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Abstract

The Markovian arrival process generalizes the Poisson process by allowing for dependent
and nonexponential interarrival times. We study the autocorrelation function of the two-
state Markovian arrival process. Our findings show that the correlation structure of such
a process has a very specific pattern, namely, it always converges geometrically to zero.
Moreover, the signs of the autocorrelation coefficients are either constant or alternating.
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1. Introduction

The Markovian arrival process (MAP) was introduced by Neuts [5] as a wide class of
versatile point processes that generalize the Poisson arrival process by allowing for dependent
and nonexponential interarrival times. The MAP, which includes as special cases the well-
known phase-type renewal and Markov-modulated Poisson processes, has been considered as
a model in various contexts where dependent data are observed. In particular, it is well known
that teletraffic arrivals are not well modeled by a Poisson process and various works have used
the MAP as an alternative in this context. For examples, see [2] and [7]. Also, in reliability
theory, where correlated traces are usually found in practice, the MAP has been suggested
for modeling the interfailure time or the arrivals of shocks that cause the failure of a system;
see, for instance, [4]. From a queueing theory perspective, where the usual assumption of
independent interarrival times may be restrictive, the MAP has been proven to be a useful
process. Its capability to model dependent observations makes the MAP an appealing model
for governing the arrival process of a queueing system and, as a consequence, numerous works
dealing with theoretical properties of the MAP/G/1 queueing system can be found in the
literature [3], [6]. The autocorrelation function of a sequence of interarrival times of a MAP
has been known in closed form since 1979; see [1] and [5]. However, it is of interest to study
which types of dependence structures may be well modeled with a MAP, and to the best of the
authors’ knowledge, no analysis concerning the behavior of the autocorrelation function has
been undertaken before. Since the MAPs are over-parametrized processes, usually two states,
at most three, are enough to capture the data behavior, and indeed in most applications, the
two-state case has been considered; see, for example, [7], [9], or [10]. In this note we study the
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two-state MAP, referred to hereafter as the MAP2. We prove that the autocorrelation function of
the MAP2 has a particular form, namely, it decreases geometrically to zero as a function of the
time lags. This shows in particular that the MAP2 may not be adequate to model seasonal data.

2. The MAP2

A number of works have described the MAP in detail; see, for example, [1] and [3]. With
regards to the MAP2, we refer the reader to the descriptions given in [7] and [8]. A stationary
MAP2 is represented by {λ, P0, P1}, where λ = (λ1, λ2) denotes the exponential rates, and

P0 =
(

0 x

z 0

)
and P1 =

(
y 1 − x − y

w 1 − z − w

)
(2.1)

represent the transition probabilities, where x = p120, y = p111, z = p210, and w = p212.
The stationary MAP2 behaves as follows: the initial state i0 ∈ {1, 2} is generated according to
the stationary probability vector π = (π, 1 − π) and at the end of an exponentially distributed
sojourn time in state i, with mean 1/λi , two possible state transitions can occur. Firstly, with
probability 0 ≤ pij1 ≤ 1, a single arrival occurs and the MAP2 enters a state j ∈ {1, 2}, which
may be the same (j = i) as or different (j �= i) to the previous state. Secondly, with probability
0 ≤ pij0 ≤ 1, no arrival occurs and the MAP2 enters a different (j �= i) state. Without loss of
generality, we assume that λ1 ≥ λ2 > 0. The MAP2 can also be characterized in terms of the
rate matrices, D0 = (dij0)i,j∈{1,2} and D1 = (dij1)i,j∈{1,2}, where dii0 = −λi , dij0 = λipij0
for i �= j , and dij1 = λipij1 for i, j ∈ {1, 2}. The matrix D0 is assumed to be stable, which
implies that it is nonsingular and the sojourn times are finite with probability 1 (which in turn
implies that the arrival process does not terminate). The definitions of D0 and D1 implies that
D = D0 + D1 is the infinitesimal generator of the underlying Markov process, with stationary
probability vector π , computed as πD = 0.

Some properties of the MAP2 (and of general m-state MAPs), found for example in [1], are
as follows. Firstly, it is known that the MAP can be regarded as a Markov renewal process.
If Xn denotes the state of the MAP at the time of the nth arrival, and Tn the time between the
(n − 1)th and nth arrival, then {Xn−1, Tn}∞n=1 is a Markov renewal process, and, in particular,
{Xn}∞n=1 is a Markov chain whose transition matrix is easily derived as

P � = (I − P0)
−1P1.

Let T denote the time between two successive arrivals in the stationary version of a MAP. Then,
the cumulative distribution function of T is

FT (t) = (πD1e)
−1πD1(I − eD0t )(−D0)

−1D1e for t ≥ 0, (2.2)

where e is a unit column vector of the same order as the MAP.Alternatively, since (D0+D1)e =
0, (2.2) can be rewritten as

FT (t) = 1 − φeD0te for t ≥ 0, (2.3)

and, therefore, T follows a phase-type (PH) distribution with representation (φ, D0), where
φ = (πD1e)

−1πD1 is the stationary probability distribution satisfying φP � = φ (see [8]).
The mean and variance of T are given by

µ = πD1(−D0)
−1e

πD1e
= 1

πD1e
, (2.4)

σ 2 = 2µπ(−D0)
−1e − µ2. (2.5)
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Finally, the autocorrelation function of the interarrival times {Tn}∞n=1 in the stationary version
of the MAP2, the function we focus on in this work, is given by

ρ(k) = ρ(T1, Tk+1) =

⎧⎪⎨
⎪⎩

µ(π [(−D0)
−1D1]k(−D0)

−1e − µ)

σ 2 , k > 0,

1, k = 0,

(2.6)

where k represents the time lag.

3. Main result

It can be seen from (2.1) that any MAP2 in its stationary version is characterized by six
parameters: the exponential rates λ = (λ1, λ2) and the transition probabilities (or, alternatively,
transition rates) {x, y, z, w}. However, to study the autocorrelation function (2.6), for ease of
notation, there is no loss of generality in assuming the alternative parametrization in terms of
five parameters:

λ̃ = (1, u), D̃0 =
(−1 x

uz −u

)
, D̃1 =

(
y 1 − x − y

uw u (1 − z − w)

)
. (3.1)

Note that representation (3.1) is derived from the definitions of D0 and D1 by dividing each
component by λ1, so that u = λ2/λ1. It is immediate that π̃ = π , µ̃ = λ1µ, and σ̃ 2 = λ2

1σ
2;

therefore, it follows easily that the autocorrelation function ρ(k), (2.6), derived from the original
representation is the same as that derived from representation (3.1), ρ̃(k).

It is tedious but straightforward to prove that, since λ1 ≥ λ2 > 0, D0 is stable, both the
mean µ and variance σ 2 are strictly positive and finite, and, finally, the steady-state probability
π exists; then we obtain the following constraints on the parameters:

0 < u ≤ 1, (x, z) �= (1, 1), (y, z, w) �= (1, 0, 0). (3.2)

In what follows we assume that (3.2) is satisfied.
Next, we present the major contribution of this work.

Theorem 3.1. Let a MAP2 be characterized by {x, y, w, z, u} as in (3.1), and let ρ(k) denote the
corresponding autocorrelation function. Then, ρ(k) has the form p ·qk for some p, q, |q| < 1.
In particular,

|ρ(k)| ≥ |ρ(k + 1)| for all k > 0 and lim
k→0

ρ(k) = 0. (3.3)

Proof. We begin by pointing out that the variance σ 2 given in (2.5) can be written as

σ 2 = µτ, (3.4)

where
τ = 2π(−D0)

−1e − µ.

In terms of the model parameters {x, y, z, w, u}, τ is found to be given by

τ = τ0(x, y, z, w, u)

u(1 − y + uz + uw)(zx − 1)(−yz − w + zx + wx − 1 + y)
, (3.5)

where
τ0 = α(x, y, z, w)u2 + β(x, y, z, w)u + γ (x, y, z, w)
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and

α(x, y, z, w) = (z + w)(xz2 + [(w − 2)x + 2y − 1]z − 2wx + 2 − 2y + w),

β(x, y, z, w) = −2(z + w)2 + 2(z + w)(yz + 1 + w − y)x − 2(z − 1)(y − 1)(yz + w),

γ (x, y, z, w) = (y − 1)(−2yz + y + yzx − 2w − 1 + 2wx + zx).

By (3.4) and since µ > 0 is assumed, the autocorrelation function ρ(k) as in (2.6) becomes

ρ(k) = π [(−D0)
−1D1]k(−D0)

−1e − µ

τ
(3.6)

for k > 0. Consider the numerator in (3.6). It can be easily seen that (−D0)
−1D1 has spectral

decomposition
(−D0)

−1D1 = Q
Q−1,

where

Q =
⎛
⎝1

−1 + y + xw + xz

yz + w

1 1

⎞
⎠ , 
 =

⎛
⎝1 0

0
−(xw − w − yz + y)

zx − 1

⎞
⎠ .

Therefore,
[(−D0)

−1D1]k = Q
kQ−1,

and, hence, taking into account (3.5), it is easy to check that (3.6) becomes

ρ(k) = (−1)kκ(xw − w − yz + y)k(uz − u − x + 1)

τ0(zx − 1)k
, (3.7)

where κ is given by

κ = (xuz2 + 2wxuz + yuz − uz + yuw + xuw2 − wu − y2z + yz − wy + w).

By (3.7),
ρ(k) = p · qk, (3.8)

where

p = κ(uz − u − x + 1)

τ0
and q = xw − w − yz + y

1 − zx
.

In order to show that {ak}k>0 = {|ρ(k)|}k>0 is a nonincreasing sequence, it is sufficient to prove
that |xw − w − yz + y| ≤ 1 − zx. Since 0 ≤ x, y, z, w ≤ 1, x + y ≤ 1, and z + w ≤ 1, we
have

xw − w − yz + y ≤ x(1 − z) − 0 − 0 + y = (x + y) − xz ≤ 1 − xz (3.9)

and

−xw + w + yz − y ≤ −0 + w + (1 − x)z − 0 = (w + z) − xz ≤ 1 − xz. (3.10)

Combining (3.9) and (3.10), we have |xw − w − yz + y| ≤ 1 − zx, as asserted.
Moreover, we are in position to show that, when |ρ(1)| > 0, the inequality above is strict,

i.e. |q| < 1. Indeed, if |q| = 1, all the inequalities in either (3.9) or (3.10) are equalities.
In the former case, it would follow that xw = x(1 − z), w = 0, yz = 0, and x + y = 1.
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This happens only when (x, y, z, w) = (0, 1, 0, 0) or (x, y, z, w) = (1, 0, 1, 0), but these
two cases are forbidden by assumption (3.2). In the latter case, we would have xw = 0,

yz = (1 − x)z, y = 0, and z + w = 1. But this happens only when (x, y, z, w) = (1, 0, 1, 0)

or (x, y, z, w) = (0, 0, 0, 1). The first case is forbidden by (3.2), and in the second case we
have ρ(1) = 0. Hence, either ρ(1) = 0, and, thus, ρ(k) = 0 for all k, or |q| < 1, and, thus,
|ρ(k + 1)| < |ρ(k)| for all k.

Remark 3.1. By (3.8), it is clear that, when ρ(k0) = 0 for any k0 > 0, then ρ(k) = 0 for all
k > 0.

Remark 3.2. Expression (3.8) obtained for ρ(k) implies that the signs of {ρ(k)}k>0 are either
constant or alternating in k. The following four patterns are, in principle, possible.

Pattern 1: ρ(k) ≥ 0 for all k > 0. This pattern occurs when p, q ≥ 0. As an example, con-
sider the MAP2 where

{u, x, y, z, w} = {0.1, 0.05, 0.95, 0.1, 0.9}.
It is easy to check that p = 0.3368, q = 0.8592, and the autocorrelation function is

ρ(1) = 0.2895, ρ(2) = 0.2137, ρ(3) = 0.1837, ρ(4) = 0.1578,

ρ(5) = 0.1356, ρ(6) = 0.1165, ρ(7) = 0.1001, ρ(8) = 0.0862,

etc.

Pattern 2: ρ(k) ≤ 0 for all k > 0. This happens when p ≤ 0 and q ≥ 0. For example,
consider the MAP2 where

{u, x, y, z, w} = {0.9396, 0.2183, 0.4785, 0.5583, 0.1051}.
Here, p = −0.0133, q = 0.1471, and the autocorrelation function is given by

ρ(1) = −0.001 95, ρ(2) = −0.000 28,

ρ(3) = −4 × 10−5, ρ(4) = −6.3 × 10−6,

etc.

Pattern 3: ρ(2k) ≥ 0 and ρ(2k + 1) ≤ 0 for all k > 0. This pattern occurs when p, q ≤ 0.
As an illustration, consider the MAP2 where

{u, x, y, z, w} = {0.8233, 0.2813, 0.0092, 0.5502, 0.3589}.
Then, p = 0.3003, q = −0.0272, and the autocorrelation function is

ρ(1) = 0.0081, ρ(2) = −0.0024, ρ(3) = 0.0007, ρ(4) = −0.0002,

etc.

Pattern 4: ρ(2k) ≤ 0 and ρ(2k + 1) ≥ 0 for all k > 0. This is the case where p ≥ 0 and
q ≤ 0. As an example, consider the MAP2 where

{u, x, y, z, w} = {0.0421, 0.0055, 0.1613, 0.0473, 0.8523}.
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In this case, p = 0.3157, q = −0.6941, and the autocorrelation function is

ρ(1) = −0.2191, ρ(2) = 0.1521, ρ(3) = −0.1056, ρ(4) = 0.0733,

ρ(5) = −0.0509, ρ(6) = 0.0353, ρ(7) = −0.0245, ρ(8) = 0.0170,

etc.

After simulating one million realizations from MAP2s, we have empirical evidence that pat-
terns 1 and 4 are more common in practice (around 65% of the time) than patterns 2 and 3.
In addition, in all cases it was observed that when either pattern 2 or pattern 3 occurs, then
|ρ(1)| < 0.1, thus leading to close to zero correlation values.

4. An example

We exemplify our approach using a real data set. A sequence of 972 monthly rainfall data,
corresponding to 81 consecutive years (1903–1983) and obtained from the Spanish National
Climate Center (see http://www.aemet.es), has been analyzed. Specifically, the Bayesian
algorithm in [7] to fit a MAP2 to a given data set was used. The method provides an estimation
of the marginal PH distribution (2.3) and also of the autocorrelation function (2.6), as a measure
of the joint behavior of the data. The monthly rainfall sample mean was µ = 37.9059 and
the sample variance σ 2 = 2234.9; the estimated values through a MAP2 were 38.2678 and
2481, respectively. In Figure 1 we present the estimated (dotted line) and the empirical (solid
line) cumulative distribution functions (CDFs) of the data. From this, it can be concluded that
the estimated PH distribution fits the empirical CDF of the data properly. In Table 1 we give
the empirical and predictive autocorrelation functions. It can be seen from the second column
that the correlation structure of the data does not match that of a theoretical MAP2, described
by Theorem 3.1. Therefore, the MAP2 fails in fitting the values of the data autocorrelation
function, as the third column of Table 1 shows.
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Figure 1: Empirical (solid line) and fitted by a MAP2 (dashed line) CDFs of monthly rainfall data.
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Table 1: Real and predictive autocorrelation functions.

k Empirical ρ(k) Estimated ρ(k)

1 0.2638 0.0592
2 0.0997 0.0203
3 −0.0186 0.0071
4 −0.1169 0.0025
5 −0.2327 0.0009
6 −0.2217 0.0003
7 −0.2046 0.0001
8 −0.1431 0.0000
9 0.0133 0.0000

10 0.0977 0.0000
11 0.2246 0.0000
12 0.2886 0.0000

Although the MAP2 is a potential model capable of fitting dependent observations, this
example highlights that not all dependence patterns will be properly modeled by a MAP2. In
particular, those data which do not satisfy (3.3) (presenting a seasonal or cyclical behavior for
example) will not be well fitted with a MAP2. Experience has shown that it is worthwhile
examining the data for evidence of a structure similar to that provided by Theorem 3.1, before
considering the modeling by a MAP2.

It is natural to wonder if richer correlation patterns are obtained with higher-order MAPs,
and, indeed, they are. For example, consider the MAP3 defined by

P0 =
⎛
⎝ 0 0.1368 0.0455

0.1403 0 0.0093
0.0306 0.0099 0

⎞
⎠ , P1 =

⎛
⎝0.0243 0.5665 0.2269

0.0026 0.0132 0.8346
0.0471 0.0079 0.9045

⎞
⎠ ,

with exponential rates given by λ = (6.7527, 7.9326, 54.1947). The autocorrelation function
(2.6) is

ρ(1) = 0.1127, ρ(2) = −0.0028, ρ(3) = −0.0025,

ρ(4) = −6.074 × 10−5, ρ(5) = 5.151 × 10−5,

whose signs are neither constant nor alternating, against Remark 2. As another example, the
MAP3 given by

P0 =
⎛
⎝ 0 0.5009 0.2700

0.522 0 0.0050
0.1227 0.3035 0

⎞
⎠ , P1 =

⎛
⎝4.76 × 10−6 0.0751 0.1540

0.1014 0.1438 0.2278
0.0960 0.0129 0.4648

⎞
⎠ ,

with exponential rates λ = (2.9102, 57.3193, 93.3259) possesses the autocorrelation function

ρ(1) = −0.000 28, ρ(2) = 0.0019, ρ(3) = 0.000 21, ρ(4) = 3.54 × 10−5,

which does not satisfy either Remark 2 or the left-hand side condition of (3.3). These examples
illustrate that it is possible to go beyond (3.3) to get more flexible dependence structures
by increasing the number of states of the MAP. Therefore, it is of interest to consider the
properties of the autocorrelation function (2.6) for general m-state MAPs for future research.
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However, because of the increasing number of parameters (six defining the MAP2 and 14
defining the MAP3), it becomes a tedious and difficult task. It would be desirable to study
whether it is possible to adopt a matrix approach so that the extension of the presented results
to higher-order MAPs is more straightforward. Unfortunately, this does not seem to be an
easy question and, to the best of the authors’ knowledge, is still unanswered. Work on these
problems is underway.
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