynamics of the single leg and joint PD control are fused to obtain the joint torque of the
swing legs.

3.1. Minimum foot-end force distribution method based on the center-of-mass virtual model
The minimum foot-end force distribution method is used to distribute the expected force and torque
of the CoM to the foot-end force vector. Due to the contact surface between the support foot end and
the ground being small, it can be assumed that there is only force and no torque. So the distributed
foot-end force can be directly used as the driving force to control the supporting legs of the quadruped
robot. Meanwhile, to simplify the model for mechanical analysis, assuming that the CoM of the robot is
concentrated in the geometric center of the body. Through the overall static analysis of the quadruped
robot, the force and torque vectors of the CoM are defined as follows:

Fcom = [
BFcomX

BFcomY
BFcomZ

]T Mcom = [
BTcomX

BTcomY
BTcomZ

]T (2)

The foot-end position vector and the foot-end force vector of every leg in frame {B} are set as Bri =
[ xi yi zi ]T and BFi = [ BFxi

BFyi
BFzi ]T, i ∈ [1, 2, 3, 4], respectively. According to the schematic

diagram of the single leg mechanism in Fig. 3(b), Bri can be calculated as below.

B
i r =

⎡
⎢⎣

ξ · (l1 cos θ1 − l2 cos θ2)+ ξ · L/2

ξ · ((l1 sin θ1 + l2 sin θ2) sin θ3)+ δ · W/2

− (l1 sin θ1 + l2 sin θ2) cos θ3

⎤
⎥⎦ (3)

where L and W are the length and width of the robotic body. ξ and δ are symbolic variables, which are
defined as follows.

ξ =
{

1, i = 1 or 2

−1, i = 3 or 4
δ =

{
1, i = 1 or 4

−1, i = 2 or 3
(4)
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(a) (b)

Figure 3. Illustration of whole-body coordinate systems and the single leg coordinate systems. (a) The
“spring-damping” system of the CoM. (b) Single leg mechanism diagram. {F} is the fixed coordinate
system of the hip joint, while {M} is its dynamic coordinate system.

According to the force and torque balance relationship of the quadruped robot, the center-of-mass
balance equation of the robot can be obtained as follows.⎧⎪⎪⎨

⎪⎪⎩
n∑

i=1

BFi = Fcom + G

n∑
i=1

(
Bri × BFi

)= Mcom

(5)

where n is the number of supporting legs. G is the gravitational compensation.
The position and attitude angle of the robotic body are adjusted through a virtual “spring-damping”

system shown in Fig. 3(a). The system can be derived as below.[
Fcom

Mcom

]
=
[

Kc,p

(
Pd

com − BPcom

)+ Dc,p

(
BVd

com − BVcom

)
Kc,ω

(
θ

d
com − θ com

)+ Dc,ω

(
Bωd

com − Bωcom

)
]

(6)

where Bωcom = [
BωcomX

BωcomY
BωcomZ

]T and θcom = [φ θ ψ ]T represents the attitude and angu-
lar speed vector of the CoM measured by IMU. Kc,p = Diag(Kx, Ky, Kz), Kc,d = Diag(Dx, Dy, Dz), Kc,ω =
Diag(Kφ , Kθ , Kψ ), Dc,ω = Diag(Dφ , Dθ , Dψ ) are adjustable factors.

For the four-legged support and the three-legged support, Eq. (5) can be rewritten into a specific
matrix form as below.

[
I3 I3 I3 I3

Br1×
Br2×

Br3×
Br4×

]
·

⎡
⎢⎢⎢⎢⎣

BF1

BF2

BF3

BF4

⎤
⎥⎥⎥⎥⎦=

[
Fcom + G

Mcom

]
(7)

[
I3 I3 I3

Br2×
Br3×

Br4×

]
·
⎡
⎢⎣

BF2

BF3

BF4

⎤
⎥⎦=

[
Fcom + G

Mcom

]
(8)

where Bri× is the antisymmetric matrix of Bri = [ xi yi zi ]T.
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Algorithm 1: Solving the minimum foot-end force through FRDWLS
Initialize algorithm variables: k, B
If k = 2 then

Fill A by Eq. (11)
Transform the simplest form of rows rref (A) by Eq. (12)
Select the column-full rank matrix D = A(1 : 6, 1 : 5)
Select the row-full rank matrix C = rref (A)(1 : 5, 1 : 6)
Solving the foot-end force vector by least squares
D+ = (DT · D)−1DT

C+ = CT(C · CT)−1

A+ = C+ · D+

F = A+ · B
else if k> 2

Solving the foot-end force vector by Eq. (10)
F = AT[AAT]−1 · B

end if

Subsequently, Eqs. (7)–(8) can be summarized as follows:

A · F = B (9)

Since A belongs to a full rank matrix, Eq. (8) can be solved by Eq. (10) directly [36, 37] when the
robot is in four-legged or three-legged support.

F = AT
[
AAT

]−1 · B (10)

For the two-legged support of the quadruped robot, assuming that legs 2,4 are used for supporting
the body. Equation (5) can be rewritten as follows.[

I3 I3

Br2×
Br4×

]
·
[

BF2

BF4

]
=
[

Fcom + G

Mcom

]
(11)

By comparing Eqs. (9) and (11), the rank of A can be calculated as rank(A) = 5. The Eq. (10) cannot
be applied in Eq. (9) directly. The minimum foot-end force vector F is solved by the method of combing
full rank decomposition with least squares (FRDWLS), as shown in Algorithm 1. When the number of
supporting legs k meets the requirements, filling A and transforming A into the simplest form of rows
by using elementary row transformations. Then, selecting the maximum independent group of column
vector of A to form the column-full rank matrix according to the ladder position elements in red of
rref(A), shown in the purple area of Eq. (12). Taking the first rank(A) rows of rref(A) as a row- full
rank matrix, shown in the green area of Eq. (12). Finally, the foot-end force vector can be solve by least
squares.

1 0 0 1 0 0

0 1 0 0 1 0

0 0 1 0 0 1

0 y2 z2 0 y4 z4

− y2 0 − x2 − y4 0 − x4

− z2 x2 0 − z4 x4 0

rref (AA )

1 0 0 0 0
x2 − x4
z2 − z4

0 1 0 0 0
y2 − y4
z2 − z4

0 0 1 0 0 1

0 0 0 1 0 −
x2 − x4
z2 − z4

0 0 0 0 1 −
y2 − y4
z2 − z4

0 0 0 0 0 0

(12)
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According to the action and reaction forces, the force exerted by the foot end on the ground is opposite
to F in the direction. Therefore, the joint torque of support legs can be calculated as follows.

τ z = J · (−F) (13)

3.2. Minimum joint torque distribution method based on the center-of-mass virtual model
Compared with the minimum foot-end force distribution method, the minimum joint torque distribution
method can directly calculate the minimum joint torque of support legs. Therefore, Eq. (9) needs to be
rewritten as below.

τ = J · (−F) (14)

F = −J−1 · τ (15)

A · J−1 · τ = −B (16)

where J−1 represents the inverse Jacobi matrix in the case of different supporting legs.
For the four-legged and three-legged support of the quadruped robot, the minimum joint torque vector

τmin of support legs can be obtained by Eqs. (17)–(19).

AJ = A · J−1 (17)

AJ · τ = −B (18)

τmin = AJ
T
[
AJAJ

T
]−1 · (−B) (19)

However, for the two-legged support, a full rank decomposition of the matrix is necessary, and its
decomposition method is the same as in Section 3.1. Assuming that the row full rank matrix and the
column full rank matrix are DJ ∈ R6×5 and CJ ∈ R5×6. The joint torque of the support legs can be solved by
Algorithm 2. We describe the specific steps of the solution as follows: when the number of supporting
legs meets the requirements, filling AJ and transforming AJ into the simplest form of rows by using
elementary row transformations. Selecting the maximum independent group of column vector of AJ to
form the column-full rank matrix according to the ladder position elements of rref(AJ). Taking the first
rank(AJ) rows of rref(AJ) as a row-full rank matrix. Finally, the joint torque vector can be solved by least
squares.

3.3. The frictional constraint of the foot-end force distribution and torque distribution
In order to avoid foot slippage, each force vector BFi in Section 3.1 must be inside the friction cone.
The ratio of the tangential component and the normal component of the ground reaction force is defined
as η. Thus, η≤μ respects the friction constraint [26]. The relationship of BFi and the centroidal force
vector BFcom can be written as follows.

η=
√

BF2
comX + BF2

comY
BFcomZ

=
√

BF2
ix + BF2

iy

BFiz

(20)

In order to linearize Eq. (20), the cone constraint is modified to an approximate quadrangular pyramid.
The ratio η= [nx, ny] can be simplified as below.
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Algorithm 2: Solving the minimum joint torque through FRDWLS
Initialize algorithm variables: k, B
If k = 2 then

Fill AJ by Eq. (17)
Transform the simplest form of rows rref(AJ)
Select the column-full rank matrix DJ = AJ(1 : 6, 1 : 5)
Select the row-full rank matrix CJ = rref(AJ)(1 : 5, 1 : 6)
Solving the joint torque vector by least squares
DJ

+ = (DJ
TDJ)−1DJ

T

CJ
+ = CJ

T(CJCJ
T)−1

AJ
+ = CJ

+ · DJ
+

τmin = AJ
+ · (−B)

else if k> 2
Solving the joint torque vector by Eq. (19)
τmin = AJ

T[AJAJ
T]−1 · (−B)

end if

⎧⎪⎪⎨
⎪⎪⎩

BFix =
BFcomX
BFcomZ

BFiz = ηx√
2

Fiz

BFiy =
BFcomX
BFcomZ

BFiz = ηy√
2

Fiz

(21)

Once Fcom = [
BFcomX

BFcomY
BFcomZ

]T is generated by the virtual system of the CoM. The ratio
η can then be calculated. Therefore, the forward tractive force BFix and the lateral tractive force BFiy of
quadruped systems can be controlled proportionally according to the normal forces BFiz of the support
foot.

However, to prevent foot slippage in extreme circumstances, the frictional constraint needs to be
reinforced by an antislip factor ξ (ξ ∈ (0, 1]) as below.

η=
[
ηx

ηy

]
=

⎡
⎢⎢⎢⎢⎢⎣

min

{√
2BFcomX
BFcomZ

, ξμ

}

min

{√
2BFcomY
BFcomZ

, ξμ

}
⎤
⎥⎥⎥⎥⎥⎦ (22)

Since the minimum joint torque τ i in Section 3.2 cannot be directly constrained by the friction cone,
the forward and lateral tractive forces must be recalculated as below.

BF′
i =

[
BF′

ix
BF′

iy
BF′

iz

]T = J−1
i τ i (23)

According to Eqs. (21)∼(23), the joint torque τ ′
i of the support legs can be rewritten as follows.

τ ′
i = J i ·

[
ηx√

2

ηy√
2

1
]T

BF′
iz (24)

3.4. Minimum force distribution method based on single-rigid body dynamic model
Although the quadruped robot is a multirigid body system, the legs are often designed to be lightweight,
and the servo motors are arranged near the body. For this reason, we can reasonably simplify the control
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Table I. Basic parameters of wheel-leg separation quadruped robot.

Parameters Symbol Value Unit
Mass m 22 Kg
Inertia of body Ixx, Iyy, Izz 0.34, 2.16, 2.84 Kg · m2

Length of body L 0.778 m
Width of body W 0.224 m
Length of thighs L1 0.2 m
Length of calf L2 0.238 m
Peak torque of the motor τmax 35 N · m

Figure 4. Single rigid body dynamics model.

model to a single rigid body dynamics model, as shown in Fig. 4. Set Of i = [fi,x, fi,y, fi,z]T and Ori = R ·
Bri as the foot-end force and the foot-end position vector in frame {O}, respectively. Using Newton’s
second law and Euler equation, the balance equation of single rigid body of the quadruped robot can be
established as follows. [

I3 · · · I3

Or1× · · · Or4×

]
f =

[
m
(

Op̈com − ag

)
R (ψz) IGR (ψz)

T · Oαcom

]
(25)

where Ori× is the antisymmetric matrix of Ori. IG is the rotational inertia of the body. ag = [0, 0, −9.8]T

is the gravity vector. Op̈com, Oαcom are the linear acceleration and angular acceleration of the CoM, respec-
tively. Several parameters listed in Table I are used to calculate the foot-end position vector Ori.

The desired linear acceleration Op̈com and angular acceleration Oαcom of the CoM of the quadruped
robot can be translated by Eqs. (26)–(27).[

OP̈com

Oαb,d

]
=
[

Kcp

(
OPc,d − OPcom

)+ Kcd

(
OVc,d − OVcom

)
Kbpe

(
O
B Rd

O
B RT

)+ Kbd

(
Oωc,d − Oωcom

)
]

(26)

⎧⎪⎨
⎪⎩

OVc,d = Rz(ψ) · BVd

OPk
c,d = OPk−1

c,d + OVk−1
c,d ·
t

Oωc,d = O
B R · Bωd

(27)
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where OPc,d, OVc,d,
Oωc,d ∈ R3 is the desired position, desired velocity, and actual angular velocity of the

CoM in frame {O}. BVd and Bωd ∈ R3 are input by the user in Section 3. O
B Rd ∈ R3×3 is the rotational

matrix of the expected attitude angle of the CoM. Kcp, Kcd, Kbp, Kbd ∈ R3×3 are modifiable factors. e(∗)
represents the mapping of the rotation matrix to the equivalent rotation vector, and the specific mapping
equation is derived as below.

ϕ = acos

(
tr
(

O
BRd

O
BRT

)− 1

2

)
(28)

eR = O
BRd

O
BRT (29)

e
(

O
BRd

O
BRT

)= ϕ · n (30)

where eR represents the error rotation matrix between the desired attitude angle and the actual attitude
angle. n, ϕ are the equivalent rotation axis and the equivalent rotation angle of eR.

To slove the optimal foot-end force vector f by using QP and friction cone constraint, Eq. (25) can
be simplified as Asf = d, whose mathematical model as below.

f ∗ = min (Asf − d)T S (Asf − d)+ αf TWf + (
f − f ∗

pre

)T
β
(
f − f ∗

pre

)
s.t. ‖fτ‖ ≤μ ‖fn‖

0 ≤ fi,z ≤ fmax

(31)

where the weight matrix S ∈ R6×6 is used to adjust the optimized results of the desired force and torque
of the CoM, and the second term αf TWf is used to reduce the energy consumption and the shocks of
foot-ground interaction. W is the weight matrix of the energy consumption. The last term is similar to
a low-pass filter to prevent sharp changes in the foot-end force. ‖fτ‖ ≤μ‖fn‖ indicates that the foot-end
force must be limited to the friction cone. fτ , fn are the tangential and normal components of the foot-end
force. f ∗

pre is the optimized value of the previous solution.
The standard form of QP optimization is below.

min
1

2
f TH1f + f Tg1

s.t. lbA ≤ Mf ≤ ubA (32)

By comparing Eqs. (31) and (32), the coefficient matrix H1, g1 can be derived as follows.{
H1 = 2ATSA + 2αW + 2β

g1 = −2ATSd − 2βf ∗ (33)

The friction cone model of the foot-end force should theoretically satisfy
√

f 2
i,x + f 2

i,y ≤μfi,z, but the
cone constraint needs to be modified to an approximate quadrilateral cone for the purpose of linearizing
the inequality [32]. The linearized friction cone can be derived as below.⎡

⎢⎢⎢⎢⎢⎢⎢⎣

−∞
0

−∞
0

fmin

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
lbAi

≤

⎡
⎢⎢⎢⎣

1 1 0 0 0

0 0 1 1 0

−
√

2

2
μ

√
2

2
μ −

√
2

2
μ

√
2

2
μ 1

⎤
⎥⎥⎥⎦

T

︸ ︷︷ ︸
Ci

Of i ≤

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0

∞
0

∞
fmax

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
ubAi

(34)
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Algorithm 3: Solving the minimum foot-end force through the method of combing single rigid body
dynamics with QP
Initialize algorithm variables: i, Sφ , α, W , S, Kcp, Kcd, Kbp, Kbd

Calculate e(O
B Rd

O
B RT) by Eqs. (28)–(30)

Calculate d by Eqs. (25)–(27)
For i = 1:4 # if the foot contacts the ground, Sφ(i) = 1; else Sφ(i) = 0

As(1 : 3, 1 + 3∗(i − 1) : 3 + 3∗(i − 1)) = Sφ(i)∗I3

As(4 : 6, 1 + 3∗(i − 1) : 3 + 3∗(i − 1)) = Sφ(i)∗Ori×
lbA(1 + 5∗(i − 1) : 5 + 5∗(i − 1), 1) = Sφ(i)∗lbAi

ubA(1 + 5∗(i − 1) : 5 + 5∗(i − 1), 1) = Sφ(i)∗ubAi

end for
C = Diag(C1, C2, C3, C4)
Obtain coefficient matrix H1, g1 by Eq. (33)
Solving Of i through the quadprog function in MATLAB

Based on Eqs. (31)–(34), a set of expected foot-end forces can be solved, and the specific solution
process is shown in Algorithm 3. Assuming that there is no slip at the foot end, the joint torque vector
τ i of the leg i can be obtained by Eq. (35).

τ i = −JT
i

O
B RT Of i (35)

3.5. Whole-body inertia analysis of the wheel-legged separation quadruped robot
From Eq. (25), it can be seen that the rotational inertia IG will affect the result of the foot-end force
distribution. When the wheels fall off the body, the rotational inertia IG of the body will change. The
rotational inertia of the whole body can be analyzed as follows.

h = hinit + 0.5hp (1 − cos(t))+ hl (36)

L4 = 3L1, L2 = L3 = 2L1 (37)

θw = arcsin
(
hp/4L1

)
(38)

ω1 = −ω2 = dθw

dt
(39)

IG = Ib + Ief + Ieb (40)

Ief = I1 + I2 + I3

ω2
3

ω2
1

+ I4

ω2
4

ω2
1

+
(

m3

v2
3

ω2
1

+ m4

v2
4

ω2
1

+ Mf

vl
2

ω2
1

)
·
⎡
⎢⎣

0

1

0

⎤
⎥⎦ (41)

Ieb = I1 + I2 + I3

ω2
3

ω2
1

+ I4

ω2
4

ω2
1

+
(

m3

v2
3

ω2
1

+ m4

v2
4

ω2
1

+ Mb

vl
2

ω2
1

)
·
⎡
⎢⎣

0

1

0

⎤
⎥⎦ (42)

where hinit is the height of the wheels from the CoM at the beginning, hp is the travel distance of the four-
bar mechanism. hl, h are the height of the wheel fixed frame and the CoM of the body from the lower
edge of the wheel, respectively, shown in Fig. 5. Ib, Ief, Ieb ∈ R3×3 are the rotational inertia of the body’s
constant parts, the equivalent rotational inertia of the front and the rear wheels four-bar raising and low-
ering module, respectively. I1, I2, I3, I4 ∈ R3×3 and ω1,ω2,ω3,ω4 are the inertia and angular velocity of
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Figure 5. Analysis of the four-bar raising and falling module.

the connecting rods L1, L2, L3, L4, respectively. The connecting links L1, L2 rotate synchronously through
the positive and negative rotation of bevel gears, so their rotation angles θw are identical. Mf and Mb are
the mass of front and rear assemblies and rear wheel assemblies. m3, m4 are the mass of the connecting
rods L3, L4, respectively. v3 and v4 is the translational speed of the connecting rods L3, L4 in frame {B}.
vl is the speed of wheels raising or falling.

3.6. Swing phase control of the wheel-legged separation quadruped robot
In order to better track foot-end trajectory, a control method based on the fusion of kinetic and vir-
tual models is used, which consists of the joint PD [38], the feedforward dynamics, and the feedback
dynamics. The joint PD is used to calculate the virtual joint torque of the swing legs as follows:

τ PD = Ksp(θ d − θ ) + Ksd(θ̇ d − θ̇ ) (43)

where Ksp ∈ R3×3 and Ksd ∈ R3×3 are the stiffness coefficient and damping coefficient, respectively. θ d =[
θ1d θ2d θ3d

]T represent the desired joint angle of the single leg, which is obtained by substituting the
foot-end planning trajectory χ d = [ xd yd zd ]T into the single-leg inverse kinematics [39]. The desired
joint angular velocity θ̇ d is set as 0. θ = [ θ1 θ2 θ3 ]T and θ̇ = [

θ̇1 θ̇2 θ̇3

]T represent the feedback
joint angle and angular velocity, respectively.

The dynamic model of the single leg was constructed by using the Lagrangian approach, and the
specific derivation of this model was published in the previous study [39]. The final dynamic model was
organized in the following form.

τ f = Mθ d + V θ̇ f + Gf (44)

where M indicates the inertia parameter. V ∈ R3×3 represents the Coriolis force and centrifugal
force. Gf ∈ R3 indicates the gravity term. The specific relationship between the acceleration θ̈ d =[
θ̈1d θ̈2d θ̈3d

]T and the expected trajectory χ d of the foot end is as follows.

θ̈ d = J i
−1
(θ d) ·

(
χ̈ d − J̇ i(θ d) · J i

−1
(θ d) · χ̇ d

)
(45)

The joint angle θ and velocity θ̇ f of the feedback dynamics term are obtained from the feedback of
the joint motor. The final joint torque of the swing legs is as below.

τ b = τ PD + τ f (46)
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Algoritham No.1 and No.2 without frictional constraints

Algoritham No.1 and No.2 with frictional constraints

(a) (b)

(d)(c)

(e)

(g) (h)

(f)

Figure 6. The change of three-axis angle and foot-end force. Foot2_Fz, and Foot4_Fz represent the
Z-axis force on the foot end of legs 2, 4.

4. Simulation and analysis
In this section, we summarize the advantages of three algorithms by setting up different simulated
projects and create a multi-algorithm combination control scheme. Finally, the scheme is validated in
the dynamic switching of the wheel-leg modal of the wheel-legged separation quadruped robot.

4.1. The simulation of standing with multilegged support
4.1.1. The simulation of standing with two-legged support
The stability of two-legged support strongly influences the fast walking of the robot in trot gait. In the
simulation, the legs 1,3 are raised to 0.2 m, and the remaining legs are used to distribute the force and
torque required to maintain the balance of the body. The robot starts with two-legged support at 3 s.

When the algorithm No.1 and No.2 do not consider the frictional constraints, they can only maintain
the balance of the body for 1 s, after which the CoM of the body gradually moves away from the diago-
nal of the support feet and loses control, shown in Fig. 6(a). The actual effects of the two algorithms in
the simulation environment are shown in Fig. 7(a)(C1) and 7(a)(C2). However, when algorithms No.1
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(a)

(b)

Figure 7. The actual effects of multilegged support under three algorithms. “IS” represents the initial
state of the robot. “ST” represents that the simulation of multilegged support starts. “LB” represents
that the robot is losing balance. “Always” represents that the robot can continuously be standing. The
green area represents the final state of the robot under three algorithms. When the robot is supported
by two feet without considering the frictional constraints, (C1) and (C2) reflect the actual effects of
using algorithm No.1 and algorithm No.2, respectively. When the robot is supported by two feet with
considering the frictional constraints, (C3) reflect the common actual effects of when the robot adopts
algorithm No.1, No.2, and No.3 to control supporting legs. (D1), (D2), and (D3) represent the actual
effects of using the algorithm No.1, No.2, and No.3, respectively, when the robot is supported by three
feet, both of which have frictional constraints. (a) The actual effects of two-legged support. (b) The actual
effects of three-legged support.

and No.2 add the frictional constraints proposed in Section 3.3, the quadruped robot sustainably main-
tains static standing of two-legged support, shown in Fig. 6(c) and 6(e). The actual effects of the two
algorithms are shown in Fig. 7(a)(C3). Therefore, the frictional constraint has a significant effect on
maintaining body’s balance.
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Algorithm No.3 also considers the friction constraints, so it can continuously maintain the sustained
standing of the two-legged support, shown in Fig. 7(a)(C3). However, the Fig. 6(g) shows that algorithm
No.3 can quickly maintain the stability of the pitch and yaw angles by adjusting the foot-end force. For
the actual physical prototype, the center of gravity usually cannot coincide with the ideal geometric
center. To make the robot stand steadily, the robot needs to independently adjust the attitude angle of its
body to ensure that the CoM is always on the diagonal of the supporting feet. Hence, the roll angle of
the Fig. 6(g) is is dynamically adjusted. Besides, from the perspective of foot-end force, algorithm No.3
can adjust foot force more smoothly to balance the body, as shown in Fig. 6(d), 6(f), and 6(h). That is
because algorithm No.3 can distribute the optimized results of desired forces and desired torque of the
CoM by setting the weight matrix S in Eq. (31). Of course, the diagonal weight value of the matrix S
related to the three-axis attitude angle is adjusted to a large value, which aims to allocate enough force
to stabilize the body’s attitude quickly. Therefore, algorithm No.3 is more effective for maintaining the
body’s balance when the robot is in the two-legged support.

4.1.2. The simulation of standing with three-legged support
In addition to the two-legged support, the three-legged support is also commonly used in the quadruped
robot. In order to observe the actual performance of three control algorithms, we conducted a simulation
study on the anti-interference performance of the wheel-legged separation quadruped robot with a three-
legged support.

Since the balance of the body can only be ensured when the CoM is located within the support
polygon of the three legs, legs 1 and 2 are set to move inward in the initial standing state. Meanwhile,
set legs 2, 3, and 4 as supporting legs to jointly bear the required force and torque for robotic balance.
Leg 1 is raised to 0.2 m in the initial state of the robot. Besides, a pendulum weighing 1 kg is set to
lateral interference, which starts swinging from the same height and time when controlling the robot
with different algorithms. Based on the above conditions, the simulation process of the three-legged
support of the robot has been carried out in Fig. 7(b), and the analysis results are as follows:

• When algorithms No.1 and No.2 are used to control the three-legged support of the robot,
the robot mainly relies on leg 4 to dynamically adjust the support polygon. After the robot is
subjected to lateral interference at 2.5 s, leg 4 exhibits poor dynamic adjustment ability, so it
gradually becomes strange and eventually loses control, as shown in Fig. 7(b)(D1) and (D2).

• When algorithm No.3 is used to control the three-legged support of the robot, the position of
leg 4 can be adjusted dynamically. At this point, the robotic CoM can always remain within the
supporting polygon and away from the edge line, so the robot can maintain continuous standing
of three-legged support, as shown in Fig. 7(b)(D3).

• Besides, comparing the joint feedback torques of support legs under three algorithms, it can be
clearly seen that algorithm No.3 can quickly adjust the joint torque to stabilize the body when
the robot’s body is subjected to a lateral disturbance in 2.5 s. Meanwhile, the maximum torque
after disturbance does not exceed the peak torque 35 N · m of the servo motor. However, when
the other two algorithms are used to control the robot, the lateral interference can lead to joint
torques of support legs exceeding the peak value, as shown in the torque feedback shadow of the
three support legs in Fig. 8. Therefore, algorithm No.3 has strong anti-interference performance
when the robot is supported by three legs.

As mentioned in Sections 4.2.1 and 4.2.2, Algorithm No.3 has better effects for the multilegged
support of the robot.

4.2. The simulation of omnidirectional walking
For different algorithms, there are significant differences in the precise tracking of the robot’s expected
walking speed and the maintenance of dynamic stability of the body in the leg modal. In order to observe
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Algorithm No.1, No.2, No.3 with frictional constraints

Figure 8. The joint motor torques of support legs under three algorithms. Motor1_T, Motor2_T, and
Motor3_T represent the feedback torque of the thigh, calf, and side swing motor.

the actual control effects of three algorithms in the rotational motion, lateral motion, forward motion,
and oblique motion, we have carried out the following motion planning:

1. The robot rotates 150◦ at a speed of 1.5 rad/s around the axis ZB and always maintains the angle
to complete the following motion planning.

2. The robot walks at an expected maximum lateral speed of 1 m/s, and the robotic speed in the
axis YB changes in a sinusoidal law.

3. The robot walks at an expected maximum forward speed of 2 m/s, and the robotic speed in the
axis XB changes in a sinusoidal law.

4. The robot walks at a combined velocity of an expected maximum lateral speed of −1 m/s and
expected maximum forward speed of −2 m/s, and the robotic speed in the axis XB and YB changes
in a sinusoidal law.

Based on the above motion planning, the actual movement situation is shown in Fig. 9(a), and the
simulation results of robot motion tracking and three-axis feedback are obtained.

• Algorithm No.1 and algorithm No.2 can accurately track the desired speed of the CoM, shown
in Fig. 9(c) and (e). However, the roll and pitch angle of the body fluctuates greatly, which can
easily lead to the body being out of balance, shown in Fig. 9(b) and (d).

• Similarly, the control algorithm No.3 also has a small error in tracking the desired speed in
the axis XB and axis YB, shown in Fig. 9(c) and (e). In Eq. (31), the diagonal weight value of
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(a)

(c)

(e)

(b)

(d)

(f)

Figure 9. Speed tracking and change of three-axis angle under three algorithms. CoM_desire_vx and
CoM_desire_vy represent the expected velocity in the XB and YB of the CoM, respectively. CoM_Vx_No.x
and CoM_Vy_No.y are the actual velocity of the axis XB and YB measured by the GPS, respectively.

the matrix S related to the three-axis attitude angle is set to a considerable value, which means
maintaining the body’s stability is always the highest priority of control tasks when the robot
walks at any speed. Therefore, algorithm No.3 enables the robot to have no more than 0.5◦ roll
and pitch angle fluctuations, shown in Fig. 9(f).

In actual omnidirectional walking, maintaining the continuous stability of the body is the foundation
for the robot to complete other motions. Therefore, algorithm No.3 is more suitable for the wheel-legged
separation quadruped robot to achieve stable walking.

4.3. The simulation of walking with wheels raising and falling
Considering the need to dynamically switch between the wheel and leg modal, the simulation of walking
with wheels raising and falling is performed, shown in Fig. 10. Owing to the dynamic switching of the
wheel-leg modal requires that the robot can switch modal at any speed within the allowed speed range
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Figure 10. The process of walking with wheels raising and falling. During the 0∼5 s process, the robot
walks rapidly and is accompanied by a vertical descent of the wheels. After 5 s, the robot reaches its
maximum speed, and the wheels descend to the bottom and come into contact with the ground. Then,
within 12 s, the wheels retract to the set height of the vehicle’s body.

(a) (b)

(d)(c)

Figure 11. Speed tracking and change of three-axis angles under three algorithms. CoM_Vx_No.3_IC

and CoM_Vx_No.3_IV represent Algorithm 3 using constant rotational inertia and varying rotational
inertia, respectively. wheel_H represents the planning height of the wheels falling and raising.

of the gait, the body’s speed in XB is set to vary in a sinusoidal pattern when the robot walks with wheels
raising and falling. In order to achieve compliance control of the wheels raising and falling, Eq. (36) is
used for planning the wheeled height, and the cycle t of wheels raising and falling is consistent with the
change cycle of robotic speed. Based on the above-simulated settings, the robot’s speed tracking and
three-axis angle changes under three algorithms are shown in Fig. 11.

• When algorithms No.1 and No.2 are used to control the robotic walking, the desired speed in the
axis XB can be tracked accurately, shown in Fig. 11(a). Besides, the roll and pitch angles of the
robot fluctuate within a range of ±2◦.

• When algorithm No.3 is adopted to control the robotic walking, the body has smaller angular
fluctuations compared to the other two algorithms, shown in Fig. 11(d). However, the speed-
tracking ability significantly deteriorates, as shown in Fig. 11(c). According to Eqs. (36)–(42), it
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Table II. All simulated results of the wheel-leg separation quadruped robot.

Simulated
motion

Comparison
index

Algorithm
No.1

Algorithm
No.2

Algorithm
No.3

Two-legged
support

Attitude
angle/foot-end
force

Maximum
4◦/rough

Maximum
4◦/rough

Maximum
0.5◦/smoothly

Three-legged
support

Joint torque Lose balance/
exceed
35 N · m

Lose balance/
exceed
35 N · m

Keep balance/
maximum
30 N · m

Omnidirectional
walking

Speed
tracking/
attitude angle

Accurate/
maximum 1.5◦

Accurate/
maximum 1.5◦

Accurate/
maximum 0.5◦

Walking with
wheels raising
and falling

Speed
tracking/
attitude angle

Accurate/
maximum 2◦

Accurate/
maximum 1.5◦

Inaccurate/
maximum 0.7◦

is not difficult to observe that the inertia varies considerably with the wheels lifting and falling
in practice. At this point, it is unreasonable for Algorithm 3 to continue using a constant inertia
matrix IG. When we substitute the variable rotational inertia IG into algorithm No.3, the robot’s
speed-tracking ability is significantly improved, and the three-axis angle of the body fluctuates
within a range of ±1◦, shown in Fig. 11(d).

Although the variation IG can be derived theoretically, there will be a large inertia error in the physical
prototype. That is because the impact of manufacturing and assembly errors on the inertia calculation
in practical control must be considered. Otherwise, significant speed errors will be generated, which is
very likely to lead to the robot collisions with the obstacle at high speed when dynamically switching
the wheel-leg modal in some narrow space. However, algorithms No.1 and No.2 can still achieve better
speed tracking without considering the influence of the change of the rotational inertia. Therefore, they
are more suitable for the walking control of the robot at the wheel-leg modal switching moment.

Based on the effects of three algorithm for all simulation projects in Table II, we formulate a
multi-algorithm combination control scheme as below: algorithm No.3 is suitable for applying to the
omnidirectional walking and attitude transformation of the wheel-legged separation quadruped robot.
When switching the wheel-leg modal dynamically, algorithms No.1 and No.2 can be used to track the
target speed accurately, which does not need to consider the disturbance caused by the change of the
body’s rotational inertia.

4.4. The simulation of dynamically switching wheel-leg modal
A set of multi-algorithm combination control schemes has been summarized by analyzing the simulation
results from Sections 4.1–4.3. We apply the scheme to the dynamic switching of the wheel-leg modal
in the simulation. The specific process of robotic modal transformation is shown in Fig. 12.

1. At 4 s, the robot walks with wheels falling.
2. At 5 s, the four leg execution modules of the robot detach from the ground, and the robot begins

to convert the leg modal to the wheel modal.
3. At 6 s, the four leg execution modules of the robot begin to contract to the top of the body

according to the planned polynomial trajectory.
4. At 7 s, the robot enters a high-speed driving modal.
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Figure 12. The process of dynamically switching wheel-leg modal.

(a) (b)

Figure 13. Speed tracking and change of three-axis angles under the combined control scheme.

5. At 8 s, the robot begins to recover the position of the four leg execution modules according to
the planning polynomial trajectory.

6. At 9 s, the robot’s feet begin to come into contact with the ground for walking, and the wheels
are ready to detach from the ground. The robot converts the wheel modal to the leg modal.

7. At 12 s, the robot returns to its initial state of the leg modal.

During the entire process of the above-mentioned robotic movement, the speed-tracking situation
and changes in the three-axis angle are shown in Fig. 13.

From Fig. 13(a), it can be seen that the wheel-legged separation quadruped robot can track the
expected speed in the axis XB direction. Meanwhile, at the moment of dynamic modal switching, the
actual speed of the body will experience small fluctuations and eventually recover to the expected value.
After the robot switches from the wheel modal to the leg modal, there is also a small velocity fluctua-
tion in the axis YB to maintain the stability of the robot’s yaw angle. Besides, throughout the simulation
process, the roll and pitch angles of the robot’s body do not change by more than 1̊ , shown in Fig. 13(b).
The simulation results indicate that the multi-algorithm combined control scheme can enable the robot
to achieve dynamic switching of the wheel-leg modal and maintain continuous stability of the body.

5. Conclusions and future work
This article presents a mechanism design scheme and a control method of switching modal dynamically
for the novel wheel-legged separation quadruped robot. The overall structure of the wheel-legged robot
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is different from other existing wheel-legged series or metamorphic robots. Its dual-mode interchange-
ability is realized by a four-bar raising and falling module (see Figs. 1 and 5), which can complete the
conversion between legs and wheels without static waiting according to the modal command. In order to
achieve the goal of high-speed dynamic switching between wheel and leg modal, we further propose a
framework of multi-algorithm combination control to achieve achieve the coordinated operation of mul-
timodal, which includes improved algorithm No.1 and algorithm No.2 and an existing algorithm No.3.
Since algorithm No.3 has been proved to have strong advantages in speed tracking and body stability
[29, 32], it is considered as a reference for robotica control methods.

Subsequently, in the simulation of multilegged standing and omni-directional walking, algorithm
No.3 has better performance in speed tracking and attitude stability than the other two algorithms.
However, in the simulation of walking with wheels raising and falling, algorithm No.3 degrade the speed
tracking ability of the robot due to the change of the whole-body rotating inertia. Therefore, we propose
improved algorithm No.1 and algorithm No.2, which do not need to consider the dynamic changes of the
whole-body moment of inertia. All of them are different from the traditional idea of adding equation con-
straints and so on to complete the VMC force distribution [23–26]. We develop a method that combines
the least square method with full rank decomposition to solve the singularity problem of the force and
joint torque distribution matrix in Eqs. (11) and (18), which has low computational power requirements
for hardware and fast solving speed. Meanwhile, considering the possibility of foot sliding, friction con-
straints are established for the two algorithms. In the walking simulation with wheels raising and falling,
the proposed improved algorithm No.1 and algorithm No.2 show strong speed tracking ability without
being affected by the change of whole-body inertia. According to the actual performance of the three
algorithms summarized in Table II, the two algorithms and the existing algorithm No.3 constitute a
combined control scheme, and which has been used to perfectly realize the dynamic switching control
of the wheel-and-leg modal of the quadruped robot.

Future work can be studied in the following three aspects. The first aspect is to apply the multi-
algorithm combination control in dynamically switching control of the physical prototype. The second
aspect is to carry out research on wheeled high-speed driving and wheel-leg compound movement
[39]. The third aspect is to achieve the purpose of crossing complex terrain quickly by researching
the coordination of multimodal.
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