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ASYMPTOTIC FORMULAE FOR THE EIGENVALUES 
OF A TWO PARAMETER SYSTEM OF ORDINARY 

DIFFERENTIAL EQUATIONS OF THE 
SECOND ORDER 

BY 

M. FAIERMAN 

1. Introduction. The origin and importance of multiparameter Sturm-Liouville 
problems in mathematical physics has recently been discussed by Atkinson [1, 
sects. 3 and 4], [2, introduction]. In spite of the importance of such problems, and 
in spite of the work done in this field by such early investigators as Klein and 
Hilbert, Atkinson points out that in recent years this field has been relatively 
neglected in contrast to the single parameter case. As an example, he states that as 
opposed to the one parameter case, the detailed behaviour of the eigenvalues and 
eigenfunctions in the multiparameter Sturm-Liouville case is still far from clear. 

In light of the above remarks, we wish to present here some results concerning 
the asymptotic developments for the eigenvalues of the simultaneous two param­
eter systems 

(la) yl+(^a1(x1)+jub1(x1)+q1(x1))y1 = 0, 0 < x± < 1, ' = d/dxl9 

Ji(0)cos ax—j;{(0)sin ax = 0, 0 < ax < 7r, 
(lb) 

j ^ c o s ft-}>I(l)sin ft = 0, 0 < ft < TT, 
and 

(2a) y2+(2.a2(x2)+jub2(x2)+q2(x2))y2 = 0, 0 < x2 < 1, ' = d\dx2, 

y2(0)cos a2--j;2(0)sin a2 = 0, 0 < a2 < w, 
(2b) 

y2(l)cos ft-^(l)sin ft = 0, 0 < ft < 7T, 

where we shall assume, unless otherwise stated, that for z = l, 2, ai9 bi9 and qi are 
real-valued, continuous functions in 0 < ^ < 1 . Furthermore, it is also assumed 
that 

(3) \ax{x^b2{x2)-a2{x^b^x^\ > 0 

for 0 < ^ < 1, / = 1, 2; and since this implies that for at least one i, b^O in 0 < ^ < 1, 
we see that there is no loss of generality in assuming in the sequel that b2>0 in 
0 < x 2 < l . For clearly this can always be achieved, if necessary, by interchanging 
the order of systems (la, lb) and (2a, 2b) as well as introducing an obvious or­
thogonal transformation in the parameters À and /u. In section 2 we summarize 
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known results for systems (la, lb), (2a, 2b) which we utilize in section 3 to arrive at 
our main result, namely theorem 5. 

2. Preliminaries. We now collect some well-known facts concerning systems 
(la, lb), (2a, 2b) which we require for later use. We first need the following defini­
tions. We shall call the tuple (A*, ^*) an eigenvalue of system (la, lb) (resp. 
(2a, 2b)) if (la) (resp. (2a)), with A=A* and fi=fji*9 has a non-trivial solution 
satisfying (lb) (resp. (2b)); if both A* and //* are real, then we shall call (A*, ^*) 
a real eigenvalue. Furthermore, for / = 1 , 2 and for arbitrary values of the param­
eters A and JU, we shall denote by yi(xi9 A, /u) the solution of (id) satisfying 
j ^ O , A, //)=sin cci9 j*(0, A, //)=cos ai9 where f=d/dxi. 

2.1. System (2a, 2b). We know from the Sturm theory that for each A, — oo< 
A<oo, the totality of values of /u which renders (2a, 2b) soluble, and with a corre­
sponding non-trivial solution, form a countably infinite set of real numbers which 
we shall denote by {//n(A)}£L0, where Jw0W<iMiW< • • • > and /jn(A)-*oo as n-+co. 
From Richardson [8, sects. 2 and 3] and [9, sect. 2] we then have the following 
information (we remark that Richardson considers the case where a29 b29 and q2 

are analytic in [0, 1] and oc2=0, P2=IT; however for the results stated below, his 
arguments are in no way vitiated for the system under consideration here). For 
H>0, jun(X) is analytic in — oo<A<oo; and if cw={(A, fin(X)) | — oo<A<oo}, 
then the totality of the real eigenvalues of system (2a, 2b) is precisely the union 
of the disjoint subsets cn9 n=09 1 , . . . , of E2 (real Euclidean 2-space). Moreover, 
if (X*9 fjb*)ecn9 then J2(*2> ^*>/**) is a solution of (2a, 2b) having exactly n 
zeros in (0, 1). 

We may now look upon the sets cn as curves in the (A, //)-plane. In this plane 
we introduce angle in the usual way, and denote by </> the angle which a ray ema­
nating from the origin makes with the positive A-axis. Put 

g(x2) = (a2(x2)jb2(x2))9 0 < x2 < 1, 

G = sup g(x2), G* = inf g(x2), 
0 < « 2 < 1 0<<r2<l 

</>! = t a n - ^ - G } , and <£2 = t a i r ^ - G * } , 

where the principal branch of the inverse tangent is taken. Denoting by cn(X) 
the point of cn having A as abscissa, we have 

THEOREM 1. Let e be any number satisfying 0 < £ < mmK^+Trjl), (—^+77/2)}. 
Let n be any nonnegative integer. Then there exists the positive number A* (e) such 
that cn(X) lies in the sector (</>i—«)<</> <(</>i+£)/or X>Àf

n(e). 

Proof. Consider the solution y(x29 A) of the equation / '+[A(02(*2)+A(x2))+ 
?2(^2)]j=^5 0 < x 2 < l , '=d\dx29 which satisfies the initial conditions y(09 A)= 
sin oc2, j ' ( 0 , A)= cos oc2, and where A(x2)=è2(x2)tan((^1+e). Observing from above 
that (a 2 +A)>0 in at least some proper subinterval of [0, 1], we conclude from 
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[7, p. 227] that the number of zeros of y in (0, 1) exceeds n for all X sufficiently 
large. Hence if {hQ)f=1 is an increasing sequence of positive numbers tending to 
infinity withy such that fi>n(h0)>Xj t a n ^ + e ) for each j , then we know from the 
Sturm comparison theorem that the number of zeros of y2(x29 Xj9 ^n(^)) in (0, 1) 
exceeds n for all large/. Since this is impossible, we conclude that cn(K) lies in the 
sector — 7r/2<<£ < ( < £ I + S ) for all X sufficiently large. In a similar manner me can 
also show that cn(X) lies in the sector (<f>1—g)<^<77/2 for all A sufficiently large, 
and the theorem follows. 

From theorem 1 we conclude that for n>09 {fxn(X)jX}->—G as A->oo. In [4] 
we have sharpened this result by imposing certain restrictions on the coefficients of 
(2a); and we have 

THEOREM 2. Let both a2(x2) and b2(x2) belong to C4 in [0, 1]. Let g(x2)=G at 
precisely the finite set of points {h3}*=l9 where p>\9 Q^h1<h2<

9 • ' < ^ < 1 5 and 
g'(/^-)=0, g"(h3)<09 y = l , . . . , / ? • Then for each n>0 there exists the numbers 
Gin9 i = l, 2, 3, such that 

ftn(X) = _AG+A1/,G l iB+A1/*GJin+G,.B+o(l) 

as A->oo, (and not uniformly with respect to n). 

2.2. System (la, lb). Noting from (3) that yi(xl9 (f>)=(a1(x1)+b1(x1)t<m <£)>0 
in 0 < x x < l and </>i<</><<£2> it then follows from the works of Richardson cited 
above that the totality of the real eigenvalues of system (la, lb) is the union of a 
countably infinite number of disjoint analytic curves in E2 which we shall denote 
by Sn9 n=0, 1, . . . . Moreover, if (A*, ^*) e Sn9 then yx(xl9 A*, //*) is a solution 
of (la, lb) having exactly n zeros in (0, 1); and if dn denotes the minimum distance 
from the zero element of E2 to Sn9 then dn->co as «->oo. 

We now choose the numbers <£f and <j>*9 where — 7r/2<<£f<<£1<<£2<<£*<77/2, 
so that ip>0 in 0 < X J < 1 and $*<<£<</>*. Hence, from Richardson we know that 
if </>*<</>:<</>*> then in the (X9 //(-plane a straight line through the origin with slope 
tan cf> intersects each Sn in exactly one point, which we denote by (An(</>), fJtn((f>))9 

n=09 1, . . . , where A0(</>)< î(<£)< • • • ? a n d ^(0)-*°° a s n-*co. Moreover, for 
n>09 Xn((f>) and jun((f>) are analytic in [(/)*, </>*]; and if JV̂  denotes the smallest 
integer greater than the number of zeros oîyx(xl9 0, 0) in 0<X!<1 , then Aw(^)>0 
for n>Nv Finally, we observe that if for n>Nx we denote by S„ the subset of Sn 

lying in the sector </>?<<£<</>*, then S„ is a Jordan arc and can be represented para-
metrically by putting X=Àn(<f>)9 /«=/*„($, fâ^fefâ. 

2.3. Systems (la, lb), (2a, 2b). Referring to the simultaneous systems (la, lb), 
(2a, 2b) as system (1-2), we shall call the tuple (A*, //*) an eigenvalue of this system 
if, with A=A* and /w=/a*, (id) has a non-trivial solution satisfying (ib) for i=l9 2. 
From the results of Atkinson [3, p. 551, problem 16 and pp. 160-168] (see also 
[7, pp. 248-251]) it readily follows that the eigenvalues of system (1-2) form an 
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infinite subset of E2, and moreover, if/?! and p2 are any pair of nonnegative in­
tegers, then there is exactly one eigenvalue of system (1-2), say (A*, /**), such that 
yi(xi9 A*, fi*) has preciselyp{ zeros in 0 < X < 1 , f = l , 2. We see from this that the 
set of eigenvalues of system (1-2) may be denoted by {(Xu, ju>ifj)}™j=09 where 
7i(*i> h,39 Vij) has precisely f zeros in O O ^ l , and;;2(x2, hUi juitj) has precisely 
j zeros in 0 < x 2 < l . Furthermore, it now follows (see Richardson [8, sect. 4]) 
that the eigenvalues of system (1-2) and the points of intersection of the sets Sn 

with the sets cn are identical. Indeed, iff andy are any pair of non-negative integers, 
then Si intersects c5 in precisely one point, namely at the eigenvalue of system 
(1-2), (Xiti9 (AU). 

Finally, for a further discussion of the results of section 2 we refer to [5, chapts. 
2 and 3]. 

3. Main results. In this section we shall fix the non-negative integer m and use 
the results of section 2 to obtain asymptotic developments for Aww and jun>m as 
72->00. 

From theorem 1 we see that there is a positive number ÏÏ such that cm{X) lies 
in the sector </>*<</><</>2* for A>Af. Also, from subsection 2.2 we note that if dn 

is the minimum distance from the zero element of E2 to Sn and d(X) the distance 
from the zero element to cm(X), then we can choose the integer N>N± large 
enough so that dn>2d(ÏÏ) for n>N. 

THEOREM 3. For n>N, (Àn>TO, jun>m), the unique point of intersection of Sn with 
cm9 lies in the sector fâ<<f><<l>Z. Moreover, 0<2 t<AN t m<AN + 1 > m<ÀN + 2 t m< 
and Aw,m->oo as n-+co. 

Proof. Referring to subsection 2.2, we see that for n>N we may introduce into 
E2 the Jordan curve yn given by: 

X = 3rtn(tf) , ix = 3^n(<£*), 0 < t < i , 

I = KW)\ V = PnW)\ fa) = ( 2 - 3 0 # + ( 3 f - l ) # , i < t < f, 

X = 3 ( l - 0 * » ( # ) , /* = 3 ( 1 - * K ( # ) , l < ^ < I-

We observe that the arc obtained by restricting the parameter t to the interval 
i<^5vf is precisely S„. From the Jordan theorem we know that yn separates 
E2 into two disjoint regions, say Dn and Q*, having yn as common boundary; 
moreover, if £ln is the bounded region, then it is clear that 

&n = {& A*) | (A, jO e £2, A = rAw(^(0), /I = 7/*n(#0)> 0 < r < 1, i < t < f} . 

We note that cm{ÏÏ) e £ln; and if we denote by c^ the curve {cm(X) | A t</l<oo}, 
then c* lies in the sector </>f <</><(/>*. Since On is bounded, we conclude that c* 
intersects S„. From subsection 2.3 it then follows that c^ intersects S* in precisely 
one point, namely (Àn>m, pnt J . Thus {K.m^n.m) lies in the sector <ft<<f><<l>S 
and cTO(A) G JQ* for A>An#TO. 
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Assume now that for some n^N, 4 n ( m ^ ^ n ) m î and for O ^ ^ ^ l , denote by 
yn{t) the point of yn corresponding to t. Then we know from above that there is a 
t*, i < * * < § , such that ytt(f*)=(AWiW, /*W.J and yn(;*)eQ*+ 1 . On the other 
hand, from subsection 2.2 and the definition of Dn+1 , we see that yn(t) e Qn+1 for 
i<*<f- Thus we must have An>TO<An+ltTO. This and the results of subsection 
2.2 complete the proof of our theorem. 

We now choose the number hl9 where 0<lh1<il9 so thatg(h1)=G (see subsection 
2.1). Put 

A(xx) = (fe2(fti)r1[«1(^i)&2(^i)-fci(^i)«2(^i)], 0 < xx < 1, 

Z)=£(A(x1))1/2^1, 

where here and in the sequel the positive root of a positive quantity is always 
taken. 

THEOREM 4. As n->oo, 

lntm = [n7rlDf[l+o(l)l ixntm = [mrlDf[-G+o(l)]. 

Proof. From theorem 3 and subsection 2.1 we see that for n>N, / ^ > w = 
-KmG+rn>

 w h e r e rn=o(AntJ as n-+co. For n>N, put g n = ( l + |rn| 5 + 0 , 
where B (resp. 0 is the supremum of \b^\ (resp. 1̂ 1) in O ^ - x ^ l , and choose the 
integer N*>N large enough so that for n>N*, {QJK,mô2}<h where ô is the 
infimum of A1/2 in 0<X!<1. Now for any £>0 there exists the partition of [0, 1], 
0=to<h<- -<t9=l,p>29 such that ^ L i W * - * « - i ) < ( / ) + « ) , and 

where Mt- (resp. m4) is the supremum (resp. infimum) of A1/2 in [^_x, f J , / = 1 , . . . , 
/?. Observing that for n>N*, ^ ( j j , Anw , //n>w) satisfies the differential equation 

yHHKmHxù+rnbi(xù+qi(xù)y = 0, 0 < xx < 1, ' = d/dXi, 

it follows from a simple application of the Sturm fundamental theorem to each 
of the intervals fo_l51{] that 

n < { ( / J^ ) i i M^, - r ,_ 1 )+Ô w / 7 r^ n +2 j p j , 

» > {(W| i^-U-fi>«,-2A 
where In^K.m- Hence the limit superior of the sequence {mr/A^D}™^ does not 
exceed (1 +s/D) and the limit inferior is not less than (1—ejD). Since s is arbitrary, 
our theorem follows. 
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We note that the proof of theorem 4 depends upon the fact that ^W(A)= 
k(—G+o(l)) as A->oo. Since in [4] we have been able to sharpen this result, it 
is natural to ask whether the results of [4] can be used to improve the results of 
theorem 4. In the sequel we show that this can be done provided that certain 
conditions are fulfilled. Hence in the following theorem it will be assumed that 
(i) the hypotheses of theorem 2 are satisfied, and (ii) both a±{x^) and bx{x^) belong 
to C2 in [0, 1]. Let A(;q) and D be defined as in theorem 4 (where now hx is given 
by theorem 2) and put 

i)* = [\(x1)(A(x1)r1/2^1, 

F = Z > [ J W I ^ dxX 

Ft=2D[(A( l ) ) - 1 / 2 cot^^^ if ft^Tr, 

F * = -2D[(A(0))-1/2cota1+(i)AX0)(A(0))-3/2] if ^ * 0, 

where ,=djdxx. We shall also put (see theorem 2), 

A.m = D*G1BJ29 D2im = D*G2>w/2, 

D*.m = V*G3J2-(GlJS) f ' ( ^ ( x ^ A ^ r 3 7 2 dxl9 
Jo 

^•l.m = = ""2Z) lf7n, ^2,w = —2Z) D2§m9 ^3,w ^ (£*! m — 2DD3 m — F), 

Bl.m = C^GliW —G41#fn), £2.m = ( ^ ^ . m — GA2m), 

BZ,m = (D2G3,m — DGl.mDl,m--GA3im). 

THEOREM 5. As n-+co, 

(0 K,m = l(n + l)7rlDf[l+A1J(n + l)7r+A2J((n + l)7rf/2 

+A3tJ((n + l)7rf+o(lln% 

Vn.m = [(n + l)nlD]t[-G+B1,ml(n + l)7r+BtJ(in + ï)iryi't 

+BsJ((n + l)7rf+o(lln% 
if ^ = 0 and fi^ir; 

(ii) V™ = [(n+£"IV]z[l+A1.J(n+l)TT+A2.ml((n+h)nr2 

+(A3,m-Fi)K(n+m2+o(lln2)], 

f*n.m = Kn+i^lDn-G+B.Jin+^+B.Jdn+i^r2 

+(B3.w+GF t)/((n + |)7r)2+o(l/n2)]) 
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ifoL1=0 and fixj£7r\ 

(iii) Xn,m = [mrlDni+A^Jmr+AzJinnf2 

+(A3,m-F-F*)l{n7rT+o{\lr?)l 

M».m = [n^lD]2[-G+Blimln7r+B2J(nnf/2 

+(B3,m+GF^+GF*)l(nnf+o(lln% 
if&iT^O and P^TT; 

(iv) K,m = [(n + ^IDf[l+A1,ml(n+^Tr+A2J((n + i)nf2 

+(A,im-F*)K(n+ï)n)*+o(W)], 
f*«,m = [(n + l ) ^ ] 2 [ - G + B 1 . J ( n + |)7r+B2>m/((n + |)77)3/2 

+(B3im+GF*)[((n+l)7r)2+o(l/n2)], 
ifcu^O and $X=TT. 

Proof. We shall only consider the case a ^ O , /?i=7r; the other cases may be 
similarly treated Now we have seen that cm{X) lies in the sector </>* <</><(£* for 
A>Af; hence from subsections 2.1 and 2.2 it follows that 

L(X) = \\xa1{x1)+^m{X)b1{x1)f
l2dx1 

Jo 

is analytic in Af<>l<oo. If for 2,>X* we put 

L(X) = A1/2i)+i)1+A-1/4i)2+rx/2i)3+/i(A), 

where D~Dim9 i=l, 2, 3, then h(X) is analytic in Af<A<oo; also, a simple 
computation involving the use of theorem 2 shows that h(X)=o(k~1/2) as A->oo. 
From theorem 3 it then follows that for n>N, 

Ln = J ( ^ n , m ^ l ( ^ l ) + ^ w , m M ^ l ) ) 1 / 2 ^ l 

(4) ° 

where h(AntJ=o(À~^) as «^00. 
Now from subsection 2.2 we know that ip(xl9 </>)>0 in 0 < ^ < 1 and $*<</><</>*. 

Hence there are positive numbers ôl9 <52 such that ô1<ip<ô2 in this rectangle. 
For n>N put y>w(*i)=v>(xi, <£J> O ^ x ^ l , where <f>n= tarr^/u^JA^J and the 
principal branch of the inverse tangent is taken. Then ô1<y)n<ô2 in 0<X!<1. 
Moreover, both \ip'n\ and \ip'^\ remain less than some bound independent of n and 
xl9 where f=d/dx1. 

We now show that as «->oo, 

(5) Ln = (n + l)7T-ynl(n + l)7T+o(llnl 
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where, with 

Hn(x1)=jyiJ2dr, Ht(xù = [«1 + v#4(v;1 /4n> 0 £ x, < 1, ' = d/dx,, 

yn = (Hn(l)/2)Çj-1/2H:dXl. 

We argue as in [7, pp. 271-273]. For n>N put 

tn = H?(l)Hn(xJ, 0 < XX < 1, Yn(tn) = (Wnixdf^yiiXu K.m, Pn.rn), 

pi = ff*(l)AB.m, Qn(Q = (f^x^HlWHtixJ, f „ = Pntn, 
and 

Then for 0<tn<\, 

(6) Yn(tn) = 9t (5* sin | n - sin(£n-pnT)2n(T)y„(r) JT 
Jo 

In light of the above remarks concerning bounds for ipn and its first two derivatives, 
it now follows from the Gronwall lemma that the supremum in [0, 1] of | Yn\, of 
\Yn\('=dldtn), and of p2

n \Yn—o*p~x sin | J all remain less than some bound 
independent of n. Hence, using an argument similar to that used in the proof of the 
Riemann-Lebesgue lemma, we deduce from (6) that 

Yn(tn) = Pn'ôtïsm fn + ( 2 p n ) - 1 ^ j Q
n Q n ( r ) dr^COS Sn + Pn\.n(Q\ 

where, for z = l , 2, the supremum in [0, 1] of \zit7l\ tends to zero as n-^oo. Thus, 
since Yn has n zeros in (0, 1) and Yn(l)=09 a standard argument now shows 
that pn=7r(n+l+en), where 

tan Tre„ = -(2/>J-1 | Qn{tn)dtn+p-xe*n 
Jo 

and £*=o(l) as n-^co. From this (5) follows. 
From (4), (5), and theorems 2 and 3 we conclude that as n-+oo, (À^D/ 

(n + l)7r)->l and (/^,mMn,w)=(—G-\-0{\jn)). A simple calculation now shows 
that yn = {{Fj2) + 0{\jn)) as n->oo. Hence, from (4) and (5), we see that if for 
?z>Af weput 

# . « = [(n + l)7TlD][l^DJ(n + l)7r-D^DJ((n + l)n)^ 

-(DD3+FI2)l((n + l)7rf+ell 

then ef
n=o(l/n2) as n-^co. Our results follow from this and theorems 2 and 3. 

To conclude, we remark that the formulae given in theorem 5 have been ob­
tained to an accuracy determined by the conditions which we have imposed upon 
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the coefficients of the differential equations (la) and (2a) and under suitable 
conditions, these formulae may be further developed. This follows from the fact 
that our results depend upon the formulae of theorem 2 and upon formulae of the 
type given in (5) (see [7, pp. 272-273]), and in the manner described in [4, sect. 1] 
and [6], these formulae may be further developed for suitable coefficients in our 
differential equations. 
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