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Abstract

Background: Artificial intelligence (AI) has the potential to enhance clinical decision-making, including in infectious diseases. By improving
antimicrobial resistance prediction and optimizing antibiotic prescriptions, these technologies may support treatment strategies and address
critical gaps in healthcare. This study evaluates the effectiveness of AI in guiding appropriate antibiotic prescriptions for infectious diseases
through a systematic literature review.

Methods: We conducted a systematic review of studies evaluating AI (machine learning or large language models) used for guidance on
prescribing appropriate antibiotics in infectious disease cases. Searches were performed in PubMed, CINAHL, Embase, Scopus, Web of
Science, andGoogle Scholar for articles published up toOctober 25, 2024. Inclusion criteria focused on studies assessing the performance of AI
in clinical practice, with outcomes related to antimicrobial management and decision-making.

Results: Seventeen studies used machine learning as part of clinical decision support systems (CDSS). They improved prediction of
antimicrobial resistance and optimized antimicrobial use. Six studies focused on large language models to guide antimicrobial therapy; they
had higher prescribing error rates, patient safety risks, and needed precise prompts to ensure accurate responses.

Conclusions: AI, particularly machine learning integrated into CDSS, holds promise in enhancing clinical decision-making and improving
antimicrobial management. However, large language models currently lack the reliability required for complex clinical applications. The
indispensable role of infectious disease specialists remains critical for ensuring accurate, personalized, and safe treatment strategies. Rigorous
validation and regular updates are essential before the successful integration of AI into clinical practice.

(Received 18 December 2024; accepted 28 January 2025)

Background

Artificial intelligence (AI) is defined as the development of
computer systems capable of performing actions that usually
require human intelligence. AI is rapidly evolving, with applica-
tions expanding across numerous fields, including healthcare.1–3

Infectious disease (ID) specialists, frequently consulted for
guidance on appropriate antimicrobial therapy, provide critical
recommendations tailored to specific clinical scenarios. However,

there is a national shortage of ID specialists leaving many
institutions without any access to their expertise. This results in
substantial variability in ID care across healthcare settings with
rural communities being particularly negatively impacted. ID
specialists are essential to lead nationally mandated antibiotic
stewardship programs, yet according to recent data from the CDC,
less than 50% of programs have an ID-trained physician leader.4

This gap presents an opportunity for AI-based tools, such as
large language models (LLMs), and machine learning algorithms,
to enhance clinical decision-making.5 These technologies are
capable of generating rapid responses to clinical queries, offering
support in diagnosing conditions and suggesting treatment plans,
thereby improving the efficiency of medical practice.6–8 Machine
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learning (ML) holds the potential to revolutionize healthcare by
analyzing large datasets to identify patterns and insights that may
elude human observation.3 A recent study highlighted that,
evaluators preferred responses fromChatGPT to those provided by
physicians in addressing patient queries, underscoring AI’s ability
to deliver high-quality and empathetic responses.9 Additionally,
ChatGPT has shown promise by accurately answering medicine-
related multiple-choice and single-choice questions in standard-
ized assessments.2

Despite these advances, concerns remain regarding the
variability in performance among AI models, particularly when
addressing complex clinical cases such as those that often comprise
the bulk of ID physicians’ practice. This highlights the need for
rigorous evaluation of AI tools to ascertain their accuracy,
reliability, and feasibility for integration into routine medical
practice.9,10 In this study, we evaluated the performance of ML and
LLMs in recommending appropriate antibiotic therapy for various
infectious diseases. By comparing these recommendations to those
provided by standard care practices, we sought to assess the
accuracy, limitations, and clinical applicability of these tools to
better understand the potential role and safety of AI in
antimicrobial prescribing.

Methods

Systematic literature review and inclusion and exclusion
criteria

This review was conducted according to the Preferred Reporting
Items for Systematic Reviews (PRISMA) statement.11 This study
was registered on PROSPERO (https://www.crd.york.ac.uk/
PROSPERO/) on September 26, 2024(CRD42024594704).
Institutional Review Board approval was not required for this
work. The review included manuscripts published from the
inception of each database to the present, without language
restrictions. The literature search covered studies from inception
through October 25, 2024. Eligible studies met the following
inclusion criteria: original research articles published in peer-
reviewed journals, conducted in healthcare settings, and evaluating
the use of AI, ML, or clinical decision support systems (CDSS) in
managing infectious diseases. ML models, such as random forests
and gradient-boosted decision trees, were used to predict
antimicrobial resistance and optimize antibiotic selection by
analyzing large datasets to uncover actionable patterns. LLMs
(eg, ChatGPT) are designed to interpret and generate human-like
text. Exclusion criteria included case reports, commentaries, pilot
studies, and studies focusing solely on diagnosis without
addressing treatment.

Search strategy

We performed a comprehensive search of the literature in
PubMed, CINAHL, Scopus, Web of Science, Embase, and
Google Scholar in collaboration with an experienced health
sciences librarian (B.H.) (Supplementary Appendix Table 1).
Reference lists of retrieved articles were reviewed using Covidence
software12 to identify additional relevant studies. Two investigators
(S.M.A. and A.R.M.) independently screened titles and abstracts,
applying the inclusion criteria to exclude irrelevant studies.
Discrepancies were resolved by consensus. This systematic review
was guided by the PICO framework13, focusing on patients with
infectious diseases (P), interventions using AI-based management
(I), comparisons with standard management provided by usual

care providers (C), and primary outcomes (O) including the
accuracy, efficacy, and limitations of AI in antimicrobial
management.

Data abstraction and quality assessment

Of the twelve independent reviewers (A.R.M., D.F., J.I.R., M.A.,
M.K.H., M.A.SH., N.A.B., N.O.M., P.D., P.S.M., S.TH., T.K.), two
independently abstracted data from each included study using a
standardized data collection form (supplementary appendix).
Extracted data included study design, publication year, calendar
period, AI methodology, and comparisons with usual care
providers where applicable. Reviewers also documented sensitivity
and specificity of AI models, clinical impact, advantages, and
limitations.

Risk of bias was assessed using a modified version of the Downs
and Black scale.14 The scale, with a maximum possible score of 28,
evaluates quality across domains including reporting, internal
validity, and external validity. The reviewers independently scored
each study, resolving discrepancies through consensus.

Results

Characteristics of included studies

1,578 articles were retrieved. After applying exclusion criteria,
154 studies were reviewed in full, of which 23 met the inclusion
criteria15–37 and were included in the final analysis (Figure 1). These
included eleven cohort studies (nine retrospective and two
prospective), three qualitative studies, two cross-sectional studies,
two quasi-experimental studies, and five randomized control studies
(Table 1). Of these, 17 studies focused on AI applied as ML
algorithms integrated into clinical decision support systems (CDSS)
to enhance clinical outcomes15–28,36,37, while the remaining six
studies evaluated various LLMs29–34, including ChatGPT29–33.
Geographically, six studies were conducted in the United
States21,23,24,28,36,37, three in South Korea15,18,22, and one each in
Austria29, Australia35, Cambodia20, Canada21, China32, France33,
Germany19, Israel16, Italy30, Tanzania27, Turkey31, theNetherlands26,
Switzerland34, the United Kingdom25, and Vietnam.17 The studies
were conducted between 2017 and 2024, with durations ranging
from two weeks to ten years. The studies examined AI in two
domains (Table 2). The first included seventeen studies exploring
the integration ofAI intoCDSS, focusing on antimicrobial resistance
prediction, the appropriateness of antibiotic prescriptions, anti-
microbial stewardship, and the transition from intravenous to oral
antibiotic therapy. The second domain involved six studies that
evaluated the performance of LLMs in addressing infectious disease
management, highlighting both successes and limitations across a
range of conditions (Table 2).

AI in clinical decision support systems: antimicrobial
stewardship (ASP)
Five studies demonstrated substantial potential of AI in enhancing
antimicrobial stewardship.22–24,36,37 One study found that ML
models identified 60% of cases for antibiotic discontinuation,
compared to 19% in usual care, with a 98% success rate in
transitioning to oral antibiotics.22 Another study highlighted that
AI systems shortened antibiotic de-escalation by 24 hours.23

A third study showed that CDSS combined with active ASP
achieved better antibiotic optimization for community-acquired
pneumonia (CAP) compared to the absence of ASP.24

Additionally, two INSPIRE (Intelligent Stewardship Prompts to
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Improve Real-Time Empiric Antibiotics Section) randomized
clinical trials evaluated the impact of a CPOE (computerized
provider order entry) bundle versus routine ASP on empiric
antibiotic prescribing for pneumonia and urinary tract infection
(UTI) in non-critically ill adults.36,37 The CPOE reduced extended-
spectrum antibiotic therapy days by 28.4% for pneumonia and
17.4% for UTIs, with similar reductions for vancomycin and
antipseudomonal use. No significant differences in safety out-
comes or ICU transfers were observed in either trial.

Antimicrobial resistance prediction

Four studies evaluated AI’s use in predicting antimicrobial
resistance.15–18 One study focused on random forest ML models
to predict antibiotic resistance in UTIs, achieving area under the
receiver operating characteristic curves (AUROCs) ranging from
0.777 for cephalosporin to 0.884 for fluoroquinolones, with
fluoroquinolones showing superior performance.15 Another study
employed a CDSS integrated with ML and electronic health
records, achieving AUROCs of 0.8 to 0.88 for resistance prediction

Figure 1. Literature search for articles that evaluated the performance and effectiveness of artificial intelligence ormachine learning in recommending appropriate antibiotics for
various infectious diseases.
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when bacterial species data were included.16 In the intensive care, a
third study found that a random forest model had high specificity
(0.84–0.99), while XGBoost and LightGBM demonstrated better
sensitivity (up to 0.95).17 A final study used gradient-boosted
decision trees to predict ciprofloxacin resistance and extended-
spectrum beta-lactamase (ESBL) production in patients with UTI,
achieving high sensitivity (∼93%) but lower specificity (31–45%).18
These findings show that machine learning performance varies
with clinical context, objectives, and hospital resistance patterns.

Appropriateness of antibiotic prescriptions

Three studies evaluated AI-enhanced CDSS systems designed to
improve antibiotic prescribing.19–21 One study demonstrated that a
CDSS integrated with national guidelines improved diagnostic
accuracy and reduced unnecessary antibiotic use in UTIs,
increasing prescriber confidence.19 A second study employed a
random forest model within a CDSS to guide antibiotic selection
for pediatric infections, particularly improving predictions of
ceftriaxone resistance, with an estimated AUROC of 0.80.20 A third
study assessed a CDSS leveraging patient data and prior cultures to
improve empiric therapy for gram-negative bloodstream infec-
tions, enabling narrower-spectrum antibiotic use in 78% of cases
while reducing inadequate treatment. Its impact varied with
antibiotic susceptibility thresholds, and multivariable models
showed good discrimination, with AUROCs of 0.68–0.89 for
Gram-stain-guided and 0.75–0.98 for pathogen-guided models.21

Accuracy of management

Three studies examined the accuracy of AI-enhanced CDSS in
managing infections.26,27,35 One study reported a 5% improvement
in treatment success for UTIs (defined as the absence of antibiotic
prescriptions within 28 d) compared to usual care.26 Another study
demonstrated that integrating CDSS with point-of-care testing
significantly reduced antibiotic prescriptions by (∼47%) on day 0,
contributing to improved antimicrobial stewardship.27 A third
study used a Bayesian network to guide personalized therapy for
osteomyelitis in children, achieving expert-rated optimal or
adequate recommendations in 82%–98% of cases, despite initial
underestimation of Staphylococcus aureus prevalence.35

Transition from intravenous to oral antibiotics

Two studies focused on AI-assisted transitions from intravenous to
oral antibiotics.24,25 One study, conducted in three phases,
demonstrated that a CDSS facilitated earlier conversion to oral
antibiotics, reducing the duration of intravenous therapy and
achieving a 20% cost reduction without affecting length of stay.24

Another study used machine learning to individualize the
transition, reducing the Antimicrobial Spectrum Index by a mean
of 23%, though variability in outcomes was noted.25

Adherence to guidelines

One study evaluated AI-based CDSS for promoting guideline-
concordant antimicrobial prescriptions in pediatric patients with

Table 1. Characteristics of included studies (N= 23)

Category Description

Study Types - Cohort studies: 11 (9 retrospective, 2 prospective);
- Qualitative study: 3;
- Cross-sectional studies: 2;
- Quasi-experimental studies: 2;
- RCT: 5

Focus on AI Applications - Active Machine Learning (ML) in Clinical Decision Support Systems (CDSS): 17 studies
- Large Language Models (LLMs), including ChatGPT: 6 studies

Geographic Locations of Studies - USA: 6 studies21,23,24,28,36,37

- South Korea: 3 studies15,18,22

- Austria29, Australia35, Cambodia20, Canada21, China32, France33, Germany19, Israel16, Italy30, Tanzania27, Turkey31, the
Netherlands26, Switzerland34, United Kingdom25 and Vietnam17: 1 study each

Study Duration Ranged from 2 wk to 10 yr (2017–2024)

AI in Clinical Decision Support
Systems (CDSS)

Antimicrobial Stewardship
5 studies utilizing models like XGBoost, LightGBM, eXtreme and computerized provider order entry (CPOE) for ASP
improvements22–24,36,37

Antimicrobial Resistance Prediction
4 studies evaluating AI algorithms for antibiotic resistance prediction15–18

Antibiotic Prescription Appropriateness
3 studies evaluating CDSS for improving antibiotic prescribing accuracy19–21

Accuracy of Infection Management
2 studies on improved UTI management through CDSS and RF models26,27

1 study on adequate and optimal management of OM in children through Bayesian Network35

IV to Oral Antibiotic Transition
2 studies on early switch protocols24,25

Adherence to Clinical Guidelines
1 study promoting guideline adherence in pediatric pneumonia28

Large Language Models (LLMs)/
without CDSS

6 studies examining LLM performance in infectious disease management for prosthetic joint infections, endocarditis,
abdominal infections, bloodstream infections, UTIs, and meningitis29–34

Study Quality Assessment - High quality (Downs & Black score 19–22): 15 studies17,18,20–22,25–30,33,35–37

- Fair quality (score 14–18): 6 studies16,19,23,24,32,34

- Low quality (score ≤13): 2 studies.15,31
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Table 2. Summary of characteristics of studies included in the systematic review

First author, year,
location Study type Duration Topic

AI
application Focus area Model used Key findings Limitations and risks

Quality
score

CDSS

Bolton25 2024,
London UK

Retrospective
Cohort

2 yr Adult, UTI,
Sepsis,
Pneumonia

ML in
CDSS

Early switch from IV
to oral antibiotics

Short & long models
using MIMIC/eICU
(medical information
mart for intensive
care

Models provided
individualized prediction for
when a patient can change
from IV to oral

Not all patient’s factors were clinically
used to assess sustainability of switching
to oral

20

Ciarkowski24 2020,
Utah, USA

Quasi
experimental

18 mo Adult, CAP ML in
CDSS for
ASP advise

Impact of CDSS tool,
when linked with a
clinical pathway for
CAP

CDSS in three
phases (education,
with active ASP,
advisory only)

Length and cost of
antibiotics were reduced
with active ASP

Duration with active ASP was limited 17

Ghamrawi23 2017,
Ohio, USA

Quasi
experimental

3 mo ASP ML in
CDSS

To generate ASP
alerts for ID clinical
pharmacists

CDSS (TheraDoc) Time to change antibiotics
was better in
postimplementation phase

Alert fatigue 18

Gohil36, 2024, USA RCT 36 mo ASP, CAP ML in
CDSS for
ASP

To generate prompts
that predicts MDRO
risk

CPOE Empiric antibiotic days were
significantly lower in the
CPOE bundle

Cultures were included without
considering specimen quality. Concurrent
prompts for UTI and pneumonia may have
caused alert fatigue, potentially impacting
both systems.

23

Gohil37, 2024, USA RCT 35 mo ASP, UTI ML in
CDSS for
ASP

To generate prompts
that predicts MDRO
risk

CPOE Empiric antibiotic days were
significantly lower in the
CPOE bundle

All positive cultures were included
regardless of colony count, and assigning
risks below 10% was deemed overly
conservative

23

Herter26 2022,
Amsterdam,
Netherlands

Prospective
Cohort

4 mo Adult UTI ML in
CDSS

Compare the
proportion of
successful treatment
before and after
implementation of
CDSS

Pacmed
database

5% increase in successful
treatment rate

Therapy compliance cannot be mitigated
through this system.

19

Ilhani15 2024,
Yongin, South
Korea

Retrospective
Cohort

120 mo Adult UTI ML in
CDSS

Evaluate ML
algorithms for
predicting
antimicrobial
resistance in patients
with UTI

CDSS: random forest Aimed to assist clinicians in
selecting the correct
antibiotics

There was a lack of MDR dataset when
building the model

11

Lee18 2023,
Incheon, South
Korea

Retrospective
Cohort

18 mo Adult UTI ML in
CDSS

Predicting
Ciprofloxacin and
ESBL resistance

GBDT Sensitivity to predict
Ciprofloxacin resistance and
ESBL, were 93% and 94%
respectively

Rapidly evolving resistance can make this
system outdated

24

Lewin-Epstein16

2021, Tel Aviv,
Israel

Retrospective
Cohort

32 mo Adult AMR ML in
CDSS

Predict antimicrobial
resistance

L1 regularized
logistic regression,
GBDT, and neural
network models

The ensemble outperformed
the separate models and
produced accurate
predictions

There was a concern as no mention to
comparison to physician predictions.

16

(Continued)
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Table 2. (Continued )

First author, year,
location Study type Duration Topic

AI
application Focus area Model used Key findings Limitations and risks

Quality
score

MacFadden21 2018,
Toronto, Canada
and Chicago, USA

Retrospective
Cohort

60 mo Adult Gram-
negative BSI

ML in
CDSS

Help narrow
antibiotics spectrum

Model AUC Aided in appropriate
antibiotic selection with
incorporated specific
patients’ characteristics and
prior to culture results

The authors did not use a split- sample
model

22

Neugebauer192020,
Mannheim,
Germany

RCT 2 yr Adult upper
UTI

ML in
CDSS

System was
integrated with
national guidelines

Antibiotix Provided correct diagnosis,
and suggested proper
therapy

Its integration to clinical workflow may be
challenging

14

Oonsivilai20 2018,
Siem Reap,
Cambodia

Retrospective
Cohort

36 mo Pediatric
antimicrobial
resistance

ML in
CDSS

Predict AMR Random forest The model performed well
for ceftriaxone

The model may be less relevant as time
passes.

21

Quoac17 2023, Ho
Chi Minh City,
Vietnam

Cross-
sectional

29 mo Adult AMR ML in
CDSS

Predict AMR Random forest,
XBoost, LightGBM

The models made accurate
predictions

The results need the coordination with
clinicians for proper accuracy

20

Tan27 2023, Mbeya,
Tanzania

RCT 11 mo Antibiotics
prescription in
pediatric

ML in
CDSS

Evaluate the impact
of CDSS in antibiotics
prescription and day
7 clinical outcome

ePOCTþ Decreased total antibiotic
prescriptions

7 d is the usually the natural course of
diseases, which may affect outcome of
study,

25

Tran-The22 2024,
Seoul, South Korea

Retrospective
Cohort

14 mo ASP ML in
CDSS

Antibiotics
discontinuation,
switch to oral and de-
escalation of
antibioitcs

XGB and LGBM Significant early
discontinuation and switch
from IV to oral

Some cases had low severity infection
index, which may affect the results.

19

Williams28 2023,
Tennessee, USA

RCT 4 wk Pediatric
Pneumonia

ML in
CDSS

Guideline
concordance for
antibiotic prescribing
for pneumonia

HER-based antibiotic
advisor

Earlier discharge and switch
to oral antibiotics

Alert fatigue. 20

Wu35 2020. Perth,
Australia

Retrospective
Cohort

Not
reported

Pediatrics
osteomyelitis

ML in
CDSS

Accurate pathogen
detection and
improving antibiotics
selection

Bayesian network Recommended antibiotics
were rated optimal or
adequate by experts

The model with data only, did not provide
accurate pathogen prevalence.

19

ChatGPt and Large language models

Cakir31 2024,
Istanbul, Turkey

Cross
sectional

2 wk Adult UTI ChatGPT Accuracy and
proficiency of
ChatGPT

Questions for UTI
guidelines and
management

High accuracy with more
than 90% compliance to
national guidelines

The remaining incorrect answers may
have serious public health outcomes

13

De Vito302024, Italy Qualitative Not
reported

Endocarditis,
Pneumonia,
Intra-
abdominal
infections, and
BSI)

ChatGPT4 Evaluate accuracy
and completeness of
responses

6 true or false
questions, 6 open
ended questions, 7
clinical cases with
antibiograms

Excelled in generating
responses to structured
queries, but performance in
complex scenarios was
limited.

Difficulty of the questions were subjective
to the experts answering or provided the
questions.

22

Draschl29, 2023,
Graz, Austria

Retrospective
Cohort

Not
reported

Management
of PIJ of hip
and joint

ChatGPT Accuracy of answers There were 27
questions in total, in
which 10 were
related to treatment
via antibiotics

Thorough response related
to duration of antibiotics

It prescribed less reliable antibiotics. 19
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community-acquired pneumonia. The system improved adher-
ence to guidelines by 10% compared to usual care and facilitated
faster initiation of antibiotics.28

Large language models:
Six studies examined the use of AI across various LLMs.29–34While
AI language models performed well on straightforward queries,
they struggled with complex cases that required nuanced clinical
judgment. Nevertheless, three studies found consistent results for
simple queries, with responses receiving high scores on different
scales such as Likert and Global Quality Scales.29–31

Accuracy of management:

Five studies assessed the accuracy of various LLMs in responses
related to management.29,30,32–34 One study found that AI
performed poorly onmanagement-related questions for prosthetic
joint infections, achieving less than 45% accuracy in such
scenarios. While significant inter-rater reliability was observed
for responses on diagnosis and treatment, these responses received
the lowest scores in this subtopic of treatment, indicating low
trustworthiness.29 In another study examining various clinical
scenarios, including CAP, bloodstream infections, endocarditis,
and meningitis, GPT-4.0 demonstrated about 70% accuracy in
true/false questions. However, its performance greatly declined on
more complex questions, with accuracy dropping to approx-
imately 37.5%. Subtopic analysis showed over 80% accuracy in
endocarditis cases but less than 50% in CAP cases. Additionally,
the AI often recommended overtreatment and failed to consider
newer antibiotics, achieving only 10% accuracy in complex cases
like endocarditis and bacteremia.30 AI also faced challenges with
infections in vulnerable populations, delivering incomplete or
incorrect answers in up to 80% of pediatric cases. Error rates for
treatment responses across children, pregnant individuals, adults,
those with drug allergies, and patients with chronic kidney disease
ranged from 11% to 44%, with the highest inaccuracies observed in
pediatric-related questions.32 In a study evaluating ChatGPT’s
responses for managing bloodstream infections, it provided
appropriate and optimal suggestions in about 35% of cases.
However, it offered inadequate or potentially harmful recom-
mendations in 3% to 34% of cases for both definitive and broad-
spectrum therapies. The remaining responses were deemed
appropriate but not optimal.33 In one study evaluating the
accuracy of seven different LLMs in managing meningitis, GPT-4
showed the most consistent performance, providing over 80%
correct answers across all tasks (beyond just treatment sugges-
tions). When asked about the correct empirical treatment, the
models provided accurate suggestions in approximately 38% of
cases, with Claude-2 and GPT-4 performing the best. Specifically,
in recommending the addition of antivirals, only 33% of the
models suggested it, with just half providing the correct dosage.
Over 60% of the models opted not to provide a dosing
recommendation.34

Adherence to guidelines

Two studies assessed AI’s adherence to guideline.31,34 For UTI,
LLMs demonstrated 87% adherence to guidelines but produced
incorrect responses in >10% of cases, raising safety concerns.31

One study noted that adherence to guidelines across seven LLMs
ranged from 53% to 85%, with lower task completion correlating to
reduced response consistency.34
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Antimicrobial resistance:

One study revealed that untrained GPT-4.0 demonstrated lower
accuracy in identifying the correct resistance mechanism, with the
best-suggested answers being in the subtopic of community-
acquired pneumonia.30

Quality assessment
Using the Downs and Black tool, 15 studies were rated as high
quality, with scores ranging from 19 to 25 out of 28 points.17,18,
20–22,25–30,33,35–37 Six studies were rated as fair, scoring between 14 to
18 points16,19,23,24,32,34, and two were classified as low quality,
scoring 13 or fewer points.15,31 Detailed results are available in the
Supplementary Material.

Discussion

In this systematic review, we evaluated the effectiveness of artificial
intelligence (machine learning and large language models) in guiding
appropriate antibiotic prescriptions for various infectious diseases.
This review showed that AI, particularly when integrated into clinical
decision support, can enhance clinical decision-making by improving
antimicrobial resistance predictions and optimizing antibiotic
selection. Seventeen studies illustrated the positive impact of AI in
reducing unnecessary antibiotic use and improving treatment
outcomes. However, LLMs, such as ChatGPT, performed markedly
less effectively in complex management scenarios, frequently
producing substantial errors that could compromise patient safety.
These contrasting results emphasize the importance of context when
implementingAI tools in clinical practice, reinforcing the critical need
for consultation with infectious disease specialists to ensure accurate
and individualized treatment strategies.

Previous studies explored the performance of ChatGPT in
responding to multiple-choice and single-choice questions, demon-
strating superior accuracy in single-choice formats2. However, as case
complexity increased, accuracy declined significantly, a pattern
consistent with our findings. While AI, including ChatGPT, holds
promise in certain applications, its use in clinical settings must be
approached with caution. Success in one domain does not necessarily
translate across all specialties. Although AI-powered chatbots can
deliver detailed drug information,many responses have been found to
be inaccurate or potentially harmful, as documented in previous
research.4,6 The main challenges to implementing LLMs in clinical
practice are their lack of situational awareness, inference ability, and
consistency, which could jeopardize patient safety.39 This aligns with
the results of our review.

The studies included in this analysis assessed AI’s role in
optimizing antibiotic prescriptions19–21, adherence to guidelines28,
accuracy in infection management26,27,35, antimicrobial steward-
ship22–24,36,37, and facilitating early transitions from intravenous to
oral antibiotics.23–25 A total of 23 studies were analyzed, including
18 non-randomized and five randomized studies. The AI systems
varied considerably in their methodologies, with half of the studies
demonstrating moderate methodological quality, while the
remainder were rated fair to low. Our findings suggest that ML
algorithms perform well in predicting antimicrobial resistance,
with high sensitivity rates. This capability allows for earlier
narrowing of antibiotic choices before culture results are available.
However, the low specificity of these models necessitates cautious
interpretation.15–18

AI also showed promise in facilitating early transitions from
intravenous to oral antibiotics, potentially reducing hospital stays,
and possibly lowering healthcare costs.24,25 However, these systems

face significant limitations. For instance, high error rates were
observed in complex clinical cases (especially evident in LLM) and
while AI occasionally flagged contraindicated antibiotics, this
function was inconsistently applied. Incorrect antibiotic recom-
mendations in such cases could result in serious, even fatal,
outcomes. Furthermore, the integration of AI into hospital systems
requires substantial resources, including manpower, financial
investment, and technical infrastructure, whichmay not be feasible
in all healthcare settings. Excessive alerts generated by AI systems
can lead to alert fatigue, a phenomenon well documented in prior
studies23,36–38 potentially diminishing trust and engagement
among healthcare providers.While promising, LLM agents present
risks and safety concerns, bias, over-reliance, and the need for
strong regulation.39 Liability guidelines must evolve to address the
dynamic nature of LLM-based systems, which adapt and evolve
through interactions with external resources. Current static
regulations fall short, requiring proactive measures to anticipate
issues and failures.39

This review has several limitations. First, the majority of the
included studies were non-randomized, and non-blinded which
could affect the reliability and robustness of the findings. Second,
there was a lack of focus on pediatric populations; only three
studies specifically addressed pediatric groups, while one included
vulnerable population, including children, but was not exclusively
focused on them, limiting the generalizability of the findings to this
demographic. Third, most studies did not directly compare AI-
driven management strategies with recommendations from ID
specialists, thus their role in the context of existing medical
resources may remain inconclusive, which may have influenced
the accuracy assessments. Fourth, while four studies evaluated
antimicrobial resistance, the rapidly evolving nature of resistance
poses challenges to the sustained relevance of AI models,
potentially limiting their future applicability, and limiting their
long-term utility. Furthermore, variability in expert opinion
complicates the interpretation of AI-generated recommendations.
Additionally, most included studies lacked detailed descriptions of
the source materials used for AI tool development and incon-
sistently reported the incorporation of patient-specific parameters,
limiting the evaluation of potential biases and the extent to which
these tools fulfill the promise of personalized medicine. Finally,
while clinical decision support can optimize antibiotic dosing by
incorporating electronic health record data, such as renal and liver
function, the high costs associated with implementing these
systems may limit their accessibility, particularly in resource-
constrained settings. Additionally, while we used the Downs and
Black checklist for quality assessment14, which is validated for
clinical studies, the Roosan D. checklist40, has not been validated
for studies involving LLMs, which are included in our analysis.

In conclusion, AI holds promise, particularly in predicting
antimicrobial resistance and optimizing antibiotic use. However,
its current limitations highlight the essential role of infectious
disease specialists in providing precise, personalized, and
comprehensive care. The safe and effective integration of AI into
clinical practice will depend on rigorous validation, continuous
updates, and close collaboration with human expertise to ensure
optimal outcomes.

Supplementary material. The supplementary material for this article can be
found at https://doi.org/10.1017/ash.2025.47

Acknowledgments.We would like to acknowledge the authors of the primary
studies included in this review and the departments of Infection Prevention and
Antimicrobial Stewardship at Stanford Healthcare.

8 Sulwan AlGain et al.

https://doi.org/10.1017/ash.2025.47 Published online by Cambridge University Press

https://doi.org/10.1017/ash.2025.47
https://doi.org/10.1017/ash.2025.47


Financial support. This study was self-funded.

Competing interests. Authors have no commercial or financial involvement
with this manuscript.

References

1. Howard A, HopeW, Gerada A. ChatGPT and antimicrobial advice: the end
of the consulting infection doctor? Lancet Infect Dis 2023;23(4):405–406.

2. Hoch CC, Wollenberg B, Lüers JC, et al. ChatGPT’s quiz skills in different
otolaryngology subspecialties: an analysis of 2576 single-choice and
multiple-choice board certification preparation questions. Eur Arch
Otorhinolaryngol 2023;280(9):4271–4278.

3. Alowais SA, Alghamdi SS, Alsuhebany N, et al. Revolutionizing healthcare:
the role of artificial intelligence in clinical practice. BMC Med Educ
2023;23(1):689.

4. Walensky RP, McQuillen DP, Shahbazi S, Goodson JD. Where Is the ID in
COVID-19? Ann Intern Med 2020;173(7):587–589.

5. Andrikyan W, Sametinger SM, Kosfeld F, et al. Artificial intelligence-
powered chatbots in search engines: a cross-sectional study on the quality
and risks of drug information for patients. BMJ Qual Saf 2024;34(2):
100–109.

6. O’Leary EN, Neuhauser MM,McLees A, PaekM, Tappe J, Srinivasan A. An
update from the national healthcare safety network on hospital antibiotic
stewardship programs in the United States, 2014–2021. Open Forum Infec
Dis 2024;11(2):ofad684.

7. McCoy LG, Manrai AK, Rodman A. Large language models and the
degradation of the medical record. N Engl J Med 2024;391(17):1561–1564.

8. Lo CK.What is the impact of ChatGPT on education? A rapid review of the
literature. Educ Sci 2023;13(4):410.

9. Ayers JW, Poliak A, Dredze M, et al. Comparing physician and artificial
intelligence Chatbot responses to patient questions posted to a public social
media forum. JAMA Intern Med 2023;183(6):589.

10. Schinkel M, Boerman AW, Bennis FC, et al. Diagnostic stewardship for
blood cultures in the emergency department: a multicenter validation and
prospective evaluation of a machine learning prediction tool. eBioMedicine
2022;82:104176.

11. Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for
systematic reviews and meta-analyses: the PRISMA statement. PLoS Med
2009;6(7):e1000097.

12. Covidence. (n.d.). Covidence systematic review software. Retrieved
[October 25th, 2024], from https://www.covidence.org. Accessed October
25, 2024.

13. EriksenMB, Frandsen TF. The impact of patient, intervention, comparison,
outcome (PICO) as a search strategy tool on literature search quality: a
systematic review. jmla. 2018;106(4):420–431.

14. Downs SH, Black N. The feasibility of creating a checklist for the assessment
of the methodological quality both of randomised and non-randomised
studies of health care interventions. J Epidemiol Community Health
1998;52(6):377–384.

15. İlhanlı N, Park SY, Kim J, Ryu JA, Yardımcı A, Yoon D. Prediction of
antibiotic resistance in patients with a urinary tract infection: algorithm
development and validation. JMIR Med Inform 2024;12:e51326.

16. Lewin-Epstein O, Baruch S, Hadany L, Stein GY, Obolski U. Predicting
antibiotic resistance in hospitalized patients by applying machine learning
to electronic medical records. Clin Infect Dis 2021;72(11):e848–e855.

17. Tran Quoc V, Nguyen Thi Ngoc D, Nguyen Hoang T, et al. Predicting
antibiotic resistance in ICUs patients by applying machine learning in
Vietnam. IDR 2023;16:5535–5546.

18. Lee HG, Seo Y, Kim JH, et al. Machine learning model for predicting
ciprofloxacin resistance and presence of ESBL in patients with UTI in the
ED. Sci Rep 2023;13(1):3282.

19. Neugebauer M, Ebert M, Vogelmann R. A clinical decision support system
improves antibiotic therapy for upper urinary tract infection in a
randomized single-blinded study. BMC Health Serv Res 2020;20(1):
185.

20. Oonsivilai M, Mo Y, Luangasanatip N, et al. Using machine learning to
guide targeted and locally-tailored empiric antibiotic prescribing in a
children’s hospital in Cambodia. Wellcome Open Res 2018;3:131.

21. MacFadden DR, Coburn B, Shah N, et al. Decision-support models for
empiric antibiotic selection in Gram-negative bloodstream infections. Clin
Microbiol Infect 2019;25(1):108.e1–108.e7.

22. Tran-The T, Heo E, Lim S, et al. Development of machine learning
algorithms for scaling-up antibiotic stewardship. Int J Med Inf
2024;181:105300.

23. Ghamrawi RJ, Kantorovich A, Bauer SR, et al. Evaluation of antimicrobial
stewardship–related alerts using a clinical decision support system. Hosp
Pharm 2017;52(10):679–684.

24. Ciarkowski CE, Timbrook TT, Kukhareva PV, et al. A pathway for
community-acquired pneumonia with rapid conversion to oral therapy
improves health care value. Open Forum Infect Dis 2020;7(11):ofaa497.

25. Bolton WJ, Wilson R, Gilchrist M, Georgiou P, Holmes A, Rawson TM.
Personalising intravenous to oral antibiotic switch decisionmaking through
fair interpretable machine learning. Nat Commun 2024;15(1):506.

26. Herter WE, Khuc J, Cinà G, et al. Impact of a machine learning–based
decision support system for urinary tract infections: prospective observa-
tional study in 36 primary care practices. JMIR Med Inform 2022;10(5):
e27795.

27. Tan R, Kavishe G, Luwanda LB, et al. A digital health algorithm to guide
antibiotic prescription in pediatric outpatient care: a cluster randomized
controlled trial. Nat Med 2024;30(1):76–84.

28. Williams DJ, Martin JM, Nian H, et al. Antibiotic clinical decision support
for pneumonia in the ED: a randomized trial. J Hosp Med 2023;18(6):491–
501.

29. Draschl A, Hauer G, Fischerauer SF, et al. Are ChatGPT’s free-text
responses on periprosthetic joint infections of the hip and knee reliable and
useful? JCM 2023;12(20):6655.

30. De Vito A, Geremia N, Marino A, et al. Assessing ChatGPT’s theoretical
knowledge and prescriptive accuracy in bacterial infections: a comparative
study with infectious diseases residents and specialists. Infection. Published
online July 12, 2024. doi: 10.1007/s15010-024-02350-6.

31. Cakir H, Caglar U, Sekkeli S, et al. Evaluating ChatGPT ability to answer
urinary tract infection-related questions. Infectious Diseases Now
2024;54(4):104884.

32. Tao H, Liu L, Cui J, Wang K, Peng L, NahataMC. Potential use of ChatGPT
for the treatment of infectious diseases in vulnerable populations. Ann
Biomed Eng 2024;52(12):3141–3144.

33. Maillard A, Micheli G, Lefevre L, et al. Can Chatbot artificial intelligence
replace infectious diseases physicians in the management of bloodstream
infections? a prospective cohort study. Clin Infect Dis 2024;78(4):825–832.

34. Fisch U, Kliem P, Grzonka P, Sutter R. Performance of large language
models on advocating the management of meningitis: a comparative
qualitative study. BMJ Health Care Inform 2024;31(1):e100978.

35. Wu Y, McLeod C, Blyth C, et al. Predicting the causative pathogen among
children with osteomyelitis using Bayesian networks – improving antibiotic
selection in clinical practice. Artif Intell Med 2020;107:101895.

36. Gohil SK, Septimus E, Kleinman K, et al. Stewardship prompts to improve
antibiotic selection for pneumonia: The INSPIRE randomized clinical trial.
JAMA 2024;331(23):2007.

37. Gohil SK, Septimus E, Kleinman K, et al. Stewardship prompts to improve
antibiotic selection for urinary tract infection: The INSPIRE randomized
clinical trial. JAMA 2024;331(23):2018.37.

38. Kufel WD, Hanrahan KD, Seabury RW, et al. Let’s have a chat: how well
does an artificial intelligence chatbot answer clinical infectious diseases
pharmacotherapy questions? Open Forum Infect Dis 2024;11
(11):ofae641.

39. Olakotan O, Yusof MM, Puteh SEW. A systematic review on CDSS alert
appropriateness. Stud Health Technol Inform 2020;270:906–910.

40. Roosan D. Comprehensive guide and checklist for clinicians to evaluate
artificial intelligence and machine learning methodological research. J Med
Artif Intell 2024;7:26.

Antimicrobial Stewardship & Healthcare Epidemiology 9

https://doi.org/10.1017/ash.2025.47 Published online by Cambridge University Press

https://www.covidence.org
https://doi.org/10.1007/s15010-024-02350-6
https://doi.org/10.1017/ash.2025.47

	Can we rely on artificial intelligence to guide antimicrobial therapy? A systematic literature review
	Background
	Methods
	Systematic literature review and inclusion and exclusion criteria
	Search strategy
	Data abstraction and quality assessment

	Results
	Characteristics of included studies
	AI in clinical decision support systems: antimicrobial stewardship (ASP)

	Antimicrobial resistance prediction
	Appropriateness of antibiotic prescriptions
	Accuracy of management
	Transition from intravenous to oral antibiotics
	Adherence to guidelines
	Large language models:

	Accuracy of management:
	Adherence to guidelines
	Antimicrobial resistance:
	Quality assessment


	Discussion
	References


