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Abstract

We study the classical Rosenthal–Szasz inequality for a plane whose geometry is determined by a norm.
This inequality states that the bodies of constant width have the largest perimeter among all planar convex
bodies of given diameter. In the case where the unit circle of the norm is given by a Radon curve, we
obtain an inequality which is completely analogous to the Euclidean case. For arbitrary norms we obtain
an upper bound for the perimeter calculated in the anti-norm, yielding an analogous characterisation of
all curves of constant width. To derive these results, we use methods from the differential geometry of
curves in normed planes.
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1. Introduction

The classical Rosenthal–Szasz theorem (see [14], [4, Section 44], [5, page 143]
and [12, page 386]) says that for a compact, convex figure K in the Euclidean plane
with perimeter p(K) and diameter D(K) the inequality p(K) ≤ πD(K) holds, with
equality if and only if K is a planar set of constant width D(K). That any figure
of the same constant width satisfies the equality case is clear by Barbier’s theorem
(cf. [3] and [4, Section 44]), saying that all convex figures of fixed constant width
have the same perimeter. We will extend the Rosenthal–Szasz theorem to all normed
planes whose unit circle is a Radon curve. A basic reference regarding the geometry of
normed planes and spaces is the monograph [15] and the important subcase of Radon
planes is comprehensively discussed in [9]. For normed planes, we modify the notation
above slightly.

Our approach to Radon planes follows [9] and we start by introducing an
orthogonality concept. Given a normed plane (X, ‖ · ‖), we say that a vector v ∈ X
is (left) Birkhoff orthogonal to w (denoted by v aB w) if ‖v‖ ≤ ‖v + λw‖ for any λ ∈ R.
If v and w are nonzero vectors, this is equivalent to stating that the unit ball is supported
at v/‖v‖ by a line whose direction is w. Consequently, if v aB w, then the distance from

c© 2018 Australian Mathematical Publishing Association Inc.

130

https://doi.org/10.1017/S0004972718000813 Published online by Cambridge University Press

http://orcid.org/0000-0002-4833-5454
https://doi.org/10.1017/S0004972718000813


[2] The Rosenthal–Szasz inequality for normed planes 131

any fixed point of the plane to a line in the direction w is attained by a segment whose
direction is v. This property of Birkhoff orthogonality will be important later. For
the notion of Birkhoff orthogonality, we refer the reader to [1] and [15, Section 3.2].
Fixing a symplectic bilinear form ω on X yields an identification between X (which is
unique up to constant multiplication) and its dual X∗, by

X 3 x 7→ ιxω = ω(x, ·) ∈ X∗,

and this allows us to identify the usual dual norm in X∗ with a norm in X, namely

‖y‖a := sup{ω(x, y) : x ∈ B}, y ∈ X,

where B = {x ∈ X : ‖x‖ ≤ 1} is the unit ball of (X, ‖ · ‖). This norm is called the
anti-norm. A Radon plane is a normed plane in which Birkhoff orthogonality is
a symmetric relation. Since the anti-norm reverses Birkhoff orthogonality, this is
equivalent to the statement that the anti-norm is a multiple of the norm. Consequently,
in a Radon plane one may assume, up to rescaling the symplectic form ω, that
‖ · ‖a = ‖ · ‖. We will always assume that this is assured.

Let (X, ‖ · ‖) be a normed plane where (at least at the beginning of our argument)
the unit circle S := {x ∈ X : ‖x‖ = 1} is a closed, simple and convex curve of class C2.
With a fixed norm, one can define the length of a curve γ : [a, b]→ X in the usual way
by

l(γ) := sup
{ n∑

j=1

‖γ(t j) − γ(t j−1)‖ : a = t0 < t1 < · · · < tn = b is a partition of [a, b]
}

and, whenever γ is smooth, one clearly has

l(γ) =

∫ b

a
‖γ′(t)‖ dt.

Also, the choice of a symplectic bilinear form yields an area element and an
orientation. An important feature of Radon planes is that the Kepler law holds: the
arc length of the unit circle is proportional to the area of the corresponding sector of
the unit ball. In the normalisation that we are adopting, the arc length is actually twice
the area of the sector. Equivalently, if ϕ : R mod l(S )→ X is a positively oriented
parametrisation of the unit circle by arc length, then ω(ϕ, ϕ′) = ‖ϕ′‖ = 1.

If γ is a closed, simple and convex curve, then its range {γ} bounds a planar convex
body Kγ. It is well known that for each direction v of X this convex body is supported
by two parallel lines orthogonal (in the Euclidean sense) to v. The distance (in the
norm) between these two supporting lines is the (Minkowski) width of Kγ in the
direction of v. If this number is independent of the direction v, then we say that the
convex body Kγ (or the curve γ) has constant width (see [15, Section 4.2]). Also, we
define the diameter of a given subset A ⊆ X to be

diam(A) = sup{‖x − y‖ : x, y ∈ A}.

Our objective in this note is to prove the following theorem.
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Theorem 1.1. Let γ : S 1 → X be a closed, simple and convex curve in a Radon plane
(X, ‖ · ‖). Then

l(γ) ≤ diam{γ} ·
l(S )

2
and equality holds if and only if γ is a curve of constant width diam{γ}.

This is clearly an extension of the classical Rosenthal–Szasz inequality holding for
the Euclidean plane (see [14]). It is worth mentioning that this inequality was already
studied for two-dimensional spaces of constant curvature in [6].

The main ‘tool’ that we use here is the differential geometry of smooth curves in
normed planes, for which our main reference is [2] (see also [10]). Based on this,
we will prove the result for smooth curves in smooth normed planes. After that, we
can extend the result to the nonsmooth case by routine approximation arguments. For
a given C2 curve γ(s) : [0, l(γ)]→ X parametrised by arc length s, choose a smooth
function t : [0, l(γ)]→ R such that

γ′(s) =
dϕ
dt

(t(s)),

where we recall that ϕ(t) is a positively oriented parametrisation of the unit circle by
arc length t. Geometrically, we are identifying where the (oriented) line in the direction
of γ′(s) supports the unit ball B := {x ∈ X : ‖x‖ ≤ 1}. The circular curvature of γ at γ(s)
is the number

kγ(s) := t′(s).

In any point of γ, where kγ(s) , 0, the number ρ(s) := kγ(s)−1 is the radius of curvature
of γ at γ(s). This is the radius of an osculating circle of γ at γ(s). For curves of constant
width the following proposition was first settled for any smooth Minkowski plane (not
necessarily Radon) in [13] (see also [2] for an elegant proof).

Proposition 1.2. Let γ : S 1 → X be a simple, closed and strictly convex curve of class
C2 having constant width d. Then:

(a) the sum of the curvature radii at any pair of points of γ belonging to two parallel
supporting lines of Kγ equals d;

(b) the length of γ satisfies the equality l(γ) = d · (l(S )/2).

Part (b) is the extension of Barbier’s theorem to Minkowski planes (see [7], [11]
and [8], in addition to [13] and [2]).

2. Proof of Theorem 1.1

Let γ : S 1 → X be a simple, closed and strictly convex curve of class C2. For the
sake of simplicity, we assume also that the region bounded by {γ} contains the origin.
We define the Minkowski support function of γ to be the function which associates
each point γ(s) to the distance hγ(s) from the support line of Kγ at γ(s) to the origin.
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Figure 1. ‖p − q‖ = hγ(s0) + hγ(s1) ≤ ‖γ(s0) − γ(s1)‖ ≤ diam{γ}.

With that definition, for any s0, s1 ∈ S 1 such that Kγ is supported at γ(s0) and γ(s1) by
parallel lines, we get the inequality

hγ(s0) + hγ(s1) ≤ ‖γ(s0) − γ(s1)‖ ≤ diam{γ}. (2.1)

This comes from the fact (described above) that the distance between the support lines
must be attained by a segment which is in the left Birkhoff orthogonal direction to
them (see Figure 1).

Recall that ϕ : R mod l(S )→ X is a positively oriented parametrisation of the unit
circle by arc length and remember also that we have ω(ϕ, ϕ′) = 1. Assume now that γ
is endowed with a parameter u for which

γ′(u) = f (u) · ϕ′(u), u ∈ [0, l(S )],

with f > 0 (that is, the parametrisation is positively oriented). We get immediately that
f = ω(ϕ, γ′). For each u, we decompose γ in the basis {ϕ(u), ϕ′(u)} to obtain

γ = ω(γ, ϕ′)ϕ − ω(γ, ϕ)ϕ′.

Since the support line to Kγ at γ(u) has the direction ϕ′(u), the distance of this line to
the origin is simply the projection of γ(u) in the direction ϕ(u). It follows from the
equality above that the support function of γ is given by

hγ(u) = ω(γ(u), ϕ′(u)).

Now we calculate the length of γ:

l(γ) =

∫ l(S )

0
‖γ′(u)‖ du =

∫ l(S )

0
ω(ϕ(u), γ′(u)) · ‖ϕ′(u)‖ du

=

∫ l(S )

0
ω(ϕ(u), γ′(u)) du =

∫ l(S )

0
(ω(ϕ(u), γ(u))′ − ω(ϕ′(u), γ(u))) du

=

∫ l(S )

0
ω(γ(u), ϕ′(u)) du =

∫ l(S )

0
hγ(u) du.
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Notice that the support lines to Kγ at γ(u) and γ(u + l(S )/2) are parallel. Hence,
from (2.1),

hγ(u) + hγ(u + l(S )/2) ≤ diam{γ}. (2.2)

Finally,

l(γ) =

∫ l(S )

0
hγ(u) du =

∫ l(S )/2

0
(hγ(u) + hγ(u + l(S )/2)) du ≤ diam{γ} ·

l(S )
2

and equality holds if and only if equality holds in (2.2) for each u. This clearly
characterises bodies of constant width.

This proves the theorem for the case where both S and γ are of class C2. The
general case follows from standard approximation of bodies which are not necessarily
smooth or strictly convex by bodies whose boundaries are of class C2 in the Hausdorff
metric. (It is not hard to check that a nonsmooth Radon curve can be approximated
by smooth Radon curves.) Since all quantities involved in the inequality are clearly
continuous in that metric, we have the result.

3. The general case
For the sake of completeness, in this section we briefly explain why our approach

does not work for general normed planes. We also provide a weaker bound, which
is enough to prove Barbier’s theorem. This discussion yields a nice characterisation
of constant-width curves in arbitrary normed planes, where the anti-norm is involved.
With the same notation as in the previous section, we see that, if the plane is not
Radon, ω(ϕ, ϕ′) is not a constant function. Hence, in the parametrisation γ(u) such
that γ′(u) = f (u) · ϕ′(u),

f =
ω(ϕ, γ′)
ω(ϕ, ϕ′)

,

where the parameter was omitted to simplify the notation. Also, the decomposition of
γ(u) in the basis {ϕ(u), ϕ′(u)} now reads

γ =
ω(γ, ϕ′)
ω(ϕ, ϕ′)

ϕ −
ω(γ, ϕ)
ω(ϕ, ϕ′)

ϕ′,

from which the support function of γ is given by

hγ =
ω(γ, ϕ′)
ω(ϕ, ϕ′)

.

Therefore, calculating the length of γ leads to the following bound:

l(γ) =

∫ l(S )

0

ω(ϕ, γ′)
ω(ϕ, ϕ′)

du =

∫ l(S )

0

ω(ϕ, γ)′

ω(ϕ, ϕ′)
du +

∫ l(S )

0

ω(γ, ϕ′)
ω(ϕ, ϕ′)

du

=

∫ l(S )

0

ω(ϕ, γ)′

ω(ϕ, ϕ′)
du +

∫ l(S )

0
hγ du

≤ diam{γ} ·
l(S )

2
+

∫ l(S )

0

ω(ϕ, γ)′

ω(ϕ, ϕ′)
du.
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The last integral does not necessarily vanish. As mentioned before, this weaker
inequality can be used to prove Barbier’s theorem. Indeed, denoting for simplicity
π := l(S )/2, if γ is a curve of constant width, then γ(u) − γ(u + π) points in the direction
ϕ(u) and ∫ l(S )

0

ω(ϕ, γ)′

ω(ϕ, ϕ′)
du =

∫ π

0

ω(ϕ(u), γ(u) − γ(u + π))′

ω(ϕ(u), ϕ′(u))
du = 0,

since ω(ϕ(u), γ(u) − γ(u + π)) vanishes for every u. It remains an open problem
whether the Rosenthal–Szasz inequality, as stated in Theorem 1.1, holds for all normed
planes. However, for arbitrary normed planes we can derive the following bound for
the perimeter in the anti-norm.

Theorem 3.1. Let γ : S 1 → (X, ‖ · ‖) be a simple, closed and convex curve in an
arbitrary normed plane. If la denotes the perimeter in the anti-norm, then

la(γ) ≤ diam{γ} ·
la(S )

2
,

where we recall that diam{γ} is the diameter of γ in the norm. Equality holds if and
only if γ is a curve of constant width (in the norm).

Proof. We have the equality ω(ϕ, ϕ′) = ‖ϕ‖ · ‖ϕ′‖a = ‖ϕ′‖a (cf. [9]). In the same
notation as in the proof of Theorem 1.1, we calculate

la(γ) =

∫ l(S )

0
‖γ′(u)‖a du =

∫ l(S )

0
f (u) · ‖ϕ′‖a du =

∫ l(S )

0
ω(ϕ, γ′) du

=

∫ l(S )

0
ω(γ, ϕ′) du =

∫ l(S )

0
‖ϕ′‖a ·

ω(γ, ϕ′)
ω(ϕ, ϕ′)

du =

∫ l(S )

0
‖ϕ′‖a · hγ(u) du

=

∫ l(S )/2

0
‖ϕ′(u)‖a

(
hγ(u) + hγ(u + l(S )/2)

)
du

≤ diam{γ}
∫ l(S )/2

0
‖ϕ′(u)‖a du = diam{γ} ·

la(S )
2

.

Of course, equality holds if and only if hγ(u) + hγ(u + l(S )/2) = diam{γ} for any u. As
we already mentioned, this characterises curves of constant width. �

It is clear that Theorem 1.1 is a consequence of the previous result, since in a Radon
plane (with our normalisation) the anti-norm equals the norm. Also, since the anti-
norm of the anti-norm is the original norm (see [9]), we can bound the length of a
convex curve in an arbitrary norm in terms of the respective anti-norm as follows.

Corollary 3.2. If diama denotes the diameter calculated in the anti-norm, then we
have the inequality

l(γ) ≤ diama{γ} ·
l(S )

2
and equality holds if and only if the curve γ has constant width in the anti-norm.

https://doi.org/10.1017/S0004972718000813 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000813


136 V. Balestro and H. Martini [7]

References
[1] J. Alonso, H. Martini and S. Wu, ‘On Birkhoff orthogonality and isosceles orthogonality in normed

linear spaces’, Aequationes Math. 83 (2012), 153–189.
[2] V. Balestro, H. Martini and E. Shonoda, ‘Concepts of curvatures in normed planes’, Expo. Math.

(2018), to appear, https://arxiv.org/abs/1702.01449.
[3] E. Barbier, ‘Note sur le problème de l’aiguille et le jeu du joint couvert’, J. Math. Pures Appl. (9)

5 (1860), 273–286.
[4] T. Bonnesen and W. Fenchel, Theorie der konvexen Körper (Springer, Berlin, 1934, 1974),

English translation: Theory of Convex Bodies (eds. L. Boron, C. Christenson and B. Smith) (BCS
Associates, Moscow, Idaho, 1987).

[5] S. Buchin, Lectures on Differential Geometry (World Scientific, Singapore, 1980).
[6] M. A. H. Cifre and A. R. M. Fernández, ‘The isodiametric problem and other inequalities in the

constant curvature 2-spaces’, Rev. R. Acad. Cienc. Exactas Fı́s. Nat. Ser. A Mat. RACSAM 109(2)
(2015), 315–325.

[7] Y. I. Kim and Y. D. Chai, ‘Geometric properties of curves in the Minkowski plane’, Honam Math.
J. 19 (1997), 107–116.

[8] H. Martini and Z. Mustafaev, ‘On Reuleaux triangles in Minkowski planes’, Beiträge Algebra
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