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1. Introduction. Let G be a group. The norm, or Kern of G is the subgroup of
elements of G which normalize every subgroup of the group. This idea was introduced in
1935 by Baer [1, 2], who delineated the basic properties of the norm. A related concept is
the subgroup introduced by Wielandt [10] in 1958, and now named for him. The Wielandt
subgroup of a group G is the subgroup of elements normalizing every subnormal
subgroup of G. In the case of finite nilpotent groups these two concepts coincide, of
course, since all subgroups of a finite nilpotent group are subnormal. Of late the Wielandt
subgroup has been widely studied, and the name tends to be the more used, even in the
finite nilpotent context when, perhaps, norm would be more natural. We denote the
Wielandt subgroup of a group G by <w(G). The Wielandt series of subgroups ft>,(G) is
defined by: <Ui(G) = <o(G) and for i>\, «,+1(G)/o>,(G) = co(G/a>,(G)). The subgroups
of the upper central series we denote by £,(G).

In both cases, whether norm or Wielandt subgroup, interesting questions concern the
structure of the subgroup, and the nature of its embedding in its parent group. Thus the
norm is a Dedekind group, so its structure is completely known [4]; and it is contained in
the second centre of the group: see Schenkman [9]. The Wielandt subgroup is a T-group
(i.e. its subnormal subgroups are all normal), so much is known about its structure,
everything if the group is finite and soluble. We know no easily stateable results
concerning the embedding of the Wielandt subgroup. In both cases non-abelianness, of
norm or Wielandt subgroup, seems to impose constraints on the structure of the group.
Thus we may cite Baer's result [2], that in a 2-group non-abelian norm can occur only if
the group is Hamiltonian (i.e. non-abelian and Dedekind). In [3] non-abelianness of the
Wielandt subgroup in a finite soluble group is used to obtain bounds on derived length.

The aim of the present note is to investigate the constraints imposed on the structure
of certain p-groups consequent upon their having non-central norms. The corollary below
shows that for metabelian groups of exponent dividing p2 and of sufficiently large class,
the Wielandt series and the upper central series coincide.

THEOREM. Let G be a metabelian group of exponent dividing p2 in which the norm is
not central. Then the nilpotency class of G is at most 2p - 2, and this bound is best
possible.

COROLLARY. Let G be metabelian of exponent dividing p2, where p is an odd prime,
and of class at least 2p. Then, for i > 1, co,(G) = £,(G).

Every element in the norm induces, by conjugation, a power automorphism in the
group: every element of the group is mapped to a power of itself. On the other hand if p
is an odd prime and P is a non-abelian metabelian group of exponent p2 with a power
automorphism a, it is easy to check that the semidirect product P(a) is a metabelian
group of exponent p2 and the same class as P. That P(a) has a non-central norm is a
special case of the Lemma in Section 2. Thus our result can be regarded, for odd primes,
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as an improvement on Theorem 3.8 of Meixner [8], which shows that a metabelian group
of exponent p2 with a non-trivial power automorphism has nilpotency class at most
2/7 — 1. Almost all the ideas in the proof of our theorem and the construction of our
examples are to be found in Meixner. Meixner also shows that a metabelian group of
exponent 4 with a>(G) non-central has class at most 2 and that this result is best possible.

2. Proofs. We begin by proving the following result.

LEMMA. If P is a p-group, p an odd prime, and a a nontrivial power automorphism
of P of order p then, in the natural semidirect product H = P(a), a e CD(H)\£}(H).

Moreover H and P have the same exponent and they have the same nilpotency class and
derived length unless P is abelian in which case both class and derived length of H are two.

Proof. Let g e P have order pr+1(r 2: 1). Then since a has order p we may, by
replacing it by some power of itself, suppose that

ga = gp'+l-

Then for ie {1,2,. . . ,p-\)

where

1=0

/=o

+

= pr + l (modpr+1)

since pr + 1 is even. Thus

{ctgY+x = <x'gpr+1 = «-

and so a is in co(H); and clearly a is not central.
The argument above is easily modified to show that for every g e P and i e

{0,1,. . . ,p - 1}, a'g has order no bigger than that of g. Hence H and P have the same
exponent.

As to the class and derived length of H: every commutator with entries from the set
P\J {a}, including a, and of weight greater than or equal to three, is trivial, since or is
second central in H. Hence P and H have the same class and derived length except when
P is abelian, in which case all commutators in H of weight three or greater are trivial so H
has class and derived length two.

Next we give a proof of our Theorem. The case p = 2 is covered in [8] so from now
on we suppose that p is odd.

Let w be a non-central element of the norm in a metabelian group G of exponent p2.
We write C = CG{w). Of course C±G. As a first step we prove

GIG' has exponent p. (2.1)
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Consider the subgroup N = [G, W]. It is normal in G and has the property that, for all
x e G\C, x" € N. We note that

Every element of GIN outside C/N has order p. Therefore every element of GIG'
outside C/G' has order p. If GIG' is not of exponent p it is generated by elements of
order/?2 since it is abelian. But all elements of orderp2 in GIG' are in C/G'. Therefore
GIG' = C/G' and hence G = C. This is a contradiction to the non-centrality of w. Hence
(2.1) is confirmed.

We now write M for the subgroup of G generated by the pth powers of the elements
of G. Note that, by (2.1), M ̂  G', so it is abelian and of exponent p. Next we prove that

for all meM, and for all x eG,[m,(p-l)x] = l. (2.2)

As a first step choose x e G\C, and meM. Consider the elements x-t = xm'
(O^j^p - 1). None of these is in C. Hence for some integer ks satisfying 1 <k, </? - 1,

xf>'=[x,,w] = [x,w].

Since there are p elements Xj and only p — 1 different kh we must have that two of the
latter are equal. It follows that for some /, j with 0 ̂  / < / < / ? — 1

JC? = x?

or, in other words,

Write m0 = m'~' and x0 = xh Then we have from the last line

x"0 = (xomoy

whence

In this equation we can replace m0 by m since / - j is prime to p. Also we may replace xQ

by x since A/ is abelian. Therefore, regarding M as a module, and the elements of G as
endomorphisms of M, we have shown that, for all x e G\C

l+x+x2+ . . . + x ' - 1 = 0. (2.3)

The next step is to show that (2.3) holds for all x in G. To see this let c be an arbitrary
element of C. Then

P-\ p-\ p-\

i=0 ;=0 i=0

since the new summands added are all zero, by (2.3). Therefore
P-\ p-\ p-\

,=0 1=0 y=0

by (2.3) again and the fact that M has exponent p. Hence (2.3) does hold for all xeG.
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Now

so that

( / ' ~ 1 ) = (-1)' (modp), 0 < / < p - l .

It follows that, for all x e G,

1=0

= 0.

This completes the proof of (2.2).

To complete the proof of the first statement in the theorem observe that GIM is
metabelian of exponent p. Hence, if x, y are arbitrary elements of G, [x, (p — l)y] e M:
see [7]. Combining this with (2.3) yields that

is a law in G. We now invoke the result of Gupta and Newman [5] to conclude that G has
class at most 2p - 2.

We take up the claim that this bound is best possible in the next section. This section
is complete by proving the Corollary.

First note that in a metabelian group of exponent dividing p2, and of class at least 2p,
(«i(G) = £i(G). This follows immediately from the Theorem. For the same reason
(O2{G) = t,i{G) which we see by considering G/co(G). We now prove by induction on r
that (or(G) = £r(G) for r > 2 . To this end let w e cor+i(G), where r > 2 . For an arbitrary
geG, [w,g]=g' modulo u>r(G) for some integer /. It follows that, on the assumption
that (or(G) = UG),

(2.4)

For all g, heG, [w,gh,gh] e £r_i(G). Routine commutator calculations show that then

[w,g,h][w,h,g)etr-l(G).

We use here that cor+i(G) ^ £r+2(G) under the hypothesis cur(G) = £.(G). Then, because
G is metabelian, we obtain by commuting with h,

[w,g,h,h][w,h,h,g]e£r_2(G),

whence

[w,g, h, fc]e£r
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by (2.4). Finally, from [w,g,hk,hk] e £r-2(G) for all h,keG, we deduce by standard
commutator calculations that [w, g, h, k]2 e £r_2(G), whence

[w,g,h,k]eS,_2(G)

since p is odd. From this it follows that w e £r+1(G). Since w e air+l{G) was chosen
arbitrarily, (or+l(G) < fr+,(G). However, fr+,(G) =s o>r+,(G) so <wr+1(G) = £r+1(G). This
completes the induction and the proof of the Corollary.

3. A construction. Let A = (a), B = (b) be cyclic groups of order pr (r S: 2). Write
Z for the subgroup of B of order p. Also write W =A twrz B where Z acts trivially on A.
There is an automorphism a of W which satisfies

where q =pr~x.
Let X be the base group of W and write

Y=(aabab2...abq").

Then Y ^ £i(W) and it admits or. Let W, = W/Y. We claim that the automorphism a-,
induced in W, by #, is a power automorphism. First note that a acts trivially on X/Y
since 6* 6 Z. Therefore, for all ceB, and all f eX,

= c"+1/1+c+c2+ + c ' (modY)

= (cf)"+l (mod Y).

Hence at is a power automorphism on Wt. The order of a, is, of course, p.
We are now in a position to complete the proof of the Theorem. Let r = 2 and let H

be the semi-direct product Wi(at). By the Lemma this is metabelian and of exponent p2,
because Wt is; and its class is the same as that of Wx. By Liebeck [6] this class is 2p — 2.
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