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Summary

Evidence-based conservation can be hindered by limited field data, but historical archives have
the potential to provide unique insights into conservation-relevant parameters, such as identi-
fication of suitable habitat for threatened species. The Manumea or Tooth-billed Pigeon
Didunculus strigirostris has declined on Samoa and only a tiny remnant population still persists,
and a key first step for conservation is to locate surviving birds. NumerousManumea records are
available from the nineteenth century onwards, and we used historical and modern records to
generate a series of species distribution models to predict the distribution of suitable habitat
across Samoa to guide new field searches. Manumea distribution is closely associated with forest
cover or its proxies. Preferred Manumea food plants are suggested to be low-elevation trees, but
elevation provides relatively low percentage contribution inmost models, thus not excluding the
possibility that Manumea might occur at high elevations. There is also little evidence for
elevational change in records over the past century. Models based on visual versus acoustic
records exhibit differences in predicted habitat suitability, suggesting that some purported
acoustic records might not actually represent Manumea calls. Field searches should target areas
representing high habitat suitability across all models, notably the forested central axis of Upolu.

Introduction

Evidence-based conservation planning can be hindered by a lack of robust data on key
ecological parameters, including species distributions and environmental requirements
(Christie et al. 2021). Such data-gaps may constitute a particular problem for tropical island
birds, which have experienced extensive extinctions and exhibit high current-day risk (Spatz
et al. 2017; Steadman 2006a), but are often the focus of limited conservation research (de Lima
et al. 2011). Worryingly, island taxa often represent global conservation priorities on the basis
of evolutionary history, reflecting their geographical isolation and adaptation to novel
environments (Jetz et al. 2014).

It is therefore important to assess the information-content of alternative data types with
relevance for establishing management baselines. One such data source is the historical record,
which has the potential to provide unique insights into past species distributions and ecosystem
composition, dynamics and drivers of declines, and vulnerability and resilience to environ-
mental change (McClenachan et al. 2012; Turvey and Saupe 2019). For example, historical data
can be used to generate predictive species distribution models (SDMs) for threatened taxa,
based upon the statistical relationship between occurrence records and environmental vari-
ables (Elith et al. 2011). Historical baselines are particularly important for generating SDMs for
species that now survive only as tiny remnant populations, because understanding the eco-
logical parameters associated with past distributions can indicate whether known populations
persist in optimal environments or ecologicallymarginal refugia, and can identify priority areas
to search for possible undetected populations (Lees et al. 2021; Lentini et al. 2018). However,
historical archives are limited and incomplete, for example in terms of resolution and accuracy
of past records, due to huge variation in rigour, standardisation and scope of pre-modern
recording effort (Newbold 2010). For example, historical data typically represent presence-
only data, with reliable absences difficult to determine due to non-systematic recording effort
(Graham et al. 2004). The usefulness of historical data to establish conservation baselines,
provide predictive insights, and resolve questions for particular threatened species is therefore
uncertain.
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The Manumea or Tooth-billed Pigeon Didunculus strigirostris
is an evolutionarily distinct species endemic to the Samoan
archipelago. It is historically recorded from the islands of Savai’i
(1,820 km2), Upolu (1,110 km2), Nu’utele (1.2 km2), and Nu’ulua
(0.2 km2) in the Independent State of Samoa (Collar 2015), and is
also known from a prehistoric archaeological assemblage on Ofu
Island, American Samoa (Weisler et al. 2016). It is the only living
representative of the genus Didunculus following prehistoric
extinction of the Tongan species D. placopedetes (Steadman
2006b) and an unnamed species from Vanuatu (Worthy et al.
2015). Although historical abundance is uncertain, the Manumea
is thought to have declined by over 90% since the 1980s due to
invasive rats and cats, hunting, and habitat loss from human
activities and cyclones; it is listed as Critically Endangered by the
International Union for Conservation of Nature (IUCN), with
only a tiny remnant population likely to survive (Beichle 1987;
BirdLife International 2024; Collar 2015; Serra 2017; Serra et al.
2018). A series of recovery actions has been proposed within two
consecutive recovery plans, including habitat conservation and
management, reduction of hunting, invasive species eradication,
establishment of translocated populations and/or an ex situ
breeding programme, and increasing public awareness and local
conservation capacity (BirdLife International 2024; MNRE 2006;
MNRE and SCS 2020).

A first step for practical implementation of field-based conser-
vation actions is to locate any surviving populations or individuals.
Several “Manumea Key Rainforest Areas” (MKRAs) have been
identified based upon locations of relatively recent sightings or
field call detections, including the Falealupo and Central Savai’i
Key Biodiversity Areas (KBAs) and the Tafua and Salelologa rain-
forest on Savai’i, and the Apia catchments and Uafato-Tiavea KBAs
on Upolu (MNRE and SCS 2020) (Figure 1A). However, recent
records generally derive from opportunistic encounters or one-off
surveys of specific sites, making it unclear whether MKRAs repre-
sent optimal regions to locate surviving birds.

Incomplete knowledge ofManumea ecology also hinders assess-
ing the distribution of suitable habitat. Past observations indicate
that Manumea occur in both primary and secondary tropical forest
across a relatively wide elevational range, and are closely associated
with Dysoxylum trees for feeding, especially D. maota and
D. samoense (Beichle 1982, 1987; Collar 2015; DuPont 1972).
Samoa’s three native Dysoxylum species have distinct elevational
ranges, with the two preferred food species more widely distributed
in lower elevations and replaced by the little-used D. huntii at
higher elevations (Whistler 1978, 1980, 1992). However, it is
unclear whetherManumea are therefore ecologically excluded from
Samoa’s extensive upland areas above 1,000 m elevation (Collar
2015); this region includes much of the largest MKRA, the Central
Savai’i KBA (MNRE and SCS 2020). Acoustic surveys have also
been used in recent efforts to detect Manumea, with the species’
inferred occurrence in some localities based upon interpretation of
acoustic data (Baumann and Beichle 2020; Serra et al. 2021).
However, theManumea’s call is similar to that of themore common
sympatric Pacific Imperial-Pigeon Ducula pacifica and is hard to
differentiate in the field even by knowledgeable local hunters,
leading to suggestions that at least some purported acoustic records
may be misidentifications (Atherton and Jefferies 2012; Baumann
and Beichle 2020; Pratt and Mittermeier 2016; Serra et al. 2018).

Numerous historical Manumea records are available from field
observations and specimen-collecting trips from the nineteenth
century onwards (Beichle 1982; Collar 2015), but have not been
investigated within a quantitative spatial framework to understand
the species’ ecology and distribution. To strengthen the Manumea
conservation evidence-base, we used historical andmodern records
to generate a series of SDMs to predict areas of suitable habitat
across Samoa. Our findings provide a new baseline to support
conservation planning, identify environmental variables that influ-
ence Manumea distribution, and assess previous assumptions
about its ecology and the potential accuracy of acoustic records
reported for the species.

Figure 1. (A) Map of Samoa, showing the four islands on which Manumea are recorded and locations of Manumea Key Rainforest Areas: 1. Falealupo KBA; 2. Central Savai’i KBA; 3.
Tafua and Salelologa rainforest; 4. Apia catchments KBA; 5. Uafato-Tiavea KBA. (B) Distribution of reported acoustic records. (C), Distribution of pre-2000 sightings or historical
specimen collection localities. (D) Distribution of post-2000 sightings. KBA = Key Biodiversity Area.
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Methods

Presence data

Manumea records were obtained by conducting a thorough survey
of the published literature, unpublished grey literature (e.g. conser-
vation plans, survey reports), museum accession records, and online
birding trip reports (ebird.org). Museum specimens were identified
through the literature, the Global Biodiversity Information Facility
(gbif.org), and requests through the Natural Sciences Collections
Association (NatSCA) network, with associated locality data
accessed from online museum databases and email requests to
curators. Presence records were divided into visual/physical obser-
vations and recent acoustic-only detections for analysis.

Many locality records lacked coordinate data, so coordinates for
these records were calculated by georeferencing locality descrip-
tions using Google Earth (earth.google.com), using consistent rules
to reduce spatial bias (Supplementary material Appendix S1).
Reported localities that were too vague or general (e.g. “Samoa”,
“Savai’i”) were excluded. If multiple records were reported within
the same protected area or KBA without further spatial informa-
tion, records were spaced evenly across the area.

Environmental and land cover variables

Nineteen bioclimatic variables were obtained from WorldClim
v.2.1 (worldclim.org) at 30 arc-second resolution. Collinearity
and associated potential for model overfitting were minimised by
excluding variables displaying high correlation (r >0.8; Elith et al.
2006), preferentially removing variables that showed collinearity
with >1 other variable, and leaving seven independent variables for
inclusion. Digital elevation data were obtained from CGIAR-CSI
GeoPortal v.4 (Jarvis et al. 2008) at 90-m resolution. A separate
slope raster was generated from the elevation data with raster
analysis slope tool GDAL v.3.3.0, using default parameters (Lund-
bäck et al. 2021). A surface soil classification layer was obtained
from PacGeo (2017) at 9 arc-second resolution, classified following
Allen and Wald (2009), with high values representing hard rock
and low values representing soft soils (Castellaro et al. 2008). Four
land cover layers (forest, thicket, surface soil, cropland) dating from
March 2015 (1 × 1 cells, scale 1:50,000) were obtained from
GEOINT (2015).

Species distribution modelling

Maximum entropy modelling was conducted in MaxEnt v.3.4.4
(Phillips et al. 2016). This approach can use presence-only data and
has superior accuracy compared with other SDM methods when
data sets contain <100 unique values, and is the primarymethod for
modelling habitat suitability for species with limited occurrence
data (van Proosdij et al. 2016; Wisz et al. 2008). Analyses were
conducted in R v.1.4.1106 (R Core Team 2020).

To reduce potential for spatial autocorrelation and accommo-
date possible minor inaccuracies in estimating locations from
historical descriptions, data were analysed at the pixel resolution
of a proxy for Manumea home range. No direct estimates are
available for Manumea home range or local/seasonal movements,
and home range inference from closely related taxa is not possible
because the species is phylogenetically distant from other extant
pigeons (Jetz et al. 2014). As home range data are largely unavail-
able for other tropical Pacific pigeons, an estimate of 4 km2 (2 × 2
km grid cell) was used from the New Zealand Kererū Hemiphaga
novaeseelandiae, another large-bodied Pacific pigeon

(Baranyovits 2017). Presence records were spatially thinned in
QGIS v.3.20.0 (QGIS Development Team 2021) using the “ran-
dom selection within subsets” tool to randomly select one record
within each pixel; this method has little effect on model perform-
ance (Verbruggen et al. 2013). Home range diameter (2.257 km)
was not used, as distance-based thinning can discard important
data from regions with densely concentrated records (Verbruggen
et al. 2013). Environmental layers were resampled to this pixel
size in QGIS using median resampling, to allow inclusion of
records from coastal regions that are excluded using nearest-
neighbour resampling.

Coastal pixels that contain <100% land had reduced likelihood
of containing Manumea records, and were effectively sampled with
lower effort than non-coastal pixels. A bias file was incorporated
that specified the reduced survey effort (due to reduced land
availability) within each coastal pixel, expressed as the proportion
of the pixel containing land.

Four SDMs were generated to investigate whether different
subsets of locality data provided differing habitat suitability predic-
tions, and to enable comparison between data types: (1) “visual
reduced”, fitted with all spatially resolved visual/physical presence
records (historical and recent) and with environmental layers only
(bioclimatic, elevation, slope, soil layers); (2) “visual combined”,
fitted with visual/physical presence records from 2000 onwards and
with both environmental andmodern land cover layers; (3) “acous-
tic reduced”, fitted with acoustic presence records and environ-
mental layers; (4) “acoustic combined”, fitted with acoustic
presence records and with both environmental and modern land
cover layers. All acoustic records are recent, so a model containing
only recent visual data (visual combined model) was therefore
included to allow comparison; these models were fitted with land
cover layers as well as environmental layers, as they can be assessed
against modern land cover conditions. Conversely, the visual
reduced model contained all visual/physical Manumea presence
records, which included both historical and recent records and so
cannot be assessed against modern land cover conditions; the
acoustic reduced model was therefore also included to allow com-
parison with the visual reduced model and investigate the effect of
reduced explanatory variables on model performance. An alternate
version of the visual reduced model was also generated using only
records where accurate Manumea identification was supported by
museum specimens, observations in peer-reviewed scientific
papers, or eBird reports by experienced birders.

Two assessments of model fitness were investigated: the area
under the receiver operating characteristic curve (AUC) (Fielding
and Bell 1997), and the True Skill Statistic (TSS) (Allouche et al.
2006), with the 10th percentile presence threshold used as the TSS
threshold suitability value (Escalante et al. 2013). Variables with
lowest percentage contribution were removed in a stepwise fashion
until the greatest TSS and AUC values were achieved. The best-
performing model was selected from the final variable set, and 20
bootstrap replications were run with random seed.

To fit models and evaluate model predictions in the thinned
variable set after exclusion of low-contributing variables, 80% of
presence records were allocated as training data and 20% as test
data (Merow et al. 2013). Use of 20% as test data was selected
because it provided the highest training AUC with only a small
reduction in TSS comparedwith alternative 85:15% or 90:10%data-
splits (after exclusion of low-contributing variables: (1) 80:20%,
training and test AUC = 0.681 and 0.529, TSS = 0.155; (2) 85:15%,
training and test AUC = 0.650 and 0.688, TSS = 0.185; (3) 90:10%,
training and test AUC = 0.669 and 0.649, TSS = 0.185).
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Projections used to represent final model outputs were based
upon average maps generated from 10 replicates, which were then
used to generate average training AUC values. This approach was
followed to reduce bias that would result from selecting only the
best map projections for each model. Thresholds for occupancy
likelihood in each model output were calculated from the sum of
maximum training sensitivity and specificity (Liu et al. 2013), with
cumulative thresholds chosen from the first replication of each
output.

Spatial autocorrelation in final thinned model residuals was
assessed usingMoran’s I statistic with the R-package spdep (Bivand
et al. 2023). As residuals showed autocorrelation (Moran I statistic
standard deviate = -0.00769, P = 0.038), overfitting was addressed
by running models twice, using differing regularisation multiplier
values of 1 (default) and 2 (Radosavljevic and Anderson 2014).
Performance of different model outputs was assessed by comparing
mean AUCtraining and TSS values from best-performing models.

Between-model differences in habitat suitability projections
were evaluated through pairwise comparisons in ENMTools
(Warren et al. 2010), using two similarity measures: Schoener’s
index (D; Schoener 1970) and Hellinger distance (I; Warren et al.
2008). Both metrics range from 0 (poor similarity) to 1 (high
similarity) (Warren et al. 2010).

Results

Our initial data set contained 282Manumea presence records (143
museum records, 139 literature records) from 1872 to 2018. After
excluding records without precise locality details, we retained 131
records (28 museum records, 103 literature records) from 1924 to
2018. The final data set included 98 physical/visual-only records,
31 acoustic-only records, and two combined visual+acoustic rec-
ords (Figure 1B–D, Appendix S2). After data-thinning, the visual
reduced model included 74 records (Savai’i: 31, Upolu: 42, Nu’u-
tele: 1), the visual combined model included 62 records (Savai’i:
22, Upolu: 39, Nu’utele: 1), and the acoustic models included 28
records (Savai’i: 18, Upolu: 7, Nu’utele: 3).

Using the default regularisation multiplier value, our four main
models all had average (>0.7), good (>0.8) or excellent (>0.9) AUC
values, but lower TSS values (<0.45). The acoustic combined model
had the highest model fitness after removing seven variables (mean
AUCtraining = 0.910, TSS = 0.442). Similar model fitness was shown
by the acoustic reduced model after removing five variables (mean
AUCtraining = 0.832, TSS = 0.359), and the visual reduced model
after removing four variables (mean AUCtraining = 0.881, TSS =
0.354). The visual combined model had the lowest model fitness
after removing four variables (mean AUCtraining = 0.718, TSS =
0.193). Variable contribution that explained >70% of variation
differed across the four final models, with different variables asso-
ciated with probability of Manumea presence (visual combined:
BIO12, BIO17, slope, elevation; visual reduced: forest, slope, eleva-
tion, soil hardness, BIO12; acoustic combined: forest, BIO2, soil
hardness, cropland; acoustic reduced: soil hardness, BIO12, BIO17,
BIO2). Elevation explained ≥10% of variation in three of the four
final models (visual combined, visual reduced, acoustic reduced).
Probability of Manumea presence had ≥0.5 probability close to sea
level in both visual models and declined in probability with increas-
ing elevation, dropping to almost 0 probability around 1,000m a.s.l.
in the visual combined model, but with a second peak of almost 0.5
probability at 1,770m a.s.l. in the visual reducedmodel. Conversely,
probability of presence had a fairly constant relationship with

elevation (<0.5 probability) across Samoa’s elevational profile in
the acoustic reduced model, with slight probability peaks at lowest
and highest elevations (Table 1, Appendix S3).

The two visual models predict similar areas of habitat suitability
on Upolu, with much of the island’s raised and forested east–west
axis (including the Apia catchments and Uafato-Tiavea KBAs)
identified as having high habitat suitability, as well as several small
low-elevation regions along the southern coast. These models
predict little suitable habitat in Savai’i, with only the Falealupo
KBA, the Tafua and Salelologa rainforest, and other small discrete
northern and southern low-elevation coastal areas identified as
suitable by the visual combined model, and far fewer areas identi-
fied by the visual reducedmodel. The two acoustic models similarly
predict that parts of the central axis of Upolu represent suitable
habitat, but also predict higher habitat suitability for the northern
low-elevation areas of Upolu, and some additional northern and
western low-elevation coastal regions of Savai’i. The acoustic
reduced model also predicts that a large area of the Central Savai’i
KBA, including the highest-elevation central region of this island,
represents good-quality habitat; the acoustic combined model pre-
dicts some good-quality habitat in this region, although across a
smaller area. All models predict high suitability for Nu’utele (Figure
2). Spatial congruence was highest between both acoustic models,
and lowest between the visual reduced and acoustic combined
models (Table 2, Figure 3).

The best-performing alternate visual reducedmodel based upon
better-confirmed records included only 25 records after data-thin-
ning (Savai’i: 9, Upolu: 15, Nu’utele: 1), and performed less well
than the full visual reducedmodel (mean AUCtraining = 0.786, TSS =
0.302). This model mainly predicted low-elevation coastal areas as
having high habitat suitability, along with central Upolu (Appendix

Table 1. Percentage contribution of variables to final models. Variables
removed from final models indicated by dashes. Positive correlations shown in
bold, negative correlations shown in italics. VR = visual reduced model; VC =
visual combined model; AR = acoustic reduced model; AC = acoustic combined
model

Variables VR VC AR AC

Bioclimatic:

Mean diurnal range (BIO2) – – 16.4 15

Isothermality (BIO3) 10.8 6.1 – –

Minimum temperature of coldest month
(BIO6)

– 5.4 – 3.5

Mean temperature of wettest quarter
(BIO8)

– – – –

Annual precipitation (BIO12) 25.1 7.2 17.4 7.2

Precipitation of driest month (BIO14) 6.0 – – –

Precipitation of driest quarter (BIO17) 21.6 – 16.9 6.8

Elevation 14.5 10 15.9 –

Slope 11.3 10.2 – –

Soil hardness 10.7 8.9 33.4 14.7

Land cover:

Forest 35.8 31.8

Thicket 6.2 –

Surface soil 3.2 9.9

Cropland 7 11.1
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S4). Models generated with the increased regularisation multiplier
(value = 2) also performed less well, with lower AUC values that
were only average (>0.7) or good (>0.8), and lower (<0.4) TSS
values. The acoustic combined model had highest fitness after
removing eight variables (mean AUCtraining = 0.823, TSS =
0.377), closely followed by the visual combined model after remov-
ing eight variables (meanAUCtraining = 0.810, TSS = 0.221). The two
reduced models showed lower fitness (acoustic reduced: mean
AUCtraining = 0.765, TSS = 0.153; visual reduced: mean AUCtraining

= 0.726, TSS = 0.122). Final model outputs contained differing
variables that together explained >70% of variation (acoustic com-
bined: BIO6, BIO17, slope, cropland, soil surface, woodland; acous-
tic reduced: BIO2, BIO6, BIO17, slope, soil hardness; visual
combined: BIO6, BIO17, slope, elevation, cropland, woodland;
visual reduced: BIO12, BIO14, BIO17, slope, soil hardness). Slope
and BIO17 were retained in all four final models, explaining ≥8%
and ≥7% of variation respectively, whereas elevation remained in

only one of the final models (visual combined), explaining >19% of
variation (Appendix S5).

Discussion

In this study, we explored the potential for pre-modern records of
the Critically Endangered Manumea to provide new insights into
the ecology and possible current distribution of this extremely
threatened bird, and compare spatial and habitat predictions and
information-content of different available record types. As is unfor-
tunately the case with many long-term baselines for threatened
species (Newbold 2010), many older records lack sufficiently
detailed or precise locality information and could not be incorpor-
ated into SDMs. We had to exclude 116 of 136 available museum
records and could only utilise records from four out of 27 museums
that contained Manumea specimens (Appendix S2), and an alter-
nate visual reducedmodel that only used better-supported data was
limited to 25 records and had lower support. Similar data limita-
tions may also exist with museum specimens for other insular taxa,
for which older accession records may only report their island of
origin rather than specific geographical information needed for
environmental analysis (Collar et al. 2004). However, we were still
able to utilise spatially well-resolved records spanning much of the
twentieth century, representing a unique data source that can test
and challenge assumptions about Manumea ecology and distribu-
tion, and with important implications for conservation.

MaxEnt performed relatively well in predicting habitat suitabil-
ity for all models based on AUC values (all >0.7), but the relative
contributions made by different explanatory variables varied
between models. Here we only discuss outputs from models gen-
erated with the default regularisation multiplier value, as these

Figure 2.Manumea species distributionmodels: (A) visual reducedmodel (threshold: 37.894); (B) visual combinedmodel (threshold: 53.459); (C) acoustic reducedmodel (threshold:
48.671); (D) acoustic combined model (threshold: 34.258). See main text for method used to determine occupancy likelihood thresholds.

Table 2. Pairwise comparisons of models compared using Schoener’s index (D)
and Hellinger distance (I). VR = visual reduced model; VC = visual combined
model; AR = acoustic reduced model; AC = acoustic combined model

Model pairwise comparison D I

VR – VC 0.712 0.925

VR – AR 0.724 0.941

VR – AC 0.663 0.906

VC – AR 0.699 0.915

VC – AC 0.717 0.922

AR – AC 0.763 0.943
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models performed better than those generated using a higher value,
although we note the additional differences in explanatory variable
contribution between these model sets.

Forest cover provided a high percentage contribution (>30%) in
models within which recent land cover data could be included
(visual combined and acoustic combined), as expected for a species
known to be associated with forest, with this strong relationship
thus reducing the relative contribution made by other variables.
Correlation with cropland and surface soil (inverse relationships in
response curves) provided a further >20% percentage contribution
in the acoustic combined model and >10% in the visual combined
model, giving additional support for the importance of forest cover
in predicting Manumea distribution compared with other vari-
ables. The higher contribution of bioclimatic variables within both
reduced models, notably annual precipitation and precipitation of
the driest quarter, also likely represents a proxy for forest cover,
since these variables are associated with regulating tropical rain-
forest distribution (Corlett and Primack 2011).

A positive relationship with increasing soil hardness provided a
high percentage contribution (33.4%) within the acoustic reduced
model. Soil conditions might represent a further proxy for forest
cover, explaining the high contribution of the variable to this
reduced model where land cover is not included. Alternatively, this
correlation might indicate a more specific Manumea habitat pref-
erence. Harder soils within tropical forests can be associated with
higher-elevation sloped regions (Hattori et al. 2005). Conversely, a
negative relationship is seen between elevation and likelihood of
occurrence in both visual models, consistent with the suggestion
that Manumea are less likely to occur at higher elevations where
preferred Dysoxylum food species are replaced by D. huntii. How-
ever, soil hardness, elevation and slope provide relatively low

percentage contributions in most models (<15%), indicating they
are generally poor predictors of Manumea distribution, and thus
not excluding the possibility that Manumea might occur at high
elevations across Savai’i and Upolu. Indeed, elevation remained in
only one of the final models generated with the higher regularisa-
tion multiplier value, although slope was retained in all of these
models.

Our SDMs predict different spatial patterns of habitat suitabil-
ity across Samoa, with practical implications for understanding
Manumea ecology and where to focus spatial search effort for
surviving individuals. Threatened species often become restricted
to ecologically marginal high-elevation refugia as populations
decline (Fisher 2011; Turvey et al. 2015), raising the possibility
that models which only include recent Manumea records might
show more restricted niche predictions compared with models
also containing older records. Indeed, Steadman (2006b) sug-
gested that Manumea survived on Samoa but died out on Tonga
because Savai’i and Upolu are larger, higher and steeper islands.
However, this possibility is contradicted by the relatively high
spatial congruence between our visual reduced model (historical
and recent visual records) and our visual combined model
(recent-only visual records), and the negative correlation and
low percentage contribution of elevation across our models, pro-
viding little evidence for elevational change in Manumea records
over the past century. If Manumea were already rare by the
nineteenth century, as suggested by several contemporary obser-
vers (Collar 2015; Layard 1876; Ramsay 1864; Stair 1897), it is
possible that niche contraction caused by anthropogenic pressures
might have already occurred before the period represented by our
historical data set. However, although there has not been extensive
recent search effort in remote high-elevation landscapes, some of

Figure 3. Pairwise comparisons between models: (A) visual reduced–visual combined; (B) visual combined–acoustic combined; (C) visual reduced–acoustic combined; (D) visual
combined–acoustic reduced; (E) visual reduced–acoustic reduced; (F) acoustic reduced–acoustic combined.
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the few recent verified Manumea sightings are from very low
elevations (MNRE and SCS 2020), and these areas are highlighted
as suitable in the alternate visual reduced model based only upon
better-supported records. A similar pattern of minimal range
change as populations decline toward extinction is also observed
in some other extremely rare species, possibly associated with
across-landscape movements tracking spatially fluctuating
resource availability (Turvey et al. 2010). If Manumea do persist
across broadly the same environmental range, this might be
associated with unpredictable fruiting periodicity and spatiotem-
poral resource patchiness in Dysoxylum (e.g. mast fruiting), with
birds potentially exhibiting nomadic behaviour in following food
resources. This spatial behaviour is seen widely in nectarivorous
and frugivorous tropical Pacific birds (Brown and Hopkins 1996;
Smetzer et al. 2021).

Conversely, our visual and acoustic models exhibit reduced
congruence in pairwise comparisons, with distinct spatial differ-
ences in predicted habitat suitability across Samoa. This variation
might reflect differences in the distribution of valid Manumea
source data used for each pair of models. Non-congruent model
predictions can result from spatial unevenness and bias between
data sets, typically when data represent opportunistic detections
rather than systematic region-wide survey effort. This can lead to
variation in statistical associations between records from different
landscapes and locally specific environmental parameters (Turvey
et al. 2020). For example, visual records may be spatially skewed
toward sites where observations can bemade across wide areas (e.g.
forest sites with viewing platforms). Conversely, predicted habitat
suitability at higher elevations of central Savai’i shown by the
acoustic models likely reflects the recent focus of acoustic survey
effort and associated clustering of acoustic detections within this
region (MNRE and SCS 2020). In contrast, a three-week survey of
this region in 2012 produced only one uncorroborated visual record
(Atherton and Jefferies 2012). However, this partial mismatch
between predictions from visual versus acoustic models is also
consistent with the suggestion that at least some acoustic records
might not actually represent Manumea calls, and we cannot dis-
count this concerning possibility. Indeed, the Pacific Imperial-
Pigeon is distributed widely across upland regions of Savai’i (Ather-
ton and Jefferies 2012; Reed 1980), consistent with the suggestion
that this species is an alternative candidate for this region’s acoustic
records. Further investigation of all purported acoustic records
using spectrographic analysis is therefore essential before using
them for further planning (Baumann and Beichle 2020; Serra
et al. 2021).

Given these considerations about model congruence and poten-
tial data accuracy, we suggest that initial field-based searches for
Manumea should target areas that represent high habitat suitability
across all models. This approach would prioritise surveys across the
forested central axis of Upolu (also highlighted by the alternate
visual reducedmodel), and including the Uafato-Tiavea KBA to the
east, which together constitute the largest continuous or semi-
continuous region of predicted suitable habitat in all models. We
also recommend surveys in discrete low-elevation coastal forest
regions identified as suitable habitat. These regions include the
Falealupo KBA and the Tafua and Salelologa rainforest on Savai’i,
andNu’utele island, whichmay all representmore accessible survey
sites compared with the high-elevation interior of both main
islands. We do not exclude the importance of also surveying the
Central Savai’i KBA, but varying SDM evidence for extensive
suitable habitat in this remote region suggests that limited conser-
vation resources should possibly be prioritised elsewhere to begin

with. We note that these areas of high predicted habitat suitability
derived from ourmodels are spatially congruent with someMKRAs
that are based upon recent Manumea detections, but also highlight
other landscapes not currently prioritised as MKRAs (MNRE and
SCS 2020). It is also important to recognise that SDMs are only able
to generate predictions about distribution of inferred habitat suit-
ability based upon available environmental parameters (Franklin
2009). This does not necessarily indicate continued survival of
target species (Loiselle et al. 2003), and it is unfortunately likely
that Manumea have been extirpated from most areas of good-
quality habitat, reflecting an example of “empty forest” syndrome
(Wilkie et al. 2011).

Due to limited availability of high-resolution environmental
layers for Samoa, our spatial analyses could only include a single
forest layer for investigating land cover. We encourage additional
research into the relationship between Manumea records and
variation in forest structure and quality to further determine habitat
factors that might regulate the species’ distribution, to help address
the recognised need to understand its ecology (MNRE and SCS
2020). In particular, we recommend quantitative mapping of cyc-
lone damage to Samoa’s forests (BirdLife International 2024; Collar
2015), and more detailed analysis of Manumea occurrence in
relation to different primary/secondary and lowland/upland forest
types across Samoa (Whistler 1978, 1980, 1992). Specifically, such
analysis should assess Manumea occurrence in relation to the
elevational ranges, distributions, and specific ecological require-
ments of preferred food trees (Dysoxylummaota andD. samoense).
Such investigations would provide a better understanding of
whether Manumea distribution is regulated by specific local-scale
environmental factors that could not be incorporated within our
region-wide models. Further insights into Manumea ecological
tolerances could also potentially be obtained through assessment
of past environmental parameters associated with prehistoric
Didunculus remains.

However, the habitat suitability projections established in this
study represent a new baseline to support existing conservation
planning for Samoa’s national bird. They can contribute toward the
priority objectives defined in the 2020–2029 Manumea recovery
plan, notably by helping to define proposed MKRA boundaries
(objective 2.1), and to understand relevant aspects of Manumea
ecology (objective 5.5) (MNRE and SCS 2020). Although the devel-
opment of effective standardised methods for detecting Manumea
in the field is recognised as a top priority, our model outputs can be
used to help guide searches for surviving birds once appropriate
survey methods are identified, notably through highlighting new
landscapes as potential priority areas alongside recognisedMKRAs.
We hope that our research can thus contribute toward efforts to
prevent the possible imminent extinction of this remarkable spe-
cies. We also recommend further use of ecological data associated
with past records to inform decision-making for other poorly
known threatened species in urgent need of evidence-based
conservation.

Supplementary material. The supplementary material for this article can be
found at http://doi.org/10.1017/S0959270924000133.
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