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Abstract

Suppose that, under the action of gravity, liquid drains through the unit d-cube via a
minimal-length network of channels constrained to pass through random sites and to
flow with nonnegative component in one of the canonical orthogonal basis directions
of R

d , d ≥ 2. The resulting network is a version of the so-called minimal directed
spanning tree. We give laws of large numbers and convergence in distribution results on
the large-sample asymptotic behaviour of the total power-weighted edge length of the
network on uniform random points in (0, 1)d . The distributional results exhibit a weight-
dependent phase transition between Gaussian and boundary-effect-derived distributions.
These boundary contributions are characterized in terms of limits of the so-called on-line
nearest-neighbour graph, a natural model of spatial network evolution, for which we also
present some new results. Also, we give a convergence in distribution result for the length
of the longest edge in the drainage network; when d = 2, the limit is expressed in terms
of Dickman-type variables.
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1. Introduction

We consider a continuum model of drainage through a porous medium in R
d (d ∈ N :=

{1, 2, 3, . . .}), which we first describe informally. Let {e1, . . . , ed} be the canonical orthonormal
basis of R

d . We distinguish the ed direction and suppose that ‘gravity’ acts in direction −ed ;
in free space, liquid would fall in exactly the −ed direction.

Informally, consider a unit d-cube, representing a block of porous material. We scatter a
certain finite set X of points in this cube, representing special sites in the medium. We constrain
liquid to drain in channels that visit every site and travel in straight lines from site to site. The
vectors of each channel must have a nonpositive component in the ed direction; that is, they must
respect gravity. We call the collection of channels spanning X satisfying these conditions a
drainage network on X. A natural problem is to find the most efficient arrangement of channels
satisfying the above constraints, i.e. a drainage network that is in some sense optimal. As we
shall see, a solution to this problem is a version of the so-called minimal directed spanning tree
(MDST) on the vertices X.
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More mathematically, let X be a finite point set in (0, 1)d whose points have distinct dth
coordinates. We construct a directed graph on vertex set X as follows. Join each vertex x ∈ X
by a directed edge to a Euclidean nearest neighbour (if one exists, and arbitrarily breaking any
ties) amongst those points y ∈ X \ {x} such that y �∗ x. Here ‘�∗’ is the order on X induced
by the order on dth coordinates: (x1, . . . , xd) �∗ (y1, . . . , yd) if and only if xd ≤ yd . We
call the directed graph so constructed the MDST on (X; �∗): it is a mathematical solution to
the problem of constructing a minimal-length drainage network on X as informally described
above.

The subject of this paper is the MDST on (Pn; �∗), where Pn is a homogeneous Poisson
point process of intensity n > 0 on (0, 1)d . Then (with probability 1), Pn is indeed a finite
point set with distinct dth coordinates so that the MDST is almost surely well defined. We
study the total power-weighted edge length of the MDST on (Pn; �∗) as n → ∞, and also the
length of the longest edge.

The MDST on (Pn; �∗) is an example of a random spatial graph, that is, a graph gener-
ated by scattering points randomly into a region of space and connecting them according to
some prescribed rule. Motivated in part by real-world networks with spatial content, such as
communications networks (including the Internet), social networks, and physical networks, a
substantial body of recent research has dealt with the large-sample asymptotic theory of such
graphs. Examples include the geometric graph, the nearest-neighbour graph, and the minimal-
length spanning tree. See, for example, [3], [12], [18], [20], [21], [22], [28], [29], [33], and [36].
A feature that distinguishes the MDST considered here from other random spatial graphs is that
the constraint on direction of the edges can lead to significant (indeed, sometimes dominating)
boundary effects due to the possibility of long edges occurring near the lower boundary cube
(0, 1)d−1 orthogonal to ed . Another difference is the fact that there is no uniform upper bound
on vertex degrees in the MDST.

In general, the MDST can be defined on any finite partially ordered set in R
d , as described

in [23]; a survey of results on the random MDST is given in [27]. Examples considered
previously are the ‘coordinatewise’ (or ‘south-west’) partial ordering on point sets in (0, 1)2

[7], [23], [24] or in (0, 1)d [5], and the radial spanning tree [4] on point sets in R
2. Also, laws

of large numbers for the MDST on a class of partial orders of R
2 were given in [34].

In this paper we are concerned with the ‘south’ partial order ‘�∗’, which is even a total
order, on point sets in R

d with distinct d-coordinates. Our main results, Theorems 2.1 and 2.2,
give laws of large numbers, convergence of expectation, and distributional convergence results
for the total power-weighted edge length of the MDST on (Pn; �∗) for d ≥ 2. We also give
a convergence result for the maximum edge length in the MDST (Theorem 2.3). Our main
distributional limit result, Theorem 2.2, reveals two regimes of limit behaviour for the total
power-weighted edge length depending on the power weighting, in which the limit law is either
purely normal or given in terms of boundary effects characterized as distributional limits of
certain on-line nearest-neighbour graphs. At a critical point between these two regimes, there
is a phase transition at which both effects contribute significantly to the limit law. In order to
understand the boundary effects in the MDST, and its longest edge, we make use of the fact that
near to the boundary, the MDST is well approximated by a certain on-line nearest-neighbour
graph.

In the on-line nearest-neighbour graph (ONG), each point after the first in a sequence of
points arriving sequentially in R

d is joined to its nearest neighbour amongst those points already
present. The ONG itself is of separate interest as a simple growth model for random networks,
such as the World Wide Web graph (see [6]). The total power-weighted length of the ONG has
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been studied in [20], [25], [34], and [35]. In the present paper, the ONG arises as a natural
tool for studying the structure of the MDST near to the boundary; we also prove a new result
(Theorem 3.1) on the length of the longest edge in the ONG on uniform random points in (0, 1)d .

In the particular case of the total weight of the MDST on (Pn; �∗) when d = 2, which is one
of the most natural cases, the boundary contributions to the total power-weighted edge length
limit laws can be characterized in terms of the limiting distribution of the total weight of the
one-dimensional ONG (centred as necessary). Results from [25] say that such a distribution
is characterized by a distributional fixed-point equation. Such fixed-point equations, and the
‘divide and conquer’ algorithms from which they often arise, are also a subject of considerable
recent interest; see, for example, [2], [17], and [31].

Mathematically, much of the motivating interest comes from the desire to further understand
the interplay between stochastic geometry and distributional fixed points previously more
commonly seen in the analysis of algorithms (see, e.g. [17]). This relationship was first seen
in our previous work [24], [34] on limit theorems for the length of the ‘south-west’ MDST in
the unit square. The present work adds to this by considering the ‘south’ MDST, for which
the fixed-point distributions that arise are different. We remain some way from having a full
description of the limits for all possible partial orders, other shapes of domain, and nonuniform
densities.

We now comment on the technical content of the present paper in relation to previous work.
In [24] and [34] only the case d = 2 of the ‘south-west’MDST was studied. In the present paper,
for the ‘south’MDST, we deal not only with d = 2 but also with higher dimensions. With fairly
straightforward modifications, the method used in [24] could be adapted to prove the d = 2
case of our Theorem 2.2 below. However, at several points the proofs used in [24] are not easily
adapted to higher dimensions, and, thus, we have adopted different proofs; sometimes these
improve or extend ideas from [24] and sometimes we use entirely different techniques. Another
difference is that in [24] and [34] we made use of general results of Penrose and Yukich [28],
[29], while in the present paper we instead use the results of Penrose [22], [21] (see also [19])
which are in several ways more convenient for the current application. In [24] the boundary
effects there were described in terms of a one-dimensional process (the so-called ‘directed linear
tree’). In the multidimensional setting of the present paper, the boundary effects themselves are
richer in character, being related to the multidimensional ONG. Our analysis of the boundary
effects in the ‘south’MDST thus relies in part upon analysis of the ONG undertaken previously,
particularly in [35] and also in [25]. In summary, the results of the present paper are of a similar
(albeit general-dimensional) flavour to those in [24] and [34], but the proofs are different. We
give more detail on how our methods relate to previous work during the course of the proofs.

Before describing our results in detail, we return to the question of motivation. General
motivation for the MDST is as a model for a constrained optimal transport network (see,
e.g. [27]). As has been mentioned elsewhere (e.g. [7]), the MDST can be motivated by
communications networks. However, in the present case the primary motivation is from
drainage networks. From this point of view, our choice of ‘south’ partial ordering seems the
most natural, and the two most natural choices of d are d = 2 and d = 3. For further references
on the mathematical modelling of drainage networks, and a related infinite lattice version of
this model, for which rather different properties were studied, see [10]; for background on
modelling of drainage networks in general, see also [30].

With regards to motivation of our model, it should also be noted that random spatial networks
similar to those studied here have appeared in the physics literature, with several different
sources of motivation; see, e.g. [14], [15], [16]. Specifically, the ONG appears as the ‘α = −∞’
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case of a model in [14], an on-line relative of the ‘south’ MDST appears as a ‘directed minimal
growing network’ in [15], and a variant on the ONG in which each new edge joins to a randomly
chosen endpoint of the nearest edge already present is studied in [16]. The focus in most of these
studies is on degree distributions, although there is some (nonrigorous) discussion of ‘typical
edge lengths’ which is more closely related to our problems of interest. Unfortunately, the
present authors were unaware of the work in the physics literature when the survey article [27]
was written.

2. Definitions and main results

In this section we give formal definitions of our model and state our main results. Let
d ∈ N. Let X be a finite subset of R

d endowed with the binary relation ‘�∗’, for which
(x1, . . . , xd) �∗ (y1, . . . , yd) if and only if xd ≤ yd . Assume that all the elements of X have
distinct xd -coordinates. Under this assumption, ‘�∗’ is a partial order on X (in fact, a total
order), and so the MDST that we shall construct fits into the theory of the MDST on partially
ordered sets given in [23] and [27]. Let card(X) denote the cardinality (number of elements)
of the set X.

A minimal element, or sink, is a vertex x ∈ X for which there exists no y ∈ X \ {x} such
that y �∗ x. Thus, under our definition of ‘�∗’ and our assumption on X, there is a unique
sink having strictly minimal xd -coordinate and which we shall denote m(X).

For a vertex x ∈ X \ {m(X)}, we say that y ∈ X \ {x} is a directed nearest neighbour (in
the ‘�∗’-sense) of x with respect to X if y �∗ x and

‖y − x‖d = min{z∈X\{x} : z�∗x} ‖z − x‖d;

here and subsequently, ‖ · ‖d denotes the Euclidean norm on R
d . For each x ∈ X\ {m(X)}, let

nx := n(x; X) denote a directed nearest neighbour of x with respect to X, chosen arbitrarily
if x has more than one directed nearest neighbour. A minimal directed spanning tree (MDST)
on (X; �∗), or simply ‘on X’ from now on, is a directed graph with vertex set X and edge set
{(x, nx) : x ∈ X \ {m(X)}}. That is, there is an edge from each point other than the sink to a
directed nearest neighbour. Hence, ignoring the directedness of the edges, an MDST on X is
a tree rooted at the sink m(X). Note that an MDST is also a solution to a global optimization
problem (see [7] and [23])—that is, find a minimal-length spanning tree (ignoring directedness
of the edges) such that each vertex is connected to the sink by a unique directed path, where
directed edges must respect ‘�∗’. See Figure 1 for simulations of the MDST on uniform random
points in (0, 1)d .

For X ⊂ R
d with card(X) ≥ 2, let d∗(x; X) denote the Euclidean distance from a non-

minimal x ∈ X to a directed nearest neighbour n(x; X) under ‘�∗’ and set d∗(m(X); X) = 0.
For d ∈ N and α > 0, define the total power-weighted edge length of the MDST on X by

Ld,α(X) :=
∑
x∈X

(d∗(x; X))α =
∑

x∈X\{m(X)}
‖x − n(x; X)‖α

d ,

where an empty sum is 0. In particular, Ld,1(X) is the total Euclidean length of the MDST
on X. Also, define the centred version L̃d,α(X) := Ld,α(X) − E[Ld,α(X)].

From now on we will take X to be a random point set in (0, 1)d . In particular, we will take
a homogeneous Poisson point process Pn of intensity n on (0, 1)d . Note that in this random
setting, each point of Pn almost surely has a unique xd -coordinate and at most one directed
nearest neighbour under ‘�∗’, so that Pn has a unique MDST, which is rooted at m(Pn).
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Figure 1: Realizations of the MDST under ‘�∗’ on 50 simulated uniform random points in (0, 1)2 (left)
and (0, 1)3 (right).

We state and prove all of our main results in the present paper for the Poisson process Pn.
In all cases, the authors believe that analogous results hold for the binomial point process
consisting of n independent uniform random points on (0, 1)d instead; it should be possible
to use standard de-Poissonization arguments (such as applied in similar circumstances in [23]
and [24]) to verify this.

In the present paper we are concerned with d ≥ 2. When d = 1, ‘�∗’ coincides with
the coordinatewise partial order ‘�∗’ (and indeed the total order ‘≤’ on R) and so our ‘south’
MDST is the same as the ‘south-west’ MDST here. Moreover, L1,α(Pn) is a sum of powers
of spacings of uniform points, and it can be studied using standard Dirichlet spacings results
(see, e.g. [8]). For instance, Darling [8, p. 245] essentially gives a central limit theorem for the
binomial point process analogue of L1,α(Pn). From now on we fix d ∈ {2, 3, . . .}.

Our first result describes the first-order behaviour of Ld,α(Pn) as n → ∞. In particular,
we have a law of large numbers for α ∈ (0, d), and also asymptotic results for the expectation
when α ≥ d . In d = 2, the binomial point process analogue of Theorem 2.1(i), below, is
contained in the φ = π case of Theorem 5 of [34]. For d ∈ N, let

vd := πd/2
[
�

(
1 + d

2

)]−1

, (2.1)

the volume of the unit d-ball (see, e.g. [11, Equation (6.50)]); here �(·) denotes the Euler
gamma function.

Theorem 2.1. Suppose that d ∈ {2, 3, 4, . . .}.
(i) Suppose that α ∈ (0, d). Then, as n → ∞,

n(α/d)−1Ld,α(Pn) → 2α/d�

(
1 + α

d

)
v

−α/d
d in L1. (2.2)

(ii) Suppose that α ≥ d . Then there exists µ′(d, α) ∈ (0, ∞) such that, as n → ∞,

E[Ld,α(Pn)] → µ′(d, α). (2.3)
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Moreover, we can express

µ′(d, α) = µ(d − 1, α) + 1{α=d} 2v−1
d ,

where the constantsµ(d−1, α) ∈ (0, ∞) can be characterized in terms of limits of certain
ONGs: µ(·, ·) is as given in Proposition 2.1 of [35]; see (8.8) below. In particular, for
α ≥ 2,

µ(1, α) = 2

α(α + 1)

(
1 + 2−α

α − 1

)
.

Our second main result (Theorem 2.2, below) presents convergence in distribution results
for Ld,α(Pn); the distributional limits contain Gaussian random variables and also random
variables defined as distributional limits of the ONG (see Section 3). In general, we do not
give an explicit description of the latter distributions. However, in the case of d = 2, the limits
in question can be characterized as solutions to distributional fixed-point equations, which we
describe at the end of this section.

We now state our main convergence in distribution result. Let N (0, s2) denote the normal
distribution with mean 0 and variance s2 ≥ 0; included is the degenerate case N (0, 0). By
‘

d−→’ we denote convergence in distribution.

Theorem 2.2. Suppose that d ∈ {2, 3, 4, . . .} and α > 0. Then there exists a constant s2
α < ∞

which satisfies s2
α > 0 for α ≤ d/2 and s2

α = 0 for α > d/2, such that, for a normal random
variable Wα ∼ N (0, s2

α), as n → ∞,

nα/d−1/2L̃d,α(Pn)
d−→ Wα, 0 < α < d/2,

L̃d,α(Pn)
d−→ Wα + Q(d − 1, α), α ≥ d/2.

Here the Q(d − 1, α) are mean-zero random variables as given in Lemma 3.2 below and
independent of the Wα; in particular Q(1, α) = G̃α for α ≥ 1, where G̃α has the distribution
given by (2.7) below for α = 1 and by (2.8) below for α > 1.

Remarks 2.1. (a) We can generalize the statement of Theorem 2.1(i) to more general point
processes under certain conditions; see [22] and [19] for a general framework.

(b) It seems likely that a version ofTheorem 2.1(i) holds with almost-sure convergence. One pos-
sible approach to proving this would be based on the inherent subadditivity, using, for instance,
the well-developed theory of [36] (see in particular Theorem 4.1 of [36]). This approach seems
to require verification of certain other conditions, such as ‘smoothness’ and superadditivity
[36, Chapter 3]. It is not clear to us whether such conditions hold. We have instead adopted
an approach to the law of large numbers in Theorem 2.1(i), via general stabilization results
of [22], which mirrors our approach to obtaining the Gaussian part of our distributional result
in Theorem 2.2 via results of [21]. This approach to Theorem 2.1 provides explicit evaluation
of the limiting constants, which are usually inaccessible to methods based on subadditivity.

(c) The normal random variables Wα arise from the edges away from the lower boundary of
the d-cube (see Section 4.2). The variables Q(d − 1, α) arise from the edges very close to
the boundary, where the MDST is asymptotically close to a (d − 1)-dimensional ONG: this is
formalized in Section 5 below.
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(d) Theorem 2.2 indicates a phase transition in the limit law as α increases. The normal
contribution dominates for α ∈ (0, d/2), while the boundary contribution dominates for α >

d/2 (when the normal component degenerates). In the critical case α = d/2 (such as the
natural case d = 2 and α = 1) both terms contribute significantly to the asymptotic behaviour.
The intuition here is that increasing α increases the relative importance of long edges, such as,
typically, those near to the boundary.

(e) As will be demonstrated below (see Lemma 3.2), the random variables Q(d − 1, α) can be
characterized as distributional limits of the ONG. It is known (see [25]) that the Q(d − 1, α)

are non-Gaussian for α > d − 1. When d = 2, much more is known (see [25]); Q(1, α) can
be characterized in terms of a distributional fixed-point equation (see (2.7) and (2.8) below).
In particular, Q(1, α) is non-Gaussian for α ≥ 1. The authors suspect that, for general d,
Q(d − 1, α) is in fact non-Gaussian for all α ≥ d/2.

Theorem 2.3, below, gives a convergence in distribution result on the length of the longest
edge in the MDST on (Pn; �∗). A similar result (in d = 2 only) for the longest edge in the
‘south-west’ MDST was given in [23]. Let Ld

max(X) denote the length of the longest edge in
the MDST (under ‘�∗’) on the point set X ⊂ (0, 1)d :

Ld
max(X) := max

x∈X
d∗(x; X) = max

x∈X\{m(X)} ‖x − n(x; X)‖d .

In the particular case d = 2, the distributional limit arising in Theorem 2.3, below, is expressed
in terms of the max-Dickman distribution, which can be characterized as the distribution of a
nonnegative, integrable random variable M satisfying the fixed-point equation

M
d= max{1 − U, UM}, (2.4)

where U is uniform on (0, 1) and independent of the M on the right. (Here and subsequently, ‘
d=’

denotes equality in distribution.) See [23, Section 3.5], [27, Section 7.3.2], and the references
therein for more information on the max-Dickman distribution.

Theorem 2.3. Let d ∈ {2, 3, . . .}. There exists a random variable Qmax(d − 1) such that

Ld
max(Pn)

d−→ Qmax(d − 1)

as n → ∞. Moreover, Qmax(d − 1) is characterized in terms of the ONG (see Theorem 3.1,
below); in particular,

Qmax(1)
d= max{UM{1}, (1 − U)M{2}},

where U , M{1}, and M{2} are independent random variables, U is uniform on (0, 1), and M{1}
and M{2} have the max-Dickman distribution as given by (2.4).

We shall derive Theorem 2.3 from a new result on the limiting distribution of the length of
the longest edge in the ONG on uniform random points in (0, 1)d , which is of some independent
interest; see Theorem 3.1 below.

As promised, we now give a characterization of the limits Q(1, α), α ≥ 1, arising in the
d = 2 case of Theorem 2.2. First we define random variables J̃α, α > 1

2 , with E[J̃α] = 0 and
E[J̃ 2

α ] < ∞. Define J̃1 by the fixed-point equation

J̃1
d= min{U, 1 − U} + UJ̃

{1}
1 + (1 − U)J̃

{2}
1 + 1

2U log U + 1
2 (1 − U) log(1 − U), (2.5)
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and, for α ∈ ( 1
2 , ∞) \ {1}, define J̃α by the fixed-point equation

J̃α
d= min{U, (1 − U)}α + UαJ̃ {1}

α + (1 − U)αJ̃ {2}
α + 2−α

α − 1
(Uα + (1 − U)α − 1). (2.6)

In each of these two equations (and subsequently), Y {1} and Y {2} denote independent copies of
the random variable Y , and U denotes a uniform random variable on (0, 1) independent of the
other random variables on the right-hand side of the equation.

Note that (2.5) and (2.6) define unique square-integrable mean-zero solutions (see, e.g. The-
orem 3 of [31]), and, hence, the distributions of J̃1 and J̃α are uniquely defined. Moments
of J̃α can be calculated recursively from (2.5) and (2.6); see [25, Table 2, p. 136] for some
information on the first few moments of J̃1, for example. From these moments we can deduce
that J̃α, α > 1

2 , is not Gaussian.
Now we can define random variables H̃α and G̃α , again with zero mean and finite variance.

Define H̃1 by

H̃1
d= UJ̃1 + (1 − U)H̃1 + U

2
+ 1

2
U log U + 1

2
(1 − U) log(1 − U).

For α ∈ ( 1
2 , ∞) \ {1}, define H̃α by

H̃α
d= UαJ̃α + (1 − U)αH̃α + Uα

(
1 + 2−α

α − 1

)
+ ((1 − U)α − 1)

(
1

α
+ 2−α

α(α − 1)

)
.

Define G̃1 by

G̃1
d= UH̃

{1}
1 + (1 − U)H̃

{2}
1 + 1

4 + 1
2U log U + 1

2 (1 − U) log(1 − U). (2.7)

Finally, for α ∈ ( 1
2 , ∞) \ {1}, define G̃α by

G̃α
d= UαH̃ {1}

α + (1 − U)αH̃ {2}
α + (Uα + (1 − U)α)

(
1

α
+ 2−α

α(α − 1)

)

− 2

α(α + 1)

(
1 + 2−α

α − 1

)
. (2.8)

Again, the distributions of H̃α and G̃α are uniquely defined. It is the distribution of G̃α (α ≥ 1)

as defined by (2.7) or (2.8) that appears in the d = 2 case of Theorem 2.2.
In the remainder of this paper, we prove Theorems 2.1, 2.2, and 2.3. First, in Section 3 we

discuss the ONG, which we use to deal with the boundary effects in the MDST, and prove some
new results, which are of some independent interest. In Section 4, we apply general results of
Penrose [21], [22] (see also [19]) to prove a law of large numbers and central limit theorem for
the total weight of the MDST away from the boundary. In Section 5 we deal with the boundary
effects themselves. Then in Section 6 we prove Theorem 2.3. Finally, we complete the proofs
of Theorem 2.2 in Section 7 and Theorem 2.1 in Section 8.

Throughout the sequel, we make repeated use of Slutsky’s theorem (see, e.g. [9, p. 72]),
which says that, for sequences of random variables (Xn) and (Yn) such that Xn

d−→ X and
Yn

p−→ 0 as n → ∞, we have Xn + Yn
d−→ X as n → ∞. (Here and subsequently, ‘

p−→’ denotes
convergence in probability.)
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3. The ONG

In this section we describe the ONG that we use to analyse the boundary effects in the total
weight of the MDST under ‘�∗’. Some of the results that we will require are present in [25]
and [35], but we prove in this section some new results on the longest edge of the ONG that we
will need.

Let (Y1, Y2, . . .) be a sequence of vectors in R
d . For m ∈ N, set Ym := (Y1, . . . ,Ym). The

ONG on sequence Ym is constructed by joining each point after the first of Ym by a directed
edge to its (Euclidean) nearest neighbour amongst those points that precede it in the sequence.
That is, for i = 2, . . . , m, we include the edge (Yi , Yj ), where j ∈ {1, . . . , i − 1} is such that
‖Yj − Yi‖d = min1≤k<i ‖Yk − Yi‖d , arbitrarily breaking any ties.

In this way we obtain the ONG on Ym, denoted ONG(Ym), which, ignoring directedness
of edges, is a tree rooted at Y1. Denote the total power-weighted edge length with exponent
α > 0 of ONG(Ym) by Od,α(Ym), that is,

Od,α(Ym) :=
m∑

i=2

min
1≤j<i

‖Yi − Yj‖α
d ;

when Ym is random, we denote the centred version by Õd,α(Ym) := Od,α(Ym)−E[Od,α(Ym)].
Let d ∈ N. Let (U1, U2, . . .) be a sequence of independent uniform random vectors in

(0, 1)d . For m ∈ N, set Um := (U1, . . . ,Um). We consider ONG(Um). We also consider
the ONG defined on a Poisson number of points. Let (N(t))t≥0 be the counting process of a
homogeneous Poisson process of unit rate in (0, ∞), independent of (U1, U2, . . .). Thus, N(n)

is a Poisson random variable with mean n. With Um as defined above, set �n = UN(n); we then
consider ONG(�n). Note that the points of the sequence �n then constitute a homogeneous
Poisson point process of intensity n on (0, 1)d .

We need the following result, which is contained in Theorem 2.1 of [35].

Lemma 3.1. Suppose that d ∈ N.

(i) For α ∈ (0, d/2), there exists a constant C ∈ (0, ∞) such that, for all n ≥ 1,

var[Õd,α(�n)] ≤ Cn1−2α/d .

(ii) For α = d/2, there exists a constant C ∈ (0, ∞) such that, for all n ≥ 1,

var[Õd,d/2(�n)] ≤ C log(1 + n).

The following result is contained in Theorem 2.2 of [35], with Theorem 2.2 of [25] used to
deduce the final statement about the d = 1 case.

Lemma 3.2. Suppose that d ∈ N and α > d/2. Then there exists a mean-zero random variable
Q(d, α) such that, as n → ∞,

Õd,α(�n)
d−→ Q(d, α).

Also, Q(1, α) = G̃α for α ≥ 1, where G̃α has distribution given by (2.7) for α = 1 and by
(2.8) for α > 1.

In order to deduce Theorem 2.3, we use the following result on the length of longest edge of
the ONG on uniform random points in (0, 1)d , which adds to the analysis of the ONG given in
[6], [20], [25], [34], and [35]. The proof below of Theorem 3.1 is self-contained, and similar
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in part to the proof of Theorem 2 of [23]. For a sequence Ym = (Y1, . . . ,Ym) of points in R
d ,

write Od
max(Ym) for the length of the longest edge in the ONG on Ym:

Od
max(Ym) := max

2≤i≤m
min

1≤j<i
‖Yi − Yj‖d .

For d = 1, where Un = (U1, . . . , Un) and �n = (U1, . . . , UN(n)) for U1, U2, . . . independent
uniform random variables on (0, 1), we set U0

n := (0, U1, . . . , Un), i.e. U0
n is Un but with an

initial point placed at the origin, and, similarly, �0
n := (0, U1, . . . , UN(n)).

Theorem 3.1. Let d ∈ N.

(i) There exists a random variable Qmax(d) such that, as n → ∞,

Od
max(Un)

d−→ Qmax(d), Od
max(�n)

d−→ Qmax(d).

(ii) When d = 1, we have, in particular,

Qmax(1)
d= max{UM{1}, (1 − U)M{2}}, (3.1)

where U , M{1}, and M{2} are independent, U is uniform on (0, 1), and M{1} and M{2}
are max-Dickman random variables as given by (2.4). Also, as n → ∞,

O1
max(U

0
n)

d−→ M, O1
max(�

0
n)

d−→ M, (3.2)

where M is a max-Dickman random variable as given by (2.4).

Proof. First we prove part (i). With probability 1, for all n, 0 ≤ Od
max(Un) ≤ d1/2 and

Od
max(Un+1) ≥ Od

max(Un). Hence, Od
max(Un) → Qmax(d) almost surely (a.s.) as n → ∞ for

some Qmax(d). Then, by the coupling of �n and Un and the fact that N(n) → ∞ a.s., we find
that, with this coupling, Od

max(�n) converges to the same Qmax a.s. and, hence, in distribution
(regardless of the coupling), completing the proof of part (i).

We now prove part (ii) of the theorem, and so take d = 1. First we prove (3.2). Again, by
the coupling of �n and Un, it suffices to prove that O1

max(U
0
n) → M a.s. as n → ∞. The

following argument is related to the proof of Theorem 2 of [23].
An upper record value in the sequence X1, X2, . . . is a value Xi which exceeds max{X1, . . . ,

Xi−1} (the first value X1 is also included as a record value). Let j (1), j (2), . . . be the values
of i ∈ N such that Ui is an upper record in the sequence (U1, U2, . . .), arranged in increasing
order so that 1 = j (1) < j (2) < · · · . Let Rn := max{k : j (k) ≤ n} be the number of record
values in the sequence Un = (U1, . . . , Un).

A record Ui has by definition no preceding point in the sequence Un to its right in the
unit interval, and, hence (in the ONG on U0

n), must be joined to its nearest neighbour to the
left amongst those points already present, which is necessarily the previous record value when
i > 1, or 0 in the case of U1. Then each nonrecord Ui lies in an interval between two successive
record values (here we are including 0 as a record value), and, hence, gives rise to a shorter
edge than that from some record value. Thus,

O1
max(U

0
n) = max

1≤i≤Rn

{Uj(i) − Uj(i−1)}, (3.3)

where we set j (0) := 0 and U0 := 0. For i ∈ N, set Vi := (1 − Uj(i))/(1 − Uj(i−1)). It is
not hard to see that V1, V2, . . . are mutually independent and each is uniformly distributed over
(0, 1). Therefore, setting

M := max{1 − V1, V1(1 − V2), V1V2(1 − V3), V1V2V3(1 − V4), . . .},
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we obtain
M = max{1 − V1, V1 max{1 − V2, V2(1 − V3), V2V3(1 − V4), . . .}}

= max{1 − V1, V1M
′}, (3.4)

where M ′ := max{1 − V2, V2(1 − V3), V2V3(1 − V4), . . .} has the same distribution as M

and is independent of V1. Hence, M has the max-Dickman distribution as given by (2.4).
Furthermore, with the convention that an empty product is 1,

(1 − Vi)

i−1∏
k=1

Vk = Uj(i) − Uj(i−1)

1 − Uj(i−1)

i−1∏
k=1

(
1 − Uj(k)

1 − Uj(k−1)

)
= Uj(i) − Uj(i−1) (3.5)

for k ∈ N. Also, Rn → ∞ a.s. as n → ∞. Hence, by (3.3), (3.4), and (3.5),

O1
max(U

0
n) = max

1≤i≤Rn

{
(1 − Vi)

i−1∏
k=1

Vk

}
→ max

i≥1

{
(1 − Vi)

i−1∏
k=1

Vk

}
= M,

where the convergence is almost sure. This proves (3.2).
To complete the proof of part (ii) of the theorem, we need to prove (3.1). Conditioning on

U = U1 and the number of points of (U2, U3, . . . , Un) that fall in each of the two intervals
(0, U) and (U, 1), we obtain, by scaling,

O1
max(Un)

d= max{UO1
max(U

0
L), (1 − U)O1

max(Ũ
0
n−1−L)}, (3.6)

where in the right-hand expression Ũ0
m = (0, Ũ1, Ũ2, . . . , Ũm), L ∼ Bin(n − 1, U), and

U, U1, U2, . . . , Ũ1, Ũ2, . . . are independent uniform random variables on (0, 1). Here L and
n − 1 − L both tend to ∞ a.s. as n → ∞, and O1

max(U
0
L) and O1

max(Ũ
0
n−1−L) are independent

given L. Thus, by (3.2), O1
max(U

0
L) and O1

max(Ũ
0
n−1−L) converge in distribution to independent

copies of the max-Dickman variable M . Then (3.6) and the fact that Qmax(1) is the distributional
limit of O1

max(Un) yields (3.1).

4. Limit theorems away from the boundary

In this section we prove a law of large numbers and central limit theorem for the total power-
weighted length of the MDST edges from points that are not too close to the base of the unit
d-cube. To do this, we employ some general results of Penrose [19], [21], [22].

Recently, notions of stabilizing functionals of point sets have proved to be a useful basis for a
general methodology for establishing limit theorems for functionals of random point sets in R

d .
See, for example, [20], [21], [22], [28], and [29]. To prove the law of large numbers (Lemma 4.1)
and central limit theorem (Lemma 4.4) in this section, we make use of the general results on
convergence of random measures in geometric probability given in [19], [21], and [22]. These
two lemmas will then form two of the ingredients for two of our main results, Theorems 2.1
and 2.2.

We use the following notation. Let d ∈ N. Let X ⊂ R
d be finite. For constant a > 0 and

y ∈ R
d , let y + aX denote the transformed set {y + ax : x ∈ X}. For x ∈ R

d and r > 0,
let B(x; r) be the closed Euclidean d-ball with centre x and radius r . For bounded measurable
R ⊂ R

d , let |R| denote the d-dimensional Lebesgue measure of R. Write 0 for the origin of R
d .

For α > 0, define the [0, ∞)-valued function on finite nonempty X ⊂ R
d and x ∈ X:

ξ(x; X) := d∗(x; X)α, (4.1)
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and set ξ(x; ∅) := 0 for any x. Then ξ is translation invariant (that is, ξ(y + x; y + X) =
ξ(x; X) for all y ∈ R

d , all finite X ⊂ R
d , and x ∈ X) and homogeneous of order α (that is,

for any r > 0, ξ(rx; rX) = rαξ(x; X) for all finite X ⊂ R
d and x ∈ X). For X ⊂ R

d and
x ∈ R

d , write Xx for X ∪ {x}. If x /∈ X, we abbreviate notation to ξ(x; X) = ξ(x; Xx). The
above definitions extend naturally to infinite but locally finite sets X (as in [22]).

Let
Ld,α(X; R) :=

∑
x∈X∩R

ξ(x; X) (4.2)

be the translation invariant functional, defined on all finite point sets X ⊂ R
d and all Borel

sets R ⊆ R
d , induced by the function ξ . Then Ld,α(X; R) is the total power-weighted length

of the edges of the MDST on X originating from points in the region R. It is this functional
that interests us here. When X is random, set L̃d,α(X; R) := Ld,α(X; R) − E[Ld,α(X; R)].
Note that, with our previous notation, Ld,α(X) = Ld,α(X; (0, 1)d) for X ⊂ (0, 1)d .

Fix ε ∈ (0, 1/d) (small). Let (gn)n>0 be such that gn ∈ (0, 1) and gn = �(nε−(1/d)) as
n → ∞, where by a(n) = �(b(n)) as n → ∞ we mean

0 < lim inf
n→∞

a(n)

b(n)
≤ lim sup

n→∞
a(n)

b(n)
< ∞.

Given gn, we introduce the family (�n)n≥1 of Borel subsets of R
d given by

�n := (0, 1)d−1 × (gn, 1), (4.3)

i.e. �n is the unit d-cube without a thin strip at the base (in the ed -sense). Note that the limiting
set

⋃
n≥1 �n = (0, 1)d . Later on, in Section 7, we will make a more specific choice for gn. For

n ≥ 1, locally finite X ⊂ R
d , and x ∈ X, we define the scaled-up version of ξ restricted to �n

by ξn(x; X) := ξ(n1/dx; n1/dX) 1�n(x). Then, from (4.2),

Ld,α(X; �n) =
∑
x∈X

ξ(x; X) 1�n(x) = n−α/d
∑
x∈X

ξn(x; X), (4.4)

using the fact that ξ as given by (4.1) is homogeneous of order α. We employ the following
notion of stabilization (see [21] and [22]).

Definition 4.1. For any locally finite X ⊂ R
d and Borel region A ⊆ R

d , define Rξ (0; X, A)

(called the radius of stabilization for ξ at 0 with respect to X and A) to be the smallest integer
r ≥ 0 such that ξ(0; (X ∩ B(0; r)) ∪ Y) = ξ(0; X ∩ B(0; r)) for all finite Y ⊂ A \ B(0; r).
If no such r exists, set Rξ (0; X, A) = ∞.

When A is all of R
d , we write Rξ (0; X) for Rξ (0; X, R

d).

4.1. Law of large numbers

We will apply a Poisson point process analogue of the law of large numbers, Theorem 2.1
of [22]. As mentioned on page 1130 of [22], such a Poisson-sample result follows by similar
arguments to the proofs in [22]; in fact, such a result is stated and proved as Theorem 2.1 in
[19]. It is this latter result that we will use in this section.

Let H1 denote a homogeneous Poisson point process of unit intensity on R
d . Our law of

large numbers result for this section is the following.
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Lemma 4.1. Suppose that d ∈ {2, 3, . . .} and α > 0. As n → ∞, we have

nα/d−1Ld,α(Pn; �n) → E[ξ(0; H1)] = 2α/dv
−α/d
d �

(
1 + α

d

)
, (4.5)

where the convergence is in L2, and vd is given by (2.1).

The statement (4.5) will follow from Theorem 2.1 of [19] applied to our functional ξ as
defined at (4.1), using (4.4). Thus, we need to verify the conditions of Theorem 2.1 of [19]:
(a) that Rξ (0; H1) is a.s. finite; and (b) that there exists some p > 2 such that the following
two moments conditions hold:

sup
n≥1, x∈(0,1)d

E[ξn(x; Pn)
p] < ∞, (4.6)

and sup
n≥1, x,y∈(0,1)d

E[ξn(x; P
y
n )p] < ∞. (4.7)

The next two lemmas take care of this.

Lemma 4.2. For ξ given by (4.1), the radius of stabilization Rξ (0; H1) as defined in Defini-
tion 4.1 is a.s. finite.

Proof. Let R = d∗(0; H1). Then R is finite a.s. For any 	 > R, we have ξ(0; (H1 ∩
B(0; 	))∪Y) = Rα for any finite Y ⊂ R

d \B(0; 	). Thus, taking Rξ (0; H1) to be the smallest
integer greater than R, Rξ (0; H1) is a.s. finite.

Lemma 4.3. Suppose that d ∈ {2, 3, . . .} and α > 0. Then, for (�n)n≥1 as given at (4.3) and
ξ as given by (4.1), the moments conditions (4.6) and (4.7) hold for any p > 0.

Proof. We have, from the definition of ξn and (4.1),

sup
x∈(0,1)d

E[ξn(x; Pn)
p] = sup

x∈�n

E[ξ(n1/dx; n1/dPn)
p] = sup

x∈�n

E[d∗(n1/dx; n1/dPn)
αp]. (4.8)

For d ∈ {2, 3, . . .}, x ∈ �n, and r > 0, define the region, in the scaled-up space (0, n1/d)d ,

Ad
n(x, r) := B(n1/dx; r) ∩ (0, n1/d)d ∩ {y ∈ R

d : y �∗ n1/dx}. (4.9)

For x ∈ �n, define the variables

ζ (1)
n (x) := d∗(n1/dx; n1/dPn) 1{d∗(x;Pn)≤gn},

ζ (2)
n (x) := d∗(n1/dx; n1/dPn) 1{d∗(x;Pn)>gn} .

For t ≥ 0, we have

P(ζ (1)
n (x) > t) = P({d∗(n1/dx; n1/dPn) > t} ∩ {d∗(n1/dx; n1/dPn) ≤ n1/dgn}).

This probability is clearly 0 unless t < n1/dgn, in which case, by the definition of �n, the region
Ad

n(x, t) does not touch the hyperplane {xd = 0}, so that |Ad
n(x, t)| ≥ 2−dvd td , where vd is the

volume of the unit d-ball given by (2.1). Hence, for all t ≥ 0, P(ζ
(1)
n (x) > t) ≤ exp(−2−dvd td)

for all n and all x ∈ �n. Hence, for any p > 0, the αpth moment of ζ
(1)
n (x) is uniformly bounded

in n and x ∈ �n.
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Also, for all n and all x ∈ �n, the random variable ζ
(2)
n (x) is bounded by the random variable

d1/2n1/d 1{d∗(n1/dx;n1/dPn)>n1/dgn}, so that

E[(ζ (2)
n (x))αp] ≤ dαp/2nαp/d P(d∗(n1/dx; n1/dPn) > n1/dgn)

≤ dαp/2nαp/d exp(−|Ad
n(x, n1/dgn)|)

≤ dαp/2nαp/d exp(−2−dvd(n1/dgn)
d),

and since n1/dgn = �(nε), this upper bound is bounded in n. Thus, the αpth moment of
ζ

(2)
n (x) is bounded uniformly over all n and all x ∈ �n. Combined with the earlier uniform

moment bound for ζ
(1)
n (x) and (4.8), this yields (4.6).

For (4.7), note that, for any x ∈ �n, y ∈ (0, 1)d ,

ξn(x; P
y
n ) = d∗(n1/dx; n1/d(Pn ∪ {y}))α ≤ d∗(n1/dx; n1/dPn)

α + 1{Pn⊂�n} nα/ddα/2.

Moreover, ξn(x; P
y
n ) is 0 for x ∈ (0, 1)d \ �n. Thus,

sup
x,y∈(0,1)d

E[ξn(x; P
y
n )p] ≤ sup

x∈(0,1)d
E[ξn(x; Pn)

p] + P(Pn ⊂ �n)n
αp/ddαp/2,

so that (4.6) implies (4.7) since P(Pn ⊂ �n) = exp(−ngn).

Proof of Lemma 4.1. From Theorem 2.1 of [19], with (4.4) and Lemmas 4.2 and 4.3, we
obtain the convergence statement in (4.5). It remains to prove the final equality (4.5). We have,
for s ≥ 0,

P(ξ(0; H1) > s) = P(H1 ∩ {x ∈ R
d : x �∗ 0} ∩ B(0; s1/α) = ∅) = exp

(
−vd

2
sd/α

)
.

Hence,

E[ξ(0; H1)] =
∫ ∞

0
P(ξ(0; H1) > s) ds =

∫ ∞

0
exp

(
−vd

2
sd/α

)
ds,

which, by the change of variables y = (vd/2)sd/α , is the same as

α

d
2α/dv

−α/d
d

∫ ∞

0
yα/d−1 exp(−y) dy = α

d
2α/dv

−α/d
d �

(
α

d

)
,

by Euler’s gamma integral (see, e.g. Section 6.1.1 of [1]). The desired equality now follows
from the functional relation x�(x) = �(1 + x) (see Section 6.1.15 of [1]).

4.2. Central limit theorem

We again consider Ld,α(Pn; �n) as given by (4.4). In this section we aim to prove a central
limit theorem complementing the law of large numbers of Section 4.1. This time, we will apply
Theorems 2.1 and 2.2 of [21] to give the following result.

Lemma 4.4. Let d ∈ {2, 3, . . .} and α > 0. There exists a constant sα ∈ (0, ∞), not depending
on the choice of ε or the sequence gn, such that

lim
n→∞(n2α/d−1 var[Ld,α(Pn; �n)]) = lim

n→∞

(
n−1 var

[ ∑
x∈Pn

ξn(x; Pn)

])
= s2

α,

and, as n → ∞,
nα/d−1/2L̃d,α(Pn; �n)

d−→ N (0, s2
α).
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Proof. First we prove that the statement of the lemma holds for some sα ∈ [0, ∞). To do
this, we need to verify the conditions of Theorems 2.1 and 2.2 of [21] (see also Theorems 2.2
and 2.3 of [19]) for our function ξ as given by (4.1). In addition to the moments conditions (4.6)
and (4.7) (as shown to hold in Lemma 4.3), we need to demonstrate the following additional
stabilization conditions:

P(Rξ (0; Hz
1 ) < ∞) = 1 (4.10)

for all z ∈ R
d , and

lim sup
s→∞

s−1 log
(

sup
n≥1, x∈�n

P(Rξ (n
1/dx; n1/dPn, n

1/d(0, 1)d) > s)
)

< 0. (4.11)

Condition (4.10) requires that the radius of stabilization is a.s. finite on the addition of an
arbitrary extra point to H1, and condition (4.11) requires exponential decay of the tail of the
radius of stabilization.

Given Lemma 4.2, (4.10) is clear, since, with probability 1, the addition of any extra point
z ∈ R

d to H1 can only decrease the radius of stabilization at 0.
We need to prove (4.11). Let |Ad

n(x, r)| be defined by (4.9), and, for z = (z1, z2, . . . , zd) ∈
n1/d�n, let m(z) := zd , the last component of z. For d ≥ 2, we claim that there are finite
constants Cd > 0 and n0 ≥ 1 such that

|Ad
n(x, r)| ≥ Cdrd−1 if r ∈ (1, d1/2n1/d ] (4.12)

for all n ∈ N with n ≥ n0, and any x ∈ �n.
We verify claim (4.12). Take n0 such that, for all n ≥ n0, we have n1/dgn ≥ 1. Then, for

n ≥ n0, suppose that r ∈ (1, d1/2n1/d ]. For a lower bound on the volume of Ad
n(x, r), consider

x = (0, 0, . . . , 0, m(x)), the ‘worst case’. Let hx denote the hyperplane {y ∈ n1/d�n : m(y) =
m(n1/dx)}. Let r ′ := d−1/2r , so r ′ ≤ n1/d . Then let w1, w2, . . . , wd−1 denote the d −1 points
of hx (r ′, 0, 0, . . . , 0, m(n1/dx)), (0, r ′, 0, . . . , 0, m(n1/dx)), …(0, 0, . . . , 0, r ′, m(n1/dx)),
and let w0 denote the point (0, 0, . . . , 0, m(n1/dx)−1). Then, since x ∈ �n, the d-dimensional
‘right pyramid’defined by vertices w0, n

1/dx, w1, . . . ,wd−1 is contained within both (0, n1/d)d

and the half ball B(n1/dx; r) ∩ {y ∈ R
d : y �∗ n1/dx}. The volume of this ‘pyramid’ is

(d!)−1(r ′)d−1. This gives a lower bound for |Ad
n(x, r)|, and (4.12) holds as claimed.

To prove (4.11), note that n1/dPn is a homogeneous Poisson point process of unit intensity
on (0, n1/d)d . Then, for s > 1, arguing as in the proof of Lemma 4.2 yields

P(Rξ (n
1/dx; n1/dPn, n

1/d(0, 1)d) > s) ≤ P(d∗(n1/dx; n1/dPn) > s − 1)

≤ exp(−|Ad
n(x, s − 1)|).

So, by (4.12), for n ≥ n0 and 2 < s ≤ d1/2n1/d + 1, we obtain

sup
x∈�n

P(Rξ (n
1/dx; n1/dPn, n

1/d(0, 1)d) > s) ≤ exp(−Cd(s − 1)d−1).

Also, this probability is 0 for s > d1/2n1/d + 1. Thus, for any s > d1/2n
1/d
0 + 1,

sup
n≥1;x∈�n

P(Rξ (n
1/dx; n1/dPn, n

1/d(0, 1)d) > s) ≤ exp(−Cd(s − 1)d−1),

and (4.11) follows. This completes the proof of the lemma, but for admitting the possibility
that sα = 0. Thus, it remains to show that sα > 0. This can be done using techniques that
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0

Figure 2: Configuration for demonstrating P(�(H1) �= 0) > 0. If an additional point is inserted at
0 then no other edge is affected (since no other point can have the inserted point as a directed nearest
neighbour), but a new edge (whose length is uniformly bounded below) is added from the inserted point

to its directed nearest neighbour.

are now fairly standard in the literature, such as those in [3], [26], and [28]; see Lemma 6.2
of the extended version of [24] for an example of such a result for a different MDST model.
Thus, we only sketch the idea. In the general frameworks in [3], [26], and [28], the key extra
ingredient, in addition to stabilization and moment conditions which can be verified in the same
way as those that we proved earlier in Section 4, is demonstrating some ‘nondegeneracy’ of the
add-one cost, that is, some quantification of the change in the functional of interest (here, the
total weight of edges from the region �n) on insertion of a new point. Let

�(H1) = lim
r→∞ Ld,α((H1 ∪ {0}) ∩ B(0; r)) − Ld,α(H1 ∩ B(0; r)).

Here �(H1) is the appropriate add-one cost in our setting. In fact, to apply known results,
the version of stabilization that we need is external stabilization, which we do not cover in
Section 4, but can be verified by an appropriate modification of the arguments in Section 4
(compare Lemma 6.1 of the extended version of [24]).

To prove that sα > 0, we will follow an argument based on Theorem 2.2 of [26] that requires
that P(�(H1) �= 0) > 0. This is not hard to show by considering configurations in which no
Poisson point falls in an appropriate cuboid around the origin, but at least one point falls in
each of a set of small disjoint cubes that surround the boundary of the cuboid; see Figure 2 for
an example in d = 2.

A difficulty in applying Theorem 2.2 of [26] is that we cannot apply it to Ld,α(Pn; �n)

directly since the statement in [26] does not cover regions that, like �n, can vary with n. To
overcome this, let A1 := (0, 1)d−1×(gn,

1
2 ] and A2 := (0, 1)d−1×( 1

2 , 1) denote the ‘bottom
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half’ and ‘top half’ of the unit cube. Then setting Xn := nα/dLd,α(Pn; A1) and Yn :=
nα/dLd,α(Pn; A2) we need to show that

lim inf
n→∞ n−1 var(Xn + Yn) > 0. (4.13)

Applying Theorem 2.2 of [26] we obtain lim infn→∞ n−1Yn > 0. Also, by Theorem 2.1 of [21],
the limits of n−1 var(Xn) and n−1 var(Yn) both exist (as does the limit of n−1 var(Xn + Yn),
by the first part of this proof). Then, by polarization (see the second paragraph of Theorem 2.3
of [19]), the limit of n−1 cov(Xn, Yn) is 0. Then (4.13) follows, so that sα > 0.

Remark 4.1. It should be possible to give an alternative proof that sα > 0 by adapting Section 4
of the extended version of [24] (in particular Lemma 6.2 there); this approach would have the
advantage of applying in the de-Poissonized setting.

5. Boundary effects in the MDST

In this section we consider the contribution to the total power-weighted length of the MDST
under ‘�∗’ due to boundary effects near the ‘bottom face’ of the d-cube. Here the possibility
of long edges leads to special behaviour. We shall see that the ONG, as described in Section 3,
will be a useful tool here.

Fix ε > 0 small. Let (tn)n>0 be such that tn ∈ (0, 1) and tn = �(n−1/2−ε) as n → ∞ (we
make a specific choice for tn in Section 7). Let Bn denote the boundary region (0, 1)d−1×(0, tn],
i.e. we look in a thin slice at the base (in the sense of ‘�∗’) of the unit d-cube. Recall from
(4.2) that Ld,α(X; R) denotes the contribution to the total weight of the MDST on X from
those points of X ∩ R, and L̃d,α(X; R) := Ld,α(X; R) − E[Ld,α(X; R)]. Also, recall that
Pn denotes a homogeneous Poisson point process of intensity n on (0, 1)d . Our main result of
this section is the following.

Theorem 5.1. Suppose that d ∈ {2, 3, . . .}. Let ε > 0 and tn = �(n−1/2−ε) specify Bn.

(i) Suppose that α ≥ d/2. With Q(d − 1, α) as in Lemma 3.2, we have, as n → ∞,

L̃d,α(Pn; Bn)
d−→ Q(d − 1, α). (5.1)

(ii) Suppose that α ∈ (0, d/2). As n → ∞,

nα/d−1/2L̃d,α(Pn; Bn)
p−→ 0. (5.2)

The idea behind the proof of Theorem 5.1 is to show that the MDST under ‘�∗’ near to the
boundary is close to an ONG defined on a sequence of uniform random vectors in (0, 1)d−1

coupled to the points of the MDST in Bn. To do this, we produce an explicit sequence of random
variables on which we construct the ONG coupled to Pn on which the MDST is constructed.
Define the point process

Wn := Pn ∩ Bn. (5.3)

Let βn := card(Wn). List Wn in order of increasing xd -coordinate as U(i), 1 ≤ i ≤ βn. In
coordinates, set U(i) = (U1

i , U2
i , . . . , Ud

i ) for each i. Let Vi = (U1
i , . . . , Ud−1

i ) ∈ (0, 1)d−1

be the projection of U(i) down onto the base of the unit d-cube. Set

Vn := (V1, . . . , Vβn). (5.4)
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Then Vn is a sequence of independent uniform random vectors in (0, 1)d−1 (the base of
the unit d-cube), on which we may construct an ONG. Note that the points of Vn in fact
constitute a homogeneous Poisson point process of intensity ntn = �(n1/2−ε) on (0, 1)d−1

(this follows from the mapping theorem; see [13, p. 18]). With the ONG weight functional
Od,α(·) defined in Section 3, the ONG weight Od−1,α(Vn) is coupled in a natural way to
Ld,α(Wn) = Ld,α(Pn; Bn).

Our first step towards Theorem 5.1 is the following result, which shows that, near the
boundary, the MDST is close to the coupled ONG. The idea of the proof is similar to the proof
(covering d = 2 only) of Lemma 6.1 of [24], although the estimates in that result were in the
L2-sense, rather than L1.

Lemma 5.1. Suppose that d ∈ {2, 3, . . .}. Let ε > 0 and tn = �(n−1/2−ε) specify Bn. Let
Wn and Vn be as defined at (5.3) and (5.4), respectively. For α ≥ 1, as n → ∞,

Ld,α(Wn) − Od−1,α(Vn) → 0 in L1, (5.5)

and, for α ∈ (0, 1), as n → ∞,

E|Ld,α(Wn) − Od−1,α(Vn)| = O(n1/2−ε−α(1/2+ε)). (5.6)

Proof. We construct the MDST on the point set Wn, and the ONG on Vn. Since U(j) �∗ U(i)

if and only if j ≤ i, either an edge exists from U(i) in the MDST and also from Vi in the ONG,
or from neither. For the difference between the total weights of the two graphs, it suffices to
consider the case in which both edges exist. Then Vi is joined to a point VD(i), D(i) < i,
in the ONG, and U(i) to a point U(J (i)), J (i) < i, in the MDST. Since J (i) < i, the rule for
construction of the ONG implies that

‖Vi − VD(i)‖α
d−1 ≤ ‖Vi − VJ (i)‖α

d−1 ≤ ‖(Vi , U
d
i ) − (VJ (i), U

d
J (i))‖α

d , (5.7)

and so we have, for all α > 0,

Od−1,α(Vn) ≤ Ld,α(Wn). (5.8)

Also, (VD(i), U
d
D(i)) �∗ (Vi , U

d
i ), so the rule for construction of the MDST implies that

‖(Vi , U
d
i ) − (VJ (i), U

d
J (i))‖d ≤ ‖(Vi , U

d
i ) − (VD(i), U

d
D(i))‖d . (5.9)

By a similar argument to Equation (6.12) of [24], for d ≥ 2 and α ≥ 1, we have, a.s.,

‖(Vi , U
d
i ) − (VD(i), U

d
D(i))‖α

d − ‖Vi − VD(i)‖α
d−1 ≤ C(Ud

i − Ud
D(i)) (5.10)

for some C ∈ (0, ∞). Then (5.9) and (5.10) yield, for α ≥ 1, a.s.,

‖(Vi , U
d
i ) − (VJ (i), U

d
J (i))‖α

d − ‖Vi − VD(i)‖α
d−1 ≤ C(Ud

i − Ud
D(i)) ≤ Ctn, (5.11)

which implies that there exist C, C′ ∈ (0, ∞) such that, for all n ≥ 1,

Ld,α(Wn) − Od−1,α(Vn) ≤ Cβntn ≤ C′βnn
−1/2−ε. (5.12)

Combining (5.8) and (5.12) we have, for α ≥ 1, some C ∈ (0, ∞), and all n ≥ 1,

|Ld,α(Wn) − Od−1,α(Vn)| ≤ Cβnn
−1/2−ε a.s.
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Taking expectations, using the facts that βn is Poisson with mean ntn = �(n1/2−ε) and ε > 0,
we obtain (5.5).

Now we consider the case α ∈ (0, 1). By the concavity of the function t �→ tα for α ∈ (0, 1),
we have, for (x, y) ∈ (0, 1)d−1 × (0, 1),

‖(x, y)‖α
d − ‖x‖α

d−1 ≤ (‖x‖d−1 + y)α − ‖x‖α
d−1 ≤ yα, 0 < α < 1.

Then, by a similar argument to the α ≥ 1 case, we obtain

|Ld,α(Wn) − Od−1,α(Vn)| ≤ Cβnn
−α(1/2+ε),

so taking expectations yields (5.6).

Lemma 5.2. Suppose that d ∈ {2, 3, . . .} and α ≥ d/2. Let Wn be as defined at (5.3), and
suppose that Q(d−1, α) is the mean-zero random variable given in Lemma 3.2, so in particular
Q(1, α) = G̃α for α ≥ 1, where G̃α has the distribution given by (2.7) if α = 1 and by (2.8) if
α > 1. Then, as n → ∞,

L̃d,α(Wn)
d−→ Q(d − 1, α). (5.13)

Proof. For α ≥ d/2 ≥ 1, (5.5) holds, and, hence, the corresponding centred version also
holds. Also, since Vn is a homogeneous Poisson point process of intensity ntn = �(n1/2−ε)

on (0, 1)d−1, and α ≥ d/2 > (d − 1)/2, Lemma 3.2 implies that, as n → ∞,

Õd−1,α(Vn)
d−→ Q(d − 1, α). (5.14)

Thus, (5.5), (5.14), and Slutsky’s theorem complete the proof of (5.13).

Proof of Theorem 5.1. For α ≥ d/2, (5.1) follows from (5.13). Now suppose that α ∈
(0, d/2). Since d ≥ 2 and ε > 0, (5.6) implies that, for α ∈ (0, 1), we have

nα/d−1/2(L̃d,α(Pn; Bn) − Õd−1,α(Vn)) → 0 in L1 (5.15)

as n → ∞. Also, (5.5) implies that (5.15) also holds for α ∈ [1, d/2) when d ≥ 3. Thus,
(5.15) holds for all α ∈ (0, d/2). Recall that Vn is a homogeneous Poisson point process in
(0, 1)d−1 with intensity ntn = �(n1/2−ε). If α ≤ (d − 1)/2 then by Lemma 3.1(i) and (ii) we
have, for some C ∈ (0, ∞),

var[nα/d−1/2Õd−1,α(Vn)] ≤ Cn2α/d−1(n1/2−ε)1−2α/(d−1) log n

≤ Cnα(2/d−1/(d−1))−1/2 log n

≤ Cn−1/d log n

→ 0 as n → ∞.

If α ∈ ((d − 1)/2, d/2) then, by Lemma 3.2, as n → ∞, nα/d−1/2Õd−1,α(Vn)
p−→ 0. So by

Slutsky’s theorem with (5.15) we obtain (5.2).

6. Proof of Theorem 2.3

In this section we are interested in the longest edge in the MDST under ‘�∗’ on Pn ⊂
(0, 1)d . The intuition behind Theorem 2.3 is that this edge is likely to be near the lower
(d − 1)-dimensional boundary. Thus, we again make use of the fact that the MDST near the
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boundary is well approximated by the appropriate ONG. Then we deduce Theorem 2.3 from
Theorem 3.1 using the set-up of Section 5.

From Section 5 recall that, for fixed ε > 0, Bn denotes the boundary region (0, 1)d−1×(0, tn]
(where tn = �(n−1/2−ε)), and, from (5.3), that Wn = Pn ∩Bn. Also, recall from (5.4) that Vn

is the sequence of (d − 1)-dimensional projections of Wn in order of increasing xd -coordinate.

Proof of Theorem 2.3. From (5.7), every edge in the ONG on Vn has length bounded above
by the length of some edge in the MDST on Wn. On the other hand, from (5.11), an edge
from U(i) ∈ Wn in the MDST is at most O(tn) longer than the edge in the ONG from the
corresponding Vi ∈ Vn. Thus, for some C ∈ (0, ∞),

0 ≤ Ld
max(Wn) − Od−1

max (Vn) ≤ Cn−1/2−ε a.s.

for all n ≥ 1. Hence, Ld
max(Wn) − Od−1

max (Vn) tends to 0 a.s. as n → ∞. By Theorem 3.1(i) and
the fact that Vn is a homogeneous Poisson point process of intensity ntn → ∞ (for small ε), we
have Od−1

max (Vn) → Qmax(d − 1) in distribution as n → ∞. Hence, Slutsky’s theorem implies
that

Ld
max(Wn)

d−→ Qmax(d − 1) (6.1)

as n → ∞. Set
Mn := max

x∈Pn\Wn

d∗(x; Pn),

the length of the longest edge in the MDST from points of Pn in the region (0, 1)d−1 × (tn, 1).
Then, for any n ≥ 1, Ld

max(Pn) = max{Ld
max(Wn), Mn}; thus,

Ld
max(Wn) ≤ Ld

max(Pn) ≤ Ld
max(Wn) + Mn. (6.2)

Hence, by (6.1), (6.2), and Slutsky’s theorem, to complete the proof of the theorem, it suffices
to show that, as n → ∞,

Mn
p−→ 0. (6.3)

We prove (6.3). For ε > 0 as before and (i1, . . . , id) ∈ N
d , define the cuboid

C(i1, . . . , id) := ((i1 − 1)�nε�−1, i1�nε�−1] × · · · × ((id−1 − 1)�nε�−1, id−1�nε�−1]
× ((id − 1)�t−1

n �−1, id�t−1
n �−1].

Let En denote the event ⋃
(i1,...,id )∈Nd∩[(0,�nε�]d−1×(0,�t−1

n �]]
{Pn ∩ C(i1, . . . , id) = ∅}.

The number of points of Pn in each cuboid C(i1, . . . , id) in the union is Poisson distributed
with mean

n�nε�−(d−1)�t−1
n �−1 = �(n1/2−dε),

and the total number of cuboids in the union is �nε�d−1�t−1
n � = O(n1/2+dε). Thus, Boole’s

inequality implies that there exist C, C′ ∈ (0, ∞) for which, for all n ≥ 1,

P(En) ≤ Cn1/2+dε exp(−C′n1/2−dε),

and, hence, P(En) → 0 as n → ∞ for small enough ε. However, if En does not occur then
each cuboid contains at least one point of Pn and Mn is bounded by a constant times n−ε. Thus,
(6.3) follows and the proof is complete.
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7. Proof of Theorem 2.2

In this section we complete the proof of our convergence in distribution result for Ld,α(Pn),
Theorem 2.2. Recall from Section 4 that ε > 0 is fixed (small) and �n denotes the region
(0, 1)d−1 × (gn, 1), where gn = �(nε−1/d) as n → ∞. As in Section 5, denote by Bn the
region (0, 1)d−1 × (0, tn], where tn = �(n−1/2−ε). We will make a particular choice for gn

and tn shortly. Denote by In the intermediate region (0, 1)d \ (Bn ∪�n) = (0, 1)d−1 × (tn, gn].
In order to prove Theorem 2.2, we need to collect results from the preceding sections on the

limiting behaviour of the MDST in the regions �n and Bn, and also deal with the region In. In
Sections 4.2 and 5 we saw that, for large n, the weight (suitably centred and scaled) of edges
starting in �n satisfies a central limit theorem, and the weight of edges starting in Bn can be
approximated by the ONG. To complete the proof of Theorem 2.2, we shall show that (with a
suitable scaling factor for α < d/2) the contribution to the total weight from points in In has
variance converging to 0, and that the lengths from Bn and �n are asymptotically independent by
virtue of the fact that the configuration of points in In ensures (with probability approaching 1)
that the configuration of points in Bn has no effect on the edges from points in �n.

Recall from (4.2) that for a point set X ⊂ R
d and a region R ⊆ R

d , Ld,α(X; R) denotes
the total weight of edges of the MDST on X which originate in the region R. The next result
is the main result of this section: it gives asymptotic control of the variance of Ld,α(Pn; In),
and will allow us to complete the proof of Theorem 2.2.

Lemma 7.1. Suppose that d ∈ {2, 3, 4, . . .} and α > 0. Then, for small enough ε > 0, there
exist gn = �(nε−1/d) and tn = �(n−1/2−ε) specifying In for which, as n → ∞,

var[Ld,α(Pn; In)] → 0, α > (d − 1)/2, (7.1)

and var[nα/d−1/2Ld,α(Pn; In)] → 0, 0 < α < d/2. (7.2)

Before embarking on the proof of Lemma 7.1, we prove the following preliminary result
which, for our purposes, will control the dependency structure of the MDST. Let X be a set
of points in (0, 1)d . For nonempty X and x ∈ X, let D∗(x; X) denote the total degree of x

(i.e. the total number of directed edges that have x as one endpoint) in the MDST on X; set
sup(∅) := −∞.

Lemma 7.2. Let d ≥ 2. For any ε ∈ (0, 1), there exist C, C′ ∈ (0, ∞) such that, for all n ≥ 1,

P
(

sup
x∈Pn

D∗(x; Pn) > nε
)

≤ C exp(−C′nε).

Proof. Suppose that d ≥ 2. Fix n ∈ N. Let Xn := {U1, . . . , Un} be a binomial point
process of n independent uniform random vectors on (0, 1)d . We list the points of Xn in order
of increasing xd -coordinate as U(1) �∗ U(2) �∗ · · · �∗ U(n).

We now consider our usual coupling of the MDST to the ONG. In coordinates, write U(i) =
(U1

i , . . . , Ud
i ). Set Vi = (U1

i , . . . , Ud−1
i ), the projection of U(i) down (in the ed -sense) onto

(0, 1)d−1. With probability 1, the U(j), Vj have distinct d-, (d − 1)-dimensional interpoint
distances, so there are no ties to break in constructing the MDST or ONG. Consider a point
U(j) with j ∈ {1, . . . , n − 1}. Suppose that U(k), j < k ≤ n, is joined to U(j) in the MDST
on Xn. Then ‖U(k) − U(j)‖d ≤ ‖U(k) − U(i)‖d for i ∈ {j + 1, . . . , k − 1}. Also,

‖Vk − Vi‖2
d−1 = ‖U(k) − U(i)‖2

d − (Ud
k − Ud

i )2.

https://doi.org/10.1239/aap/1282924058 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1282924058


680 • SGSA M. D. PENROSE AND A. R. WADE

Then since Ud
i is increasing in i, ‖Vk − Vi‖d−1 is minimized over i ∈ {j, . . . , k − 1} by

i = j . In other words, a necessary condition for U(k), j < k ≤ n, to be joined to U(j) in the
MDST on Xn is that the corresponding edge from Vk to Vj exists in the ONG on a sequence
of points (Vj , Vj+1, . . . ,Vn) in (0, 1)d−1. Hence, the in-degree of U(j) in the MDST on Xn is
bounded above by the in-degree of Vj in the ONG on (Vj , Vj+1, . . . ,Vn). This latter quantity
has the same distribution as the degree of V1 in the ONG on (V1, V2, . . . , Vn−j+1). Hence,
D∗(U(j); Xn) is stochastically dominated by the degree of V1 in the ONG on (V1, V2, . . . , Vn),
which we denote DONG(n). Hence,

sup
1≤j≤n

P(D∗(U(j); Xn) > s) ≤ P(DONG(n) > s).

Then by Boole’s inequality we have

P
(

sup
1≤j≤n

D∗(U(j); Xn) > s
)

≤
n∑

j=1

sup
1≤i≤n

P(D∗(U(i); Xn) > s) ≤ n P(DONG(n) > s).

Let N(n) = card(Pn). We have

P
(

sup
1≤j≤N(n)

D∗(U(j); XN(n)) > s
)

≤ P(N(n) ≥ 2n) + sup
m<2n

P
(

sup
1≤j≤m

D∗(U(j); Xm) > s
)

≤ P(N(n) ≥ 2n) + 2n P(DONG(2n) > s).

Following the argument in Section 3.1 of [6], we have, for any ε > 0, P(DONG(2n) > nε) =
O(exp(−Cnε)). Also, P(N(n) ≥ 2n) = O(exp(−Cn)) by standard Poisson tail bounds (see,
e.g. Lemma 1.2 of [18]). This completes the proof.

To prove Lemma 7.1, we first derive an upper bound ((7.7) below) for var[Ld,α(Pn; In)] in
terms of the mean-square changes in Ld,α(Pn; In) on resampling Poisson points over a certain
partition of Bn ∪ In into boxes, in a similar way to a technique in [28]. Unlike in [28], where
the boxes are the same shape and size, we need to use boxes of different shapes to take account
of the structure of the MDST near the boundary.

For each n ≥ 1, we will divide (0, 1)d into layers of rectangular d-cells. To begin, we
will divide (0, 1)d−1 × (0, ∞) into layers starting at the base (in the ed -sense). The kth layer
(k ∈ N) will have height hn(k) given by hn(k) := n−1+ε2(k−1)(d−1). We will let Hn(k) denote
the starting height (in the ed -sense) of layer k; define Hn(1) := 0 and, for k ≥ 2, define

Hn(k) :=
k−1∑
i=1

hn(i)

=
k−2∑
i=0

n−1+ε2(d−1)i

= cdn−1+ε(2(d−1)(k−1) − 1)

= cdhn(k) − cdn−1+ε,

where cd = (2d−1 − 1)−1 depends only on d. We then define the box

Ln(k) := (0, 1)d−1 × (Hn(k), Hn(k + 1)], k ∈ N;
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we will refer to Ln(k) as the kth layer. For n ≥ 1, define Mn ∈ N such that

Mn := min{m ∈ N : Hn(m + 1) ≥ n−1/2−ε}.
Then Mn satisfies

Mn = �(log n), 2Mn = �(n(1−4ε)/(2(d−1))). (7.3)

We then define, for n ≥ 1, the region

Bn :=
Mn⋃
k=1

Ln(k) = (0, 1)d−1 × (0, Hn(Mn + 1)].

Then with our previous notation as Bn = (0, 1)d−1 × (0, tn), we have tn = Hn(Mn + 1) =
�(n−1/2−ε). Also, for n ≥ 1, define Kn ∈ N such that Kn := min{k ∈ N : Hn(k + 1) ≥
nε−1/d}. Thus,

Kn := �(log n), 2Kn = �(n1/d). (7.4)

Define, for n ≥ 1, the region

In :=
Kn⋃

k=Mn+1

Ln(k) = (0, 1)d−1 × (Hn(Mn + 1), Hn(Kn + 1)], (7.5)

so that, with our previous notation for In, gn = Hn(Kn + 1) = �(nε−1/d). These specific
choices for tn and gn then fit with our previous usage.

We now subdivide each layer into cells. For k = 1, 2, . . . , Kn, divide layer k into rectangular
cells of height hn(k) by forming a grid by dividing each of the d −1 sides of the layer into 2k−1

equal intervals. Layer k then consists of 2(k−1)(d−1) cells of height hn(k) and (d − 1)-widths
21−k . Each such cell has volume 2(1−k)(d−1)hn(k) = n−1+ε. The total number of cells in all
the layers up to layer Kn is 	(n), given by

	(n) :=
Kn∑
k=1

2(k−1)(d−1) = �(2(d−1)Kn) = �(n1−1/d), (7.6)

by (7.4). Label the cells in layers 1 to Kn lexicographically as Sn
i , 1 ≤ i ≤ 	(n).

Note that, for small enough ε, cells in layer k ≤ Mn are always wider than they are tall,
while, for Mn ≤ k ≤ Kn, cells in layer k have height at most a constant times nε times their
width.

Let P̃n denote an independent copy of the homogeneous Poisson point process Pn, and, for
i = 1, 2, . . . , 	(n), set P i

n := (Pn \ Sn
i ) ∪ (P̃n ∩ Sn

i ), so that P i
n is Pn but with the Poisson

points in Sn
i independently resampled. For ease of notation during this proof, for n > 0, set

Yn = L̃d,α(Pn; In). Define

�n
i := L̃d,α(P i

n; In) − L̃d,α(Pn; In) = Ld,α(P i
n; In) − Ld,α(Pn; In),

the change in Yn on resampling the Poisson points in Sn
i . By Steele’s [32] version of the

Efron–Stein inequality, or by a martingale difference argument, for n > 0,

var[Ld,α(Pn; In)] = E[Y 2
n ] ≤

	(n)∑
i=1

E[(�n
i )

2]. (7.7)
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For i = 1, 2, . . . , 	(n), let G(i) be the integer k ∈ {1, . . . , Kn} such that Si ⊆ L(k), so that
G(i) is the layer to which Si belongs. Formally,

G(i) := �(d − 1)−1 log2[(2d−1 − 1)i + 1]�. (7.8)

The next result gives bounds on E[(�n
i )

2].
Lemma 7.3. Let d ∈ {2, 3, . . .} and α > 0. There exists C ∈ (0, ∞) such that, for all n > 0
and all i ∈ {1, 2, . . . , 	(n)},

E[(�n
i )

2] ≤
{

Cn(6+4α)εn−α/(d−1) if G(i) ≤ Mn,

Cn(6+2α)ε2−2αG(i) if Mn < G(i) ≤ Kn.
(7.9)

Note that 2−2αG(i) = �(i−2α/(d−1)) as i → ∞, and, for G(i) ≤ Mn or G(i) ≤ Kn,
i = O(n(1−4ε)/2) or i = O(n1−1/d), respectively.

Proof of Lemma 7.3. Let E′
n denote the event that every cell Sn

j ⊂ (Bn ∪ In) contains at
least one and not more than n2ε points of Pn, and also P̃n. That is,

E′
n :=

⋂
1≤j≤	(n)

{1 ≤ card(Pn ∩ Sn
j ) ≤ n2ε, 1 ≤ card(P̃n ∩ Sn

j ) ≤ n2ε}.

We have, from Boole’s inequality and the fact that card(Pn ∩ Sn
j ) has the same distribution as

card(P̃n ∩ Sn
j ),

P((E′
n)

c) ≤ 2
∑

1≤j≤	(n)

P({1 ≤ card(Pn ∩ Sn
j ) ≤ n2ε}c)

= 2	(n)[P(card(Pn ∩ Sn
j ) > n2ε) + P(card(Pn ∩ Sn

j ) = 0)]. (7.10)

Now card(Pn ∩ Sn
j ), j = 1, . . . , 	(n), are Poisson distributed with mean nε (since |Sj | =

n−1+ε). By standard Chernoff bounds on Poisson tails (see, e.g. Lemma 1.2 of [18]),

P(card(Pn ∩ Sn
j ) > n2ε) = O(exp(−Cn2ε log n)),

whereas P(card(Pn ∩ Sn
j ) = 0) = exp(−nε). Thus, from (7.10), using (7.6), there exists C ∈

(0, ∞) such that, as n → ∞,

P((E′
n)

c) = O(n1−1/d exp(−nε)) = O(exp(−Cnε)). (7.11)

Now, for ε > 0 and n > 0, let E′′
n denote the event that the maximum vertex degree in the

MDST on Pn and on P i
n for each i is bounded by nε, i.e.

E′′
n :=

{
sup

X∈{Pn,P 1
n ,...,P 	(n)

n }
sup
x∈X

D∗(x; X) ≤ nε
}
.

Then by Lemma 7.2 we have, for some C ∈ (0, ∞),

P((E′′
n)c) = O(exp(−Cnε)). (7.12)

Let
En := E′

n ∩ E′′
n. (7.13)
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Then P(Ec
n) ≤ P((E′

n)
c) + P((E′′

n)c) so that, by (7.11) and (7.12), there exists C ∈ (0, ∞) such
that, as n → ∞,

P(Ec
n) = O(exp(−Cnε)). (7.14)

We bound E[(�n
i )

2] by partitioning over {En, E
c
n} and using the fact that

E[(�n
i )

2] ≤ E[(�n
i )

2 | En] + E[(�n
i )

2 1Ec
n
]. (7.15)

First note that, by the Cauchy–Schwarz inequality and the trivial bound |�n
i | ≤ C(card(Pn) +

card(P̃n)), we have

E[(�n
i )

2 1Ec
n
] ≤ (E[(�n

i )
4])1/2(P(Ec

n))
1/2 ≤ C(E[(N(n) + N ′(n))4])1/2(P(Ec

n))
1/2,

where N(n) and N ′(n) are independent Poisson random variables with mean n. Hence, from
(7.14) we have, for some C ∈ (0, ∞),

E[(�n
i )

2 1Ec
n
] = O(exp(−Cnε)). (7.16)

Next we treat the case where En occurs. First suppose that G(i) ≤ Mn, where G(i) was
defined at (7.8), so that Sn

i ⊆ Bn. Contributions to �n
i are from directed edges from Poisson

points in In to Poisson points in Sn
i : specifically, such edges that are added or deleted on the

resampling of the Poisson points in Sn
i . The number of such edges is bounded by the sums of

the vertex degrees in the MDST of points of Pn ∩ Sn
i and P̃n ∩ Sn

i . Given En, the number of
points of Pn ∩ Sn

i is bounded by n2ε, similarly with P̃n, and each point has degree bounded
by nε. It follows that the number of edges that can contribute to �n

i is bounded by 2n3ε

under En. Furthermore, given En, the length of an edge contributing to �n
i is bounded by

a constant times the width of cells in L(Mn + 1), the first layer in In, which, for d ≥ 2, is
O(2−Mn) = O(n2ε−1/(2(d−1))) by (7.3). Each edge therefore gives a contribution to �n

i at most
O(n2αε−α/(2(d−1))) in absolute value. It follows that there exists C ∈ (0, ∞) such that, for all
n > 0 and all i with G(i) ≤ Mn,

E[(�n
i )

2 | En] ≤ Cn(6+4α)εn−α/(d−1). (7.17)

Thus, from (7.15) with (7.16) and (7.17) we obtain the G(i) ≤ Mn case of (7.9).
Finally, suppose that Mn < G(i) ≤ Kn, so that Sn

i ⊆ In. Given En, the number of points of
Pn ∩ Sn

i is bounded by n2ε; similarly for P̃n. Furthermore, given En, edge lengths contributing
to �n

i are bounded by a constant times nε times the width of cell Sn
i in layer G(i), which is

O(2−G(i)), and each point has degree bounded by nε. Thus, for Mn < G(i) ≤ Kn,

E[(�n
i )

2 | En] = O(n(6+2α)ε2−2αG(i)). (7.18)

Then (7.15) with (7.16) and (7.18) yields the Mn < G(i) ≤ Kn case of (7.9).

We can now complete the proof of Lemma 7.1.

Proof of Lemma 7.1. Fix d ≥ 2 and α > 0. Take In as defined by (7.5) so that gn =
Hn(Kn + 1) and tn = Hn(Mn + 1) are as in the statement of Lemma 7.1. Again, writing
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Yn = L̃d,α(Pn; In), we obtain from (7.7) with (7.9), for all n > 0,

E[Y 2
n ] =

∑
1≤i≤	(n)

E[(Dn
i )2]

≤
Mn∑
k=1

∑
{i : Sn

i ⊆L(k)}
E[(�n

i )
2] +

Kn∑
k=Mn+1

∑
{i : Sn

i ⊆L(k)}
E[(�n

i )
2]

≤ C

Mn∑
k=1

2k(d−1)n(6+4α)εn−α/(d−1) + C

Kn∑
k=Mn+1

2k(d−1)n(6+2α)ε2−2αk

≤ C2Mn(d−1)n(6+4α)εn−α/(d−1) + C2Kn(d−1−2α)n(7+2α)ε + C2Mn(d−1−2α)n(7+2α)ε,

where the additional nε factor in the last two terms takes care of the extra logarithmic factor
when α = (d − 1)/2. Using (7.3) and (7.4), we thus find that, for any ε > 0, there exists
C ∈ (0, ∞) such that, for all n > 0,

E[Y 2
n ] ≤ Cn1/2−α/(d−1)+(4+4α)ε(1 + n(1+2α)ε) + Cn1−(1+2α)/d+(7+2α)ε. (7.19)

For d ≥ 2, this tends to 0 asn → ∞ for α > (d−1)/2 and sufficiently small ε, which gives (7.1).
On the other hand, for α < d/2, we have, from (7.19), noting that 2α/d − α/(d − 1) =
(α/d)(d − 2)/(d − 1),

E[n2α/d−1Y 2
n ] ≤ Cn(α/d)(d−2)/(d−1)−1/2+(4+4α)ε(1 + n(1+2α)ε) + Cn−1/d+(7+2α)ε,

which also tends to 0 as n → ∞ for small enough ε and d ≥ 2. This gives (7.2).

Proof of Theorem 2.2. Again, we use the construction of Lemma 7.1. For the duration of this
proof, to ease notation, set Xn = L̃d,α(Pn; �n), Yn = L̃d,α(Pn; In), and Zn = L̃d,α(Pn; Bn).
Thus, L̃d,α(Pn) = Xn + Yn + Zn.

First suppose that α ∈ (0, d/2). Then from (5.2) and (7.2) we have nα/d−1/2(Yn + Zn)
p−→ 0

as n → ∞. With Lemma 4.4 and Slutsky’s theorem, we obtain the α ∈ (0, d/2) case of
Theorem 2.2.

Now suppose that α > d/2. Then Lemma 4.4 and (7.1) imply that Xn + Yn
p−→ 0 as n → ∞.

So (5.1) with Slutsky’s theorem gives the α > d/2 case of Theorem 2.2.
Finally, suppose that α = d/2. Again, (7.1) implies that Yn

p−→ 0. We have, from (5.1),

Zn
d−→ Q(d − 1, d/2) and, from Lemma 4.4, Xn

d−→ W1, where W1 is Gaussian. We need
to show that the limits W1 and Q(d − 1, d/2) are independent. Set kn := �n1/d−ε/2�. For
z ∈ Z

d−1 ∩ [0, kn]d−1, define the cube C(z) ⊂ In by

C(z) := (k−1
n z, 0) + (0, k−1

n ]d−1 × (gn − k−1
n , gn].

Thus, there are kd−1
n = �(n1−1/d−ε(d−1)/2) such cubes, and each cube has volume k−d

n =
�(n−1+dε/2). Let An denote the event An := ∩{card(Pn∩C(z)) > 0 : z ∈ Z

d−1∩[0, kn]d−1}.
The number of points of Pn in each cube C(z) is Poisson with mean �(ndε/2), and so

P(Ac
n) ≤

∑
z

P(card(Pn ∩ C(z)) = 0) = O(n1−1/d−ε(d−1)/2 exp(−Cndε/2)) → 0

as n → ∞. Given a configuration of Pn satisfying An for sufficiently large n, Xn and Zn are
(conditionally) independent, since no point of Pn ∩ �n can be joined to a point of Pn ∩ Bn

in the MDST. Now following the argument for Equation (7.25) of [24] completes the proof of
Theorem 2.2.
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8. Proof of Theorem 2.1

In order to complete the proof of Theorem 2.1, we need to add to the law of large numbers
away from the boundary (in region �n), Lemma 4.1, by dealing with the edges near to the
boundary. We proceed in a similar fashion to Sections 5 and 7, dealing with the contributions
from the region Bn in Lemma 8.2 below (using the coupling to the ONG as in Section 5),
and with the contributions from the region In in Lemma 8.1 below (using the construction of
Section 7).

Lemma 8.1. Suppose that d ∈ {2, 3, . . .} and α > 0. Then, for small enough ε > 0, there
exist gn = �(nε−1/d) and tn = �(n−1/2−ε) specifying In for which, as n → ∞,

nα/d−1Ld,α(Pn; In) → 0 in L1, α ∈ (0, d), (8.1)

and Ld,α(Pn; In) → 0 in L1, α > d − 1. (8.2)

Proof. Recall the construction of the partition of In described in Section 7, and the definition
of the event En from (7.13). Then

E[Ld,α(Pn; In)] = E[Ld,α(Pn; In) 1En ] + E[Ld,α(Pn; In) 1Ec
n
], (8.3)

where, by Cauchy–Schwarz,

E[Ld,α(Pn; In) 1Ec
n
] ≤ (E[(Ld,α(Pn; In))

2])1/2(P(Ec
n))

1/2 ≤ C(E[N(n)2])1/2(P(Ec
n))

1/2,

where N(n) = card(Pn) is Poisson distributed with mean n. Thus, by (7.14), there exists
C ∈ (0, ∞) such that

E[Ld,α(Pn; In) 1Ec
n
] = O(exp(−Cnε)). (8.4)

Also, using the construction of Section 7,

E[Ld,α(Pn; In) 1En ] ≤
Kn∑

k=Mn+1

∑
{i : Sn

i ⊆L(k)}
E[Ld,α(Pn; Sn

i ) | En].

Given En, as in the proof of Lemma 7.3, the number of points in each Sn
i is bounded by n2ε, the

degree of each point is bounded by nε, and each edge has length bounded by a constant times
nε2−G(i). Thus,

E[Ld,α(Pn; In) | En] ≤ C

Kn∑
k=Mn+1

2k(d−1)n(3+α)ε2−αk. (8.5)

Thus, from (8.3) with (8.4) and (8.5) we obtain

E[Ld,α(Pn; In)] = O(2(d−1−α)Knn(3+α)ε) + O(2(d−1−α)Mnn(4+α)ε),

where the additional nε factor in the second term takes care of the extra logarithmic factor when
α = d − 1. Using (7.3) and (7.4), we have, for d ≥ 2,

E[Ld,α(Pn; In)] = O(n1−α/d−1/d+(3+α)ε) + O(n1/2−α/(2(d−1))+(2+6α)ε). (8.6)
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For α > d − 1, this tends to 0 as n → ∞ for small enough ε, and so we obtain (8.2). On the
other hand, for α ∈ (0, d), we have, from (8.6),

E[nα/d−1Ld,α(Pn; In)] = O(n(3+α)ε−1/d) + O(nα(d−2)/(2d(d−1))−1/2+(2+6α)ε),

which again tends to 0 for small enough ε, giving (8.1).

Recall the definition of the point process Vn ⊂ (0, 1)d−1 from (5.4).

Lemma 8.2. Suppose that d ∈ {2, 3, . . .}. For α ∈ (0, d), we have, as n → ∞,

nα/d−1Od−1,α(Vn) → 0 in L1. (8.7)

Also, for α ≥ d , there exist finite positive constants µ(d − 1, α) such that, as n → ∞,

E[Od−1,α(Vn)] → µ(d − 1, α). (8.8)

Also,

µ(1, α) = 2

α(α + 1)

(
1 + 2−α

α − 1

)
for α ≥ 2.

Proof. Suppose that α ∈ (0, d). Recall that βn = card(Vn) is Poisson with mean �(n1/2−ε).
Let U1, U2, . . . be a sequence of independent uniform random vectors on (0, 1)d . Let Um denote
the sequence of uniform random vectors in (0, 1)d−1 formed by the sequence of orthogonal
projections down onto (0, 1)d−1 of the points of {U1, . . . ,Um}∩Bn listed in order of increasing
xd -coordinate. Then, without loss of generality, we can assume that Pn = {U1, . . . ,UN(n)}
with N(n) Poisson with mean n, βn = card(Pn ∩ Bn), and Vn = Uβn in this notation.

Let An denote the event {βn > ntn + n1/4}. Then, by standard Chernoff bounds on Poisson
tails (see, e.g. Lemma 1.2 of [18]), P(An) = O(e−Cnε

) for some C ∈ (0, ∞). With the coupling
described above,

nα/d−1Od−1,α(Vn) ≤ nα/d−1Od−1,α(U�ntn+n1/4�) + nα/d−1 1An C′N(n) (8.9)

for some C′ ∈ (0, ∞) and N(n) = card(Pn) is Poisson with mean n. By Theorem 2.1 of [25],
for α < d − 1, we have, as m → ∞,

E[Od−1,α(Um)] = O(m(d−1−α)/(d−1)), (8.10)

and also

E[Od−1,d−1(Um)] = O(log m), E[Od−1,α(Um)] → µ(d − 1, α), α > d − 1, (8.11)

for some positive constant µ(d − 1, α): this notation coincides with Proposition 2.1 of [35].
The particular values µ(1, α) = (2/α(α + 1))(1 + 2−α/(α − 1)) for α > 1 were given in
Proposition 2.1 of [25]. Thus, by (8.10), if α < d − 1,

E[nα/d−1Od−1,α(U�ntn+n1/4�)] = O(n−1/2−ε+α((d−2+εd)/(2d(d−1)))) → 0

as n → ∞ for small ε. Also, for α ∈ [d − 1, d), E[nα/d−1Od−1,α(U�ntn+n1/4�)] → 0 as
n → ∞, by (8.11). Also, by Cauchy–Schwarz,

E[nα/d−1 1An N(n)] ≤ nα/d−1(E[N(n)2])1/2(P(An))
1/2 → 0 (8.12)

as n → ∞. So, from (8.9), this completes the proof of (8.7).
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For the proof of (8.8), let A′
n denote the event that {βn < ntn − n1/4}. Then, by Chernoff

tail bounds again, P(A′
n) = O(e−Cnε

). There is a constant C′ ∈ (0, ∞) such that, for all n,

Od−1,α(U�ntn−n1/4�)−1A′
n
C′n ≤ Od−1,α(Vn) ≤ Od−1,α(U�ntn+n1/4�)+1An C′N(n). (8.13)

Suppose that α ≥ d > d − 1. Then, by (8.11) and (8.12), the expectations of both the lower
and upper bounds in (8.13) converge to µ(d − 1, α). Thus, we have (8.8).

Proof of Theorem 2.1. Consider

Ld,α(Pn) = Ld,α(Pn; �n) + Ld,α(Pn; Bn) + Ld,α(Pn; In). (8.14)

First suppose that α ∈ (0, d). We have

E[nα/d−1Ld,α(Pn; Bn)]
= E[nα/d−1Od−1,α(Vn)] + nα/d−1E[Ld,α(Pn; Bn) − Od−1,α(Vn)]. (8.15)

From (8.7), the first term on the right-hand side of (8.15) tends to 0 as n → ∞ for α ∈ (0, d). By
(5.6), for α ∈ (0, 1), the second term on the right-hand side of (8.15) is O(nα(1/d−1/2−ε)−1/2−ε)

which tends to 0 for d ≥ 2, and (5.5) yields the same result for α ≥ 1. Thus, for any α ∈ (0, d),
nα/d−1Ld,α(Pn; Bn) tends to 0 in L1. Then multiplying both sides of (8.14) by nα/d−1 and
applying Lemma 4.1 and (8.1), we obtain (2.2).

Now suppose that α ≥ d . We have

E[Ld,α(Pn; Bn)] = E[Od−1,α(Vn)] + E[Ld,α(Pn; Bn) − Od−1,α(Vn)]. (8.16)

By (5.5), the last term on the right-hand side of (8.16) tends to 0 as n → ∞, since α ≥ d > 1.
Also, (8.8) says that the first term on the right-hand side of (8.16) tends to µ(d − 1, α). Thus,

E[Ld,α(Pn; Bn)] → µ(d − 1, α)

for α ≥ d. Also, Lemma 4.1 implies that, for α > d, E[Ld,α(Pn; �n)] → 0, while, for α = d,
E[Ld,d(Pn; �n)] → 2v−1

d as n → ∞. Then taking expectations in (8.14) and using (8.2) gives
(2.3). This completes the proof of Theorem 2.1.
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