Glasgow Math. J. 49 (2007) 291-319. © 2007 Glasgow Mathematical Journal Trust.
doi:10.1017/S0017089507003709. Printed in the United Kingdom

AN INTERTWINING OPERATOR FOR THE GROUP B,

CHARLES F. DUNKL

Department of Mathematics, PO Box 400137, University of Virginia, Charlottesville, VA 22904-4137
e-mail: cfd5z@virginia.edu
URL: http://www.people.virginia.edu/ “cfd5z/

(Received 4 August, 2006; revised 19 March, 2007; accepted 31 March, 2007)

Abstract. There is a commutative algebra of differential-difference operators,
acting on polynomials on R?, associated with the reflection group B,. This paper
presents an integral transform which intertwines this algebra, allowing one free
parameter, with the algebra of partial derivatives. The method of proof depends on
properties of a certain class of balanced terminating hypergeometric series of 4 F3-type.
These properties are in the form of recurrence and contiguity relations and are proved
herein.
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1. Introduction.

1.1. Overview. We construct an integral for the intertwining operator V'
associated to the reflection group of type B, (order 8) acting on RZ?, with one
parameter x. For polynomials or adequately smooth functions in x = (x;, x,) define
the differential-difference operators:

nif(x) = aixlf(X) + Klf(x) _f;l_xl’ x2)

S(x) = f(x2, x1) JS(x) = f(—=x2, —x1)
K> + K2 )

X1~ %2 X1+ x2
Thf(x) = 8ix2f(x) + K]f(x) _f)zfl’ —X2)
Jx) = f(x2, x1) F(xX) = f(=x2, —x1)
k2 +K2 .

X2 — X1 X1+ X2

+

n (1.1)

These operators are special cases of those defined by the author in [2]. Their
key property is commutativity, 717> = T>7). We deal only with the restricted case
k1 = k3 = k. The intertwining operator V' preserves the degree of homogeneous
polynomials and satisfies V(aix,- f)(x) = T;Vf(x)fori =1, 2,and V1 = 1. The definition
and existence of V for ¥ > 0 was shown in [3].

The easy example for this operator is furnished by the Z, action (x — —x) on R.
Let « be a parameter and define 7Tf(x) = f'(x) + Kw for a smooth function f
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on R. For « > 0 let

N\ !
Vf(x) Z=B<K, —) / ()1 + (1 — )< dr
2 -1

then TVf(x) = V(%f )(x) for any smooth function f. The attempt to find such
formulae for reflection groups of higher rank starts by interpreting x — 7x as a
linear transformation (element of M/(R)) on R, and the measure

1 —1
du(t) .= B <K, E) A=) dr,—-1<t<1,

as a Zp-invariant measure on a certain subset of M;(R); the term 1 + 7 is explained
by (very simple!) representation theory: if f is even (f(—x) = f(x)) then Vf(x) =
fllf(Zx) du() and if £ is odd (f(—x) = —f(x)) then Vf(x) = j;llf(tx)t du(?). This
program was carried out by the author for the group S3 (symmetric group on 3 objects)
in [4]. This paper establishes a criterion, valid for any finite reflection group, for an
operator to be equal to V. The criterion is in terms of exp(Zfi 1 Xiyi) for a reflection
group acting on RY. When applied to the above formula for ¥ on R! the criterion
reduces to

1 1
/’CU“—XWF“W14-0duU)=kl/ V(1 + 1) — (1 — D) du(d),
-1 -1

for arbitrary x, y € R. This identity obviously holds (integration-by-parts). Further
details on postulating a formula for V' appropriate to the group B, in terms of a
measure on M»(R) are to be found in Section 1.3. In [5] it was shown that V" exists and
is one-to-one as a map on polynomials for any « except for theset {—7 : m e N, 7 ¢ 7}
of singular values (for the case of B,). Later Rosler [8] (see also [9]) proved that the
functional f > Vf(x)is given by integration with respect to a positive measure, for each
x € R?. Xu [10] found an intertwining transform for B, under restrictive conditions on
degree and k1, «3.

There is a kernel which contains all the information about the action of V' on

polynomials. For x, y € R? let (x, ) := Z,il X;yi, then
K(x,y) == V*(exp(x, y))

is entire in x and y (¥~ acts on the variable x). Further let K,,(x, y) := % V*({x, y)") for
neNy:=1{0,1,2,...}. The symmetrized kernel K is defined by

1
K'x,p)i= ¢ 3 Kxw, p),
wGBz

where the sum is over the eight elements of B,. This kernel is also called a Bessel
function because in the Z, situation described above one has

1 1 o0 1 xy 2n
e = [ =0 a3

n=0

1 B
=T (K + §> (%) IK_%(xy), for xy > 0,
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one of the modified Bessel functions. The book of Dunkl and Xu [6] is a reference for
differential-difference operators, the intertwining operator and the kernel K(x, y) for
any finite reflection group. Asymptotic formulae for the kernel are discussed in [9].

The author thanks the referee for useful remarks which helped improve the
introduction and other details in the exposition.

1.2. The symplectic group integral. The starting point for the S; result was an
integral formula of Harish-Chandra involving integration over a compact Lie group.
This gives a special case (« = 1 and symmetrized) of the intertwining operator for the
associated Weyl group. We use an approach similar to that in [4, Section 2]. Consider B,
as the Weyl group of the compact symplectic group Sp(2). This group can be described
as the group of 2 x 2 unitary block matrices

A B .
U_(_E Z),UU =1,

where 4, B are 2 x 2 complex matrices. The subgroup

T := {diag(e”, ¢, ¢, ¢7*): 61,6, € R)
is a maximal torus (“diag” denotes the 4 x 4 diagonal matrix with the specified entries).
Identify R? with the complexification of the Lie algebra of 7 by the map & : x —

2-12diag(x;, x2, —x1, —X») (the purpose of the factor 27172 is to get Tr(8(x)8(y)) =
(x, »)). The formula of Harish-Chandra (Helgason [7, p. 328]) specializes to

éZwEBz det(w) exp({xw, y))
2 p)p(») ’

/ exp(Tr(Us(x)U*8(y))) dm(U) =
Sp(2)

where dm(U) is normalized Haar measure on Sp(2) and p(x) = xlxz(xf - x%). The
right side of the formula is an expression for the kernel K°(x, y) at « = 1. Thus the left
side suggests a construction of an integral formula for the intertwining operator. We
compute

2 2
THUS)U* () = Y Y xiyjldil* — 1Bl

i=1 j=1

Thus one needs to integrate functions of the four variables (|Aj,‘|2 — |Bj,-|2) with
respect to Haar measure. One applies integration over the subgroup Sp(1) and
the homogeneous space Sp(2)/Sp(1). Since this only gives the x = 1 situation more
experimentation is needed to make a conjecture about arbitrary x. The measure that
arises can be described in terms of trigonometric coordinates and a weight function.
By direct polynomial calculation (using computer-assisted symbolic computation) we
find the symmetrized kernel K9(x, y) := % Y e B, V¥ (xw, y)"/n! for small n (< 8) and
try powers of the weight function to produce these values of K(x, y). This approach,
however, has as yet not produced a solution for the two-parameter situation.
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1.3. Group actions and the measure. The group B, is generated by the reflections
o] = (_01 (1)) and oy ;= ((1) (1)). The intertwining operator has the form

Vi) = /Q Fer@)g@dua).

q1 43
(q) == ,
@ (Q2 CI4)
where wu(g) is two-sided invariant for B, and g(g) is invariant under the action
w: 7(q) > wr(g)w™! for all w € B,. (Actually g(g) involves one more variable of

integration.) There are left and right representations of B, on ¢ (that is, R*), defined
implicitly for w € B, by

T(gh(w)) = w'(q),
T(gp(w)) = t(Qw.

For example gi(o1) = (—q1, q2, —q3, q4) and gp(02) = (g3, 44, q1. ¢2). The invariance
conditions are du(gi(w)) = du(ge(w)) = du(g) and g(gh(w)p(w)) = g(g) for all
w € By. It suffices to check invariance for the generating reflections; that is,
g and p must be invariant under ¢+ gi(oy)p(o1) = (91, —¢2, —¢3, q4) and ¢ +—
gh(o2)p(o2) = (44, q3, 42, q1); and, additionally, © must be invariant under ¢ +—

qro1) = (=41, 42, —q3, 94) and g > qr(02) = (42, q1. 44, 43)-
The measure u is actually an integral over six variables: let

g1 = ucosyy,

¢ = (1 —u)cos ¥,

q3 = (1 — u)(cos Yy cos 6 + sin Y, sin 6 cos ¢),
g4 = u(cos Y| cos 6 + sin v sin 6 cos ¢y);

the region Q of integration is 0 <u<1,0<6,¢;,¥; <m (i=1,2). For « > % the
measure is

du(q) = c(u(l — u)sin Y sin ¥ sin 0)* ! (sin ¢; sin ¢2)* " 2du dyrdv d6 de, de»,

where the condition [, du = 1 determines the normalizing constant c,. We can now
state the main result for homogeneous polynomials, by use of the differential operator

9 9 9 9
Dy = 2y ) - 2 7).
o = (q1 + q4) <8q1 + 3(]4) (g2 — q3) (3q2 a%)

THEOREM 1. Suppose that f(x) is a homogeneous polynomial in x of degree n. If n is
odd, then

Vr(x) = /Q 2q1 + 48 (T(@)du(q). (12)

If n is even, then

Vi(x) = /Q {1 + q194 — g3 + Do}f(f(q)X)du(q). (1.3)

de +n
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Further, the Bessel function K%(x, y) = % Y e 5, K(xw, y) is given by the positive
integral

K(x.y) = / exp ((x7 (). 1) dp().
Q

We shall consider the relation to the representations of B, and the techniques of
proving the formulae in the following sections. The required invariance properties of
u are made clear by a change-of-variables.

LEMMA 1. In terms of q, 0, u and the auxiliary variables

u?sin® 0 — ¢ — ¢3 + 24194 cos 6

b b 9 9 := .
z1(q1> g4, u, 0) 20
(1 —u)’sin®0 — g2 — ¢% + 2¢2q3 cos 6
22(q2, g3, u, 0) 1= YT
sin“ 6

the measure is given by
dp = c(z122) P (sin 0)* dgid g, dgs dqs du do,

and the region of integration Qi is implicitly defined by z; > 0,2z, > 0,0 <60 <7,0 <
u<l.

Proof. In terms of q1, q2, g3, ¢4, u, 0 the Jacobian is

(g1, 92, 93, g4, u, 0)
(1, G2, Y1, V2, u, 0)

= (u(1 — u)sin ¥, sin ¥ sin 6)” sin ¢; sin ¢».

Then
du = c(u(1 — u) sin ¥y sin ¥ sin ¢ sin ¢, sin 6)*>J du dyr, dr> d6 do, deps.

Observe that usin ¥y sin@ cos ¢y = g4 — g1 cos 6, u? sin® Yy = u*> — ¢}, and so

_ 0\ 2
Sinz¢1:1_<w> ,

usin ¥y sin 6

i i — g1 cos0)?
(usinysingr)? = (i — ) — L4 41c080)

sin2
= z1(q1, 94, u, 0).
Similarly
) ) — ¢, c0s60)?
(1 = wysin Yo sin @) = (1 — )’ — g3) — L= L056"
sin- 6
= 22(q27 q37 us 9)'
Thus di = ¢e(z122)< 2 (sin0)* 7 dgy dg» dgs dgs du do. O

The measure p is invariant under the transpositions (g1, g4), (¢2, ¢3), and the
involutions ¢ — gA(o1) = (¢2, 41, 44, ¢3) and g — gi(o1) = (—q1, —q2, 43, q4) because
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of the equations

21(q2, g3, u, 0)z2(q1, g4, u, 0) = z1(q1, g4, 1 —u, 0)z2(q2, g3, 1 — u, ),
21(—q1, ga, u, 0)z2(—q2, g3, u, 0) = z1(q1, qa, u, ¥ — 0)z2(q2, g3, u, T — H).

Similarly there is invariance under the right action of B,; thatis, ¢ — gp (o), i =1, 2.
The following will be used throughout.

NOTATION 1. Suppose that a € N, Then the corresponding monomial is ¢* :=

o] 0 03 04

q,'qy° 45’ q4* and g% is of degree |a| := Zj.‘:l a;. Also set

bo = (02 + @3)/2,
by = (a1 + a4)/2,
by = (o + a4)/2,
by = (a3 + as)/2,

and let s(ay, an, a3, ag) = fQ q* du(q).
By a parity argument the nonzero integrals occur only for integer values of the b;.
PROPOSITION 1. The normalizing constant is

g @ = 1T (2¢ + 1)
7327 (i )2

)

and, for a € Ng, ifa; =y = a3 = agmod?2 (all even or all odd) then
(26)28, (26)2 (%)b1 (%)bo (%)b;
(44 )26, 25y (K + %)bl (K + %)bo (K + %)b3
laa/2] |3 /2)

(—ot)oi(—a3)o(k )iy =22 (14
XZ Z __b)(——bo)j(%_b3)i+j 0

i=0 j=0

s(or, a2, a3, 04) =

Otherwise s(ay, a2, a3, 014) =

Proof. Expand ¢* in terms of u, 0, ¥, ¥, ¢1, ¢» with the binomial theorem and
collect terms. The result is

a3 [e7] 1
o _ _
S'(Ol], o, a3, ()(4) = ¢ 2 : 2 :( 3> ( ) / ua1+a4+2k 1(1 _ u)Olz+0t3+2K ldu
0

j=0 i=0

* / (cos yr) 4 (sin y1) Ty /n(Cos ¢1)'(sin ¢1)* 2dgp
0 0

) / ”(COS Y2) O (sin yo) 2y / n(COS $aY (sin o)™ 2 dep
0 0

X /n(cos )4+t =/(sin )+ ~14g.
0

n+1 )Hrl

Recall that f cos" @ sin* d6 equals zero if nis odd and equals B(*5—, 5—)ifniseven,
forn € Ny and A > —1. For the respective integrals to be nonzero i and j must be even
because of the ¢; and ¢, integrals and hence o, + a3, o) + a4, a3 + o4 must be even
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(in the ¥, ¥, 6 integrals). We replace i, j by 2i, 2j respectively and assume that the
entries of « are all even or all odd. Then

Lo /2] laa/2]

S(or, an, 03, 4) = ¢ Z(; Z(; <§J3> (gj) B(oy + o4 + 26, ap + o3 + 2k)
j=0 =

1 | |
xB(%—i,i—i—K)B(i—i—z,K—z)

a +asz+1 L. o1 1
B|——— — B — K — =
X ( > ],]—i—/c) (j+2,K 2)

1
xB(—a3+g4+ —z—j,i+j+lc).

We set o = 0 to find the normalizing constant. Indeed

-1 — B2 2)B1 331 1y
= K, 2K 2,/< 2,K 3 .

The stated value follows from the duplication formula. The following ratios are typical
in the calculation.
B(i—i—%,fc—%)_ i+ (- %)F(K):@
BLe-D) Tl (1) ®r
B(bo+4—ii+k) T(bo+3—-)T+0)T (k+3)  ®i(3),

B(3.0)  Tho+i+T(EIE  (k+3),

Thus

Loz /2] loa/2]
2K Yoy g (2K )+
s(al,az,a3,a4): Z Z <(;-:> (C;; ( )1+ 4( )z+ 3

i=0 =0 (4K )011 +ax+a3+ay

)i (D (), 3oy (i Wi
( E)ho (K + %)bl ( %)m .

To finish the proof, write (5}) = (—a4)2i/(2%i(3)1), ($)pe—i = (—1)($)n, /(3 — bo); and
similarly for the other terms. O

It is clear that the symmetry s(ay, @, @3, ag) = s(az, @1, a4, @3) holds (as well as
s(ay, on, a3, og) = s(aq, a3, Az, @g)), as implied by Lemma 1. Some other symmetries
will be shown later. Singular values are numerical values of « for which the intertwining
operator does not exist. By the general theory of singular values [5] specialized to
B, they consist of —% —NyU (—}1 - Ny U —% — Np). The denominators (k + %)bi in
s(ay, ay, a3, ag) correspond to the first subset. For the second subset consider

(26)2, (2K )28, _ =2b1-2b (26 )2, (26 )21,
(44 )2p, + 26, (26)py 1, (20 + %)bwho
251 —2by 2k + b + bO)bl—bo(thbo
(2" + %)h]+b0

if by > by. There is a similar expression if by > b;.

=27
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To see some of the complexity of this integral, consider the reduced form

[ @ araut
1 bie b4
=c /0 /0 /0 f@ucos i, (1 — u)cos ¥a) (1 — u) sin ¥y sin )~ dyry dr du,

with a constant ¢ depending on «. This is not reducible to an ordinary double integral
without the use of a nonelementary integral. Indeed,

ff(611,€12)d,u(4)= // S(q1, 2)Ec(q1, q2) dq1 dqs,
Q lq11+lg21<1

1-]qz|

EK(QI’ 42) = C/ {(u2 _ q%)((l _ Ll)2 B q%)}l(—l du.

lq1

1.4. Single sum formula and hypergeometric functions. Even though our evalu-
ation of s(ay, oz, @3, ag) required a six-variable integral the value can be expressed as
a single sum in terms of a terminating balanced 4F3 hypergeometric series.

Write

(26 )25, (2K )2
sy, o, 03, 04) = ——— 2 (g, o, 03, 04).

(4 )2, +25,

Then s satisfies the recurrence
1 !
o0y K+§(Ol2+013+1) Sl —1l,ao+Las+ 1,04 — 1)

1
+ 5(02053(051 + oy + 1) — oaa(er + a3 + 1)s' (a1, a2, @3, o4)

1
= a3 (K + 5(0[1 + o4+ 1)) S+ 1,00 — 1,03 — 1, ag + 1). (1.5)

There is a good reason why this formula appears here. The intertwining operator
will be described as a linear functional on the space of polynomials in ¢, applied to
polynomials in x7(q) = (x191 + X242, X193 + X2q4). The coefficient of x‘l’”’*ﬁxg in the

expansion of (x1q1 + x2¢2)*(x1¢3 + x2q4) is as follows.

min(b,c¢) b
(? a Cedi i bei i
Po@= ) (c_ l.) <I.)Q‘f MR (1.6)

i=max(0,c—a)

The need to integrate these polynomials motivated the examination of and experi-
mentation with s(a — ¢ + 7, ¢ — i, b — i, i) as a function of i. This led to the discovery of
the recurrence which in turn suggested that there might be a single-sum form of s. It
turns out that the proof of the recurrence actually uses the single sum, a terminating
hypergeometric series of 4F3-type (the argument looks circular, but the proof of the
single sum does not use the recurrence).
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PROPOSITION 2. Suppose that g = 0 and o; = 28; for 1 <i < 3, We have
1 1 1
(E)ﬁl (i)ﬂz (7);;3
1 1 1
(K + 5),31 (K + E)ﬁz (K + 5)53
= 5(0, 282,283, 2p1),

§'(2B1,2B2,2p3,0) =

and the value is symmetric in By, B2, Bs.
Proof. Indeed the sum in 5'(281, 282, 283, 0) equals
i (-B3) (5 - /‘33)j (x);

S =p-p), (-8,

(53— B — Bs —K),g3 B (K-|-/5'2-|-%)ﬂ3
(3-8 — ,33)/33 (3 + /32)ﬂ3

_ (K + %)ﬂzﬂss (%)/32
(K + %)ﬂz (%)ﬁz-i-ﬁ,%

]

299

(by the Chu-Vandermonde sum) and this proves the first equation. The second equation
follows from the symmetry of Lemma 1. The sum in s'(0, 28;, 283, 281) can also be
found directly, first summing over 0 < i < ) and using similar arguments as in the

first equation.

Recall the notations by := (o + «3)/2 and b; := (o; + a4)/2 fori=1,2, 3.

THEOREM 2. Suppose that o € Ng and o] = ar = a3 = aamod 2. Then

s(ar, o, 03, 04) =

5%), (k)i (= — by — bo);
- l)i (3 = b2), (z - ”3),~

This is a balanced terminating 4F5 series.

O

(1.7)

The proof of this key result is in Section 3. To say that a hypergeometric series is
balanced means that the sum of the denominator parameters equals one plus the sum
of the numerator parameters; the property is also called Saalschiitzian. The particular
choice of parameters for this 4F3 series will appear often in the sequel and so we make

the following definition.

DEeFINITION 1. For n € Ny and free parameters u, v;, vo, vs let

nl—n

—E,T,H,—U—Ul—vz—vs
F(nyu, vy, v, 03) = 4F3 | 4 1 1 1

E—Ul—n,z—vz,z—w ’

This is a balanced terminating hypergeometric function.
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This is not the generic balanced 4 F3-series (which has 6 free parameters) because of

the parameters (—g %) With this notation the Theorem can be restated as follows.

THEOREM 3. For o) = ap = a3 = aymod 2 the following single-sum expression is
valid:

s(a) = (26t 40 (26 )y a3 (%)h] (%)b2 (%)b3
‘ (45 o] (k+1), (+1),, (c+ 1),

1 1 1
xF <0l4;lf, 5(“1 — o), 5(062 + ), 5(“3 + 0t4)) .

1.5. Contents. In Section 2 we describe the representation-theoretic implications
of the invariance conditions, present an overview of the method of proving that a given
linear functional on polynomials in ¢ produces the intertwining operator and then give
the actual proof. Some ingredients of the proofs depend on contiguity relations for
the function F. Also there is a purely integral form of V' not involving the degree of
polynomials.

Section 3 contains the proof of the single-sum result. That relies on classical
transformations of hypergeometric series, and the (computer-assisted) proofs of the
required contiguity relations of F. There are closing comments in Section 4.

2. The intertwining operator.

2.1. Invariants and representations of B,. As we suggested in the discussion of
the Z,-intertwining operator, the integral for V' should consist of an invariant measure
multiplied by a sum of terms, one for each irreducible representation of the group. The
group B, acts on polynomials, R[x;, x2], by R(w)p(x) := p(xw) (for x € R%, w € B).
The irreducible representations of B, occur in this space as follows: there is one of
degree 2, which is realized in each space of polynomials homogeneous of degree 2n — 1
as n isomorphic copies

{eox]"" 7N, + ey 70 <j<n—1),

forn =1, 2,...; there are four nonequivalent one-dimensional representations:

L M- 2 | 2 2m-y .
(1) invariants: x;" 7x5 +x7x)" 7,0 <j <m;

. m—1=2j 241" 2j+1 2n—1-2 :
(2) determinant: x;" " 7xyT — 7" X" 7 0<j< 4] —land2n > 4;

(3) type 1: x7" I XY 0 < < |%51] and 2n > 2;

(4) type 2: xf"_Z’x;’ — x%’xi"_zj, 0<j< L%J and 2n > 2.

If p(x) is a polynomial of type 1, then p(xo;) = —p(x), p(x02) = p(x); if p(x) is of
type 2, then p(xo;) = p(x), p(xo2) = —p(x). This is the reason for naming types. If p(x)
is of determinant type then p(xo;) = —p(x), p(xo2) = —p(x). Consider polynomials in
¢ invariant under ¢ — gA(w)p(w), w € By; this kind of invariance is required in the
formula for V" because of the commutation V(R(w)f)(x) = Vf(xw), w € B,. It is easy
to compute the Poincaré series for the ring of invariants (graded by degree); namely
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% We then describe the ring as

(1& (g1 — 9)(B — B))R[a1 + 9. G + G5, B + 6. 0245].

The invariant of degree 1 is associated with the two-dimensional representation of B,
and we set

go(q) = 2(q1 + q4).

There are 4 linearly independent invariants of degree 2, the two-sided Z?:l ¢7, and

g1(q) = 9194 + 9293,

1
o) = 5(a1 - 6 — 6+ 43),
23(q@) = 194 — Q293.

Then

g1(gM(o1)) = —g1(9), &2(gM(01)) = g2(9), g3(qr(01)) = —g3(9),
g1(qh(02)) = g1(q), g2(qr(02)) = —22(q), g&3(qAr(02)) = —g3(q).

Further g;(1,0,0,1)=1 for 1 <i<3 (a plausible normalization). By simple
orthogonality arguments we see that if f(x) is a polynomial of even degree then
Jof(xT (@) gi (@) din (q) # 0 only if f(x) has a nonzero component of determinant
type for i = 3, or type i for i = 1, 2. Experimentation quickly showed that the formula
Vf(x) = fo (x1(q)) g3 (q9) du (q) appeared to be valid for the determinant type, but the
similar attempt failed for types 1 and 2. (In fact, no polynomial in ¢ of degree less
than twelve with the correct behavior under the B,-action works.) We comment on this
quandary in Section 4. We set

0
0, =—,1<i<4.

ag;

The formula for V' comes from applying the adjoint action L := ad(% Zj‘:l 3?) to
(multiplication by) the g;. (Recall that (ad(A4)B)f := (AB — BA)f for operators A, B
on polynomials f.) Indeed

L(g1) = q104 + q401 + q203 + q302,
L(g2) = q191 — q202> — q303 + 404,
L(g3) = q104 + q4d1 — q203 — g30>.

These operators have the same invariance properties as the respective polynomials g;.
The motivation for introducing the operator L is to prove these invariance properties (in
fact, the differential operators were found first by experimentation, and this explanation
was noticed later). Set Dy := L(g1 + g2) = (q1 + q4)(31 + 31) — (g2 — ¢3)(92 — 93) and
D5 = L(g3).

The formula stated in the introduction can be given as a pure integral with no
derivatives for k > % However another variable of integration occurs (a total of seven!).
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Let w denote the integration operator defined by

1
0f (x) = /0 T di,

so that w f(x) = ﬁnf (x) when f is homogeneous of degree n.

THEOREM 4. Let k > 5 3 and suppose that f is sufficiently smooth on a ball Bg =
{x e R%: |Ix]l» == (x, x)l/2 < R} for some R > 0. For x € Bg, we have

Vix) = /Q SOT(@)1 + g0 (q) + &3 (9) dn ()

+ (- 3) /Q o f (T (@)F0(qs 1, 0, br. 2. Y1, Y2) di(g).

where

~ 1 g1+ g4 1 9 —q3
§0= 1 4 cos6 (usinqbl sinwl) ~ 1—cosf <(1 — u) sin ¢ Sinl/lz) '

If f(x) is homogeneous of degree n then [, f(x7(¢))g3(¢) diu (¢) is zero when n is
odd and equals ﬁ fQ Dif (xt (q)) di (q) when n is even. (The proof is in the next
subsection.) Also we shall prove the two equations (1.2) and (1.3). The factor ﬁ in
(1.3) can be replaced by the integral operator w. The following result uses an integration

by parts to replace the differential operator Dy by an integral, the last ingredient of the
formula in the theorem.

LEMMA 2. For k > % and a smooth function h(q)

q1 + 44 :
1 4+ cos6 \ usin ¢, sin ¥

1 92 — 43 :
" 1—cosf ((1 — u) sin ¢ sin 1//2) }du(q).

Proof. Use the notation and change-of-variable from Lemma 1 to set up the integra-
tion by parts. The measure is diu = ¢, (2122)>/*(sin 0)*3dq,dqrdq3dqsdudd and the
region of integration 2; is implicitly defined by z; > 0,2z, > 0,0 <60 <7, 0 <u < 1. If
w(q) vanishes on the boundary of the bounded domain Q in R* then |, 0 Doh(q)w(q)dg =

— Jo M@)Dow(q)dq. (Although [, ;5.5 (q) w(g)dg = — [, h(g)(1 + q;5;)w(g)dg for
1 <j <4 theterms |, 0 h(q)w(q)dq cancel out.) We find that

/ Doh(q) dulq) = (2 —3) / h(q>{

(1= cosO)q1 +q4)° _ (41 +4s)°
D()Zl =-2 ? -
sin? 4 1 +cosf’
1 0)(q2 — ¢3) —q3)?
Doss — 2( + cost Na2 —q3)* _ e q3) ’
sin2 @ 1 —cos®

and Dy(z122) 3 = (k — 3)([’2%2l + DZO—jZ)(zlzg)"‘3/2. Then we change back to the
original variables ¢1, ¢2, V1, V2, u, 6 to complete the proof. O
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2.2. Proof of the intertwining property. Suppose that & is a linear functional
on polynomials in ¢ = (¢1, ¢2, 43, g4), and define an operator on polynomials in x =
(x1, x2) by Vif(x) = & (x1q1 + X242, X193 + X2q94). What needs to be done to show
that V7 = V, the intertwining operator? The group invariance requires that &p(gq) =

&p(q4, 43, 92, 1) = §p(q1, —q2, — 43, q4).

DEFINITION 2. Let & denote the functional defined by ¢* — s(«). For a
homogeneous polynomial p(g) in ¢ of degree n define the functional & by:

&(p) = &o(gop), formodd,

1 1
E(p) =& <<1+4K+nDo+ 8K+nD3)p(q)), for n even.

When the criterion from [4, Prop. 1.3] for V] = V is expanded in homogeneous
oo (x. )"

polynomials (that is, exp({x, y)) = }_,Z ~=/~) one obtains:

(n+ D((x, »E(xT() W) — E(xT(9), 1))
4
=Kk Y _(E(xt(g). )" = E((xoi(g). »)"T)), @2.1)

i=1

for n=0,1,2,..., where {0} is the set of reflections {01, 02, 020107, 010501}, and
0,;7(q) = t(gr(o;)). Rewrite the criterion as follows:

E((@1 + da)(xT(g), 1)) — (n+ 1 + d)E((xT(9), 1))
4
+i Y E((xT(gh(e), )" =0.
i=1

Note that (9 + 94)(x7(q), y) = (x, y). We shall prove that & satisfies the criterion and
also that &y(D3p(q)) = (8x + n)&y(gsp) when p is of degree n. (Both sides vanish when

n is odd.) We have
gh(o1) = (—q1, 92, —q3, q4),
gh(02) = (2, q1, 44, 43),
ghMo10201) = (—=q2, —q1, —q4, —q3),
gMo20102) = (q1, —q2, 43, —q4)-
Then

4
> gi(gh(o)) =0, forj=0,1.2,

i=1

4
> gs(gh(o) = —4g3(q).
i=1
The corresponding differential operators L(g;) satisfy similar equations forj =1, 2, 3
because Zle d? is two-sided invariant; that is, Z?:l L(gj)p(gi(o;)) =0forj=1,2and

S L(g3)p(gh(o) = —4L(g:)p(9).
The proof of the criterion is easy when # is odd.
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PROPOSITION 3. Suppose that n is odd and p(q) is homogeneous of degree n + 1. We
have

£0(go(q)(01 + 34)p(q))

1 1
— 1+4 1 D D
o+ 1408 (14 3 Dot g 012 @)

4
+ k& <<4 - mD3>P(Q)> =0.

Proof. In fact, the left side simplifies to

&0((2(q1 + q4)(01 + 04) — (n + 1) — Do — D3)p(q)).

Replace n + 1 by the Euler operator ZLI ¢;9;. Then the expression becomes identically
zero. O

COROLLARY 1. The criterion (2.1) is satisfied for odd n.
Proof. Set p(¢q) = (xt(g), y)""! in Proposition 3. O

For the odd degree case (n even) replace n by 2n in the criterion. The third part
vanishes because

4

4
D e ((xt(gro). 1)) = Eo(go(q) (xT(gh(on), 1))

i=1 i=1

4
= > &o(go(gr(o)ixT(g), 1))

i=1

4
=& (Z go(qx<oi))<xr(q),y>2"+l)
=0. .
This used the invariance property of &. Hence it is required to prove that
(i +2n+ Déo((xt(g), » 7" g0(9)) — §((31 + da){xT(9), »)*") = 0. 2.2
This equation can be restated as follows:
(4 +2n + DEKopp1(x, y) = (x, y) Kon(x, p).

Recall the definition of Py ;(¢) from (1.6). Thus

n

n i - _
(xT(q). )" = ( l.)y’f VY P @S,
c=0

i=0

for n € Ny, so that it suffices to prove identities involving & and (xt(g), y)" for the
polynomials P ,. There are two immediate consequences of the invariance properties
of &. Since

P (qh(o1)p(o)) = (—1)PTPS (g).
£(P,) #0 = b= cmod 2
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and since

P ,(qh(02)p(02)) = PLH(q),
§(Pey) = E(PLET).

With the aim of applying condition (2.2) to P, with @ + b = 2n + 1 we can assume

that « is odd, b and ¢ are even. This 1mphes that &(q4P; ,(9)) = 0. (The typical

monomial is ¢{ g5 ’q’3’ ’qf‘, the parities of the exponents of ¢; and ¢4 are

opposite.)
In the evaluation of &(goP; ;) and &((01 + d4)P; ;) there are several vanishing
terms:

E()(Q4P2’b) = %’0(341)2’]7) = §0(4i8i84P2,b) = 0, for 1 <i< 4,
£0(q407 P ) = &0(q10401 P ) = &0(920301 P ) = E0(g30201 P ) = 0.

Thus

£0(Do(d1 + 80)Pg ) = &0(L(2)31 P ;) + &0 (L(g1)d4 P ),
E0(D3(31 + da)PC ) = Eo(D304PC ).

The required identity is

. 1 .
(4 4 2n + D& (2q1 P ) — & <<1 s m ZnL(g2)> 31P§,,b>

1 "
B m&({(&c +1)(qady + q104) + k(392 + ¢203)}04P )

=0. (2.3)

We shall prove this by summing over the monomials in P ,; that is, we replace

P;, in the left side by ¢f~ g™ ’qé’ ’qg and evaluate & (in terms of s(a)). The
partlal sums are found exphcltly by use of contiguity relations for the 4F3-type
function F.

Set a=2a; +1+2a3,b=2a,c=2a; so that so n=a; +ar + az. Assume
for now that @; > 0; that is, a > ¢. Evaluate the left side for the monomial
q“ with o = 2a; + 1+ 1i,2a3 — i, 2a, — i, i). (Note |a| = 2n+ 1.) One of the terms
simplifies:

1
& <<1 + e 2nL(g2)> 319“)

2ay — 2ay — 2a; — 4i
:(2a1+1+i)<1+ @ 4a2+2a3 l)s(2a1+i,2a3—i,2a2—i,i)
K n
(kK +ar — i)

=2Qa;+1+1) sQay +i,2as — i,2ar, — i, 7).

2k +n

To remove some common factors we divide by s(2a; + 2, 2a3, 2as, 0) (see
Proposition 2 for the evaluation) and denote the result by #;. The following expression
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is a linear combination of F values with simple coefficients

say + 2, 2asz, 2a, 0)t; = 2(4k + 2n + 1)sQRay + 2 + i, 2a3 — i, 2ar — i, i)
,Qar+ 1+ i)k +an +1)
2k +n
i(3x + n)
peTE e
+ G —DsQRay +2+1i,2a3 —i,2a, — i, i — 2)}
iKx

B 2k +n)(4x + n)
—i+1,i— 1)+ Qary — i)sQa; + 1 + i, 2a;3

—i+1,2a0—i—1,i— 1)}

sQay + i, 2az — i, 2a, — i, 1)

{Ca; + 1+ )sQay + i, 2a3 — i, 2a; — i, i)

{Qas —i)sQRa; +1+1i2as —i—1,2a

. . b —0)i(—b); 2 2a);
Then 7o = 0 (directly). Rewrite (,* ;) () = ()2 = () 525y

The proof of the following result is in Section 3.3.

THEOREM 5. Suppose that ay > 0 and m > 1. Then

i (—2a3)((2a); . 2"Praras(2 — 2a2),m1(2 = 2a3)m1 (€ + a1 + Dy
iQ2a; +2); (m — D=2k — 2ay — 2a3 + 1),
(a1 + %)m_l (4 +2n+1)

Fon—1lic+1.ai+1.ay—1.as — 1),
G+ @ m fm-bLetla+la-la-1

COROLLARY 2. The identity (2.3) is valid and criterion (2.1) is satisfied for even n.

Proof. The factor (2 — 2a3),,—1(2 — 2a3),,—1 vanishes for m > 2a, or m > 2as.
Multiply both sides by (2a‘+2“3+1) The left side becomes

i

zf (—2a2)i(—2a; — 2a3 — 1)2a3—it
=0 i(2a3 — l)

If @1 > 0 set m = min(2ay, 2a3). The poles of F (as a rational function of a;, a3) occur
in a subset of % + Njp. Next we use a weak form of analytic continuation to apply the
Theorem to the case a; < 0. The terms in the left side with 2a; — i — 1 + (—2a; — 2a; —
1) > 0 vanish; that is, for i < —2a; — 1. Further (2a; + 1)! x Qa; + 2),, = Qa; + m +
D). Since 1/(2a; +m + 1)! is entire for fixed m the identity (left side minus right
side, for fixed a;, a3, m) can be considered as a meromorphic function of a; vanishing
for all a; > 0 except possibly at the poles, which form a subset of % + Z. Now let
a; — —L£ with 1 < ¢ < a3. The terms in the left side (the sum) vanish for i < 2¢ — 2
and the right side vanishes for 2a; +m + 1 < —1; that is, m < 2¢ — 2. By analytic
continuation 3 M1 2”3)(2”]2;32f3i+ H“)t; = 0. It remains to change the normalizing
factor in #; to s(1,2as +2a; + 1, 2a> + 2a; + 1, —2a; — 1). Note that 0 <c <a+b
implies 2a; + 2a; + 1 > 0. The formal expression (puti = —2a; — 1 =2¢ — 1)

S(l, 2a3 + 2a1 + 1, 2a> + 2a; + 1, —2a; — 1)
sQRay + 2, 2as, 2a;, 0)
(% — k= az)e—l (% -k = a3)e—1 (ke +ar + Do (% + al)ze—l

B (% - az)e-l (% - a3)z—1 (% —K—a— a3)2z—1 (1 =k —ay—as)y
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has no poles or zeros at integer values of a;. Thus the identity remains valid when

multiplied by this ratio.

The formula for the partial sum in the Theorem was discovered by experimentation,
and recognizing that the factorization of the partial sum produces linear factors and
an irreducible polynomial in (k + 1) (¢ 4+ n). The validity is proved by induction and

m

a contiguity relation for F; (that is, to show Y ., ¢; = d, for sequences {c;}, {d,} it
suffices to show dy = 0 and ¢,,, + d,,,_1 — d,, = 0 for m > 1). We use a similar approach

to the formula

(8k + 2m)Eo((q194 — g2g3)(xT(q), »)*") — Eo(Ds3 (xT(g), »)*") = 0

for n=1,2,3,.... The expression (8« + 2n)éo((q194 — 4243) P, ;(q)) — §o(D3 P, ,(q))
with a + b = 2n vanishes when a and b are even, and so it suffices to take a, b, ¢
all odd. Furthermore assume a > ¢, otherwise use the symmetry P (g4, 43, 42, 1) =

Pzzb*"(q), which produces the same integral because of the invariance properties of
q194 — q2q3 and w, and replace a, b, cby b, a, a + b — crespectively. Note thata + b — ¢
isoddand ¢ > aimpliesa+b — ¢ < b. Leta =2a; +2a3+ 1, b =2a, + 1, ¢ = 2a; +
1,sothat n =a; +a, + a3 + 1 and ay, a», a3 > 0. The monomials in P;,h are ¢* with

a=2a; +i2a+1—1i2a+1—1i1i)and |a| = 2n. Set

sQRay, 2ar + 2, 2a3 + 2, 0)t;

= &(((8k +2n)(q19s — q2q3) — DG V' T g,

=8k +2m)sQa; +1+i2a3+1—i2a+1—14,i+1)
— 8k +2n)sRay +i,2a3+2 —i,2ay + 2 — i, i)
—Qay+0)sQar+i—1,2a3+1 -6 2a+1—-14,i+1)
—isQay+i+1,2a3+1—-i2a+1—14,i—1)
4+ Qaz + 1 —i)sQa; +i,2a3 —i,2a, + 2 — i, i)
4+ Qay + 1 —i)sQay + i, 2as + 2 — i, 2a, — i, i).

The proof of the following result is in Section 3.

THEOREM 6. Suppose that ay > 0 andm =0, 1,2, ... We have

(—2(12 — 1),‘(—2613 — 1), o 22m+3K(K + al)m+l(_2a2)m(_2a3)m (al + %)m

i=0
x (4x + 3n+2)F(m;k + 1, ay, az, a3).
COROLLARY 3. Equation (2.4) is valid.
. 2a; +2ay + 1
Proof: Multiply the formula by (*“,/ **,"
factor (—2ay),,(—2as),, vanishes for m > 2a, + 1 or m > 2az + 1.

i'Q2a;, + 1); YT ml(=2k — 2ar — 2a3 — 3)amia(ar + Dy,

)and set m = min(2a, + 1, 2a; + 1). The

In the paper [4] the proof depended heavily on several integrations by
parts. It may be possible that such a proof exists in this case (given sufficient
ingenuity), but the method of integrating P, , (¢) by use of 4Fj3-series seems more

straightforward.
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3. Hypergeometric series tools.

3.1. The single sum. A fundamental transformation for terminating 3F, series
(forn € Ny) is

P —n,a,b_1 (d — b), r —n,c—a,b 0
e c,d ’ - (d)n e c,l—}—b—d—n’ '

By iterating we obtain two useful transformations:

—-n,a,b (c+d—a—b), —-n,c—a,c—>b
F. )= ————3F ;1] 3.1
: 2( c,d ) (d)n e c,e—a—b+d G-

and (this one provides the sum for the balanced case: —n+a+b+1=c+d)

—n,a,b (d — a),(d — b),
1) = (—1)"
3B<cﬂ ’) Vo

-nma+b—n+1l—-c—d,1—d—n
X 35 ;1. (32)
a—d+1—-—nb—-—d+1—n

We also need the Whipple transformation (see [1, p. 56]) for balanced terminating 43
series:ifn e Ngand —n+a+b+c+1=c+d+e,then

a (et |\ e-al - a,
o d, €,f ’ B (e)n(f)n
—n,a,d —b,d —c¢ )

X 4F ;1 3.3
* 3<d,e—b—c+d,f—b—c+d 33)

With the aid of these formulaec we prove the single-sum expression for s (). To
concentrate on the intermediate steps we change some variables:

1 1
uy —E—blzz(l—om—ou),
_1 b—l(l )
u2—2 0—2 (%% as),
1
m=§(053—0t4),

5]
n=,\|—|.
2
a a=l

Also write a for a4. By the parity condition m is an integer; further the sets {3, 5~

and {n,a—n-— %} are equal. For now we assume that m > —n (this is necessary
because factors (m + 1); with 0 < i < n will appear in denominators.) The special
case m = —n, corresponding to a3 = 0, 1 will be handled later. Start with the double
sum from equation (1.4); note that (—a4)y = 2%(—%)(15%); = 2%(—n)i(n —a + 1)
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and similarly (—o3)y = 2%(—m —n)(—m+n—a+ %)j. Further we have % — b3 =
-a3—a)=4-m—a.

S Zmi:( —n)i (n—a+3),(=m—n); (=m+n—a+3) ()
=0 j=0 lun)i(u); (3 —m — a)l.ﬂ.

:Xn:(_n)i( - )(K), Fz<_ —n,—m+n—a+%,fc+i;1>

)i (3 —m—a), T—m—a+iu

(—n)i(n—a+ 1), (k) —m—n,z—m—a—k,i—n
= J F ;1
fllz(; MNup)i (5 —m—a), : 2(%—m—a+l,—n—/(+u2 )
" (=) (n a+l)~(_m_”)j(l_m_a_K)j(K)i
—ﬁlX():JX(): l]'(ul)( n—K-i-uz)j( _a)i+j
:fIS,’fl:: (_K _i(_uzizn)nﬂn

The transformation (3.1) is used on the inner sum. Note that the range of
summation is now changed to {(i,j) : i > 0,7 > 0, i+ < n}, and m can be considered
a formal parameter. Reversing the order of summation and using equation (3.2) we
obtain

i:(nM_m_MA%_m_a_K»ﬂb(_mn_a+%m'g

& vy Goma), "\ —m—ast)

" (=n); (=m—n); (5 —m — a—/c)j

= Nen—k+w), (3-—m-— a)j
(—m+j—n),;(3-m—a—«+)),
1 R
(ul)n—j (E —m-—a +J)n7]
j—n—uy+c+m+1,5+m+a—n
X3F2 | ;1 s
ytek+mta—nm+1

x (=)'

and reversing the order of summation again we obtain

) (—m—n), (3 —m—a—«)

S = (—1) n
( ) (%—m—a) (ul)n

2": L (=n)i(— u1+fc+m+1),( +m+a—n)[(i—n)j(1—n—u1)j

purean (5 +x+m+a—n),(m+ Di(—n -k + w);

/ Z(—n),-(—ul+K+m+1),-(%+rwra—n)i(ul +uy —k — Dy
= /2 -
pars it (3 +x+m+a—n), (m+Di(—n— K + )i

m+1,(3-m-a—x«),

(% —m— a)n (ul)n

:ﬁSN, ﬁ =
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At the second last equation the j-sum is done with the Chu-Vandermonde sum
QR b, ) = h)”) Replace i by n — i in the sum S”, and use the relations (b),_; =
(=1)i(b),/(A — b — n), and (—n),—;/(n — i)! = (—1)"(—n);/ i! to obtain
(—up+xk+m—+ 1)n(%+m+a—n)n

(%—i—/{ +m+a—n)n(m+ Dy,

1
—nu+uy—«k—1,5—m—-a—«k,—m—n
X4F3< K ’2 b ;1

S// — (_ l)n

%—m—a,ul—x—m—n,—n—x—i—uz

o +w—k—ln—a+ 31«
=f34F3< | 2 ;1),

5 —m—a, u) +m, uy

(— u1+fc+m+1)n(——m—a)n(l—u1—n)n(l—uz—m—n),,

—(—1)
fi=E0 (5—K—m—a)n(m—i—l)n(—n—/c—l—uz)n(—n—}—ul—K—m)n

The Whipple transformation is valid since the first 4F3-series is balanced (as is the
second, of course). We combine the factors

(—K+u2—n)n+m(m+l)n(%—m—a—;c)n

S = (U2)nem (3 —m—a), (),
5 (w1 + Kk +m+ 1), (3 —m—a), (u)a(uz +m),
(53 —k —m—a), (m+ Dy(—n—« +u)y(—u1 + 1 +m+1),
_ (=)
(U2)m

Thus

(uZ )m L

S— (U2 — K)m JFs —n,u1+u2—x—1,n—a+%,x;1 .
i_m_a»u2+msul

It is possible that 0 > m > —n (that is, @3 < o4) in which case the equation (¢),, =

1 —_ =" : (t2—K)m _ (I=tz) H . _
T = o applies, and so @ = W) Finally for the special casem = —n

the double sum S reduces to the single sum

g = Z (- n), —a + (K)z Z (—n)i(k);

i=0 l'(ul)l 5 —Mm— Cl i=0 l'(ul)l
_ =
(u1)n '
while the 4F; series reduces to a balanced 3 F» series, so that
) —n,up +uy — Kk — — (- 1)n(l+K_u2)n(ul_K)n
Uy —n, up (12 — m)u(u1)n

(by use of formula (3.2)) and the result multiplied by (1+) produces (”é )")” which
equals S.
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This finishes the argument, and now we can show that the three-term
recurrence applies to s(«). Returning to the original variables, we note that we have
by—m = %(az—i—og — o3+ aq) = by, and so

(=) _ (G Do+ —m), (c+3), (5),,

W) (S+by—m), (%)bg (k + %)bz
(k+3),, (3),,

(3, (e +3),,

This proves formula (1.7).

3.2. Three term recurrence and symmetries.

PROPOSITION 4. For n € N

1 1
n(n+2v1)(n+/<+v1 _E) (K~|—§+v2+v3—n>F(n—l;K,vl,vg,v3)

+ {n(n + 2vy) (n -V —v3— %) + <n + % + v1> (n—2v)(n — 2v3)}

1
X <n+v1 —5> F(n;k, v1, v2, v3)
1 1
= n—}—vl—z n—}—vl—i—i (n—2v)(n — 2v3)F(n+ 1k, vy, v, v3).

Proof. Expand the left side as a series in g; := (k);(—k — v — vy —v3); for0 <i <
L%J. Start with the equation

1 1
(”+K+U1—§> (K+§+v2+v3—n)

1 . |- . .
= z—vl—n+z n—vz—v3—§+l —(k+i)(—k —vy — vy —v3+1).

The outline of the calculation is this: write F(n—1) =) ,_,a;g; and F(n) =
_i=0 @& (suppressing the other arguments); note that

gilk + ) (—k —vi — vy —v3 +1) = giy1.

Then collect term-by-term in

1 1
(n+2v1){n<§—v1—n+i> (n—vg—v3—§+i>2aigl-

i=0
1 1 ,
—n;af_lgi+n<n—vz —v3— 5) <n+v1 - 5) ;aigi}
1 1 ,
+ n+§+v1 n—}—vl—z (n—2v2)(n—203)§aig,-.
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— D=5 cig;
20 #t(L—n—v)i($—v2)i(E —v3); 1O!

Write this sum as > and then (in corresponding order) we

obtain
2 1 1
ciznn_:_lvl (n+v1—z){—(n—2i)(n+1—2i)<n—v2—v3—§+i)
1
+n(n+1—2i)<n—v2—v3—§>+i(2v2+1—2i)(2v3+1—i)}
1—2i 1
+ % <I’l + v - E) (n = 2vy)(n — 2v;3)
-2 -2 1 1
:(n v2)(n = 2v3) n+v— <= |Jin+2v)+|n+v+=)@m+1-20)
n+1 2 2

=(n—2v2)(n—2v3)(n+v1—%) <n+v1+%+i).

Finally (n 4+ v; + % + i)/(% —n—vy);=m+v + %)/(—% — n — vy);, which proves the
identity. O
COROLLARY 4. The recurrence (1.5) for s'(«) is valid.

3 (D
i=1 (’(+%)h,‘
where b; = %(ai + ay4), 1 <i < 3. Then §'(a)/c (@) satisfies the recurrence for F in the
Proposition, with n = a4, v| = %(m — ay4), vy = by, v3 = b3. Multiply the recurrence
by ¢’(«). Then the coefficient of F(n — 1) is multiplied by

Proof. Suppose that ¢ = ay = a3 = oy mod 2 and then set /(o) =[]

d(a) _ o oy —1
lar— Lo+l as+1l,as—1) 2k +ar+as—1

and the coefficient of F(n + 1) is multiplied by

d(a) 2k toptoagt+ 1
dlar+ Loy —las—lLag+1) oj+as+1
Divide out the common factor %(al Yo —1)=m+v — %) to obtain (1.5). O

There is another, perhaps unexpected, symmetry.
PROPOSITION 5. §' is completely symmetric in its arguments.

Proof. Already formula 1.7 shows the symmetry in (o, o2, @3). One can argue from
the oy <> a3 and &) <> a4 invariance together with the o <> (a2, @1, o4, 3) invariance
of s. The Whipple transformation (3.3) gives a direct proof. It suffices to show
that s'(et1, a2, a3, @4) = (s, @2, a3, o). If all the ;s are even take n = %, a = « and
d= % — b;. Observe that

1

( )a2/2 (E)a3/2
(" + )az/z (" + %)m/z

r —% ke, 2k + (1 + o + o) 1
DV ak} 5 .
F—bi+ i1 +as) ke + 31+ )

S (o, a0, a3, a4) =

N—| N—
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Note that this expression is symmetric in (o, &4). A similar argument works when oy
is odd:

(%)(aﬁu/z (%)(a3+1)/2

(kc + %)(a2+l)/2 ( + 1_2X)(o¢3+1)/2

x 4F3 s IEQI’K+%(1+a2+a3)-1 )
bk 1+ S +1+%

(o, @, 03, ag) =

g

3.3. Contiguity relations. We start by writing the expressions in Theorems 5 and
6 in terms of the function F (see Definition 1). Suppose that o) = oy = a3 = a4 mod 2
and then set

_ (2K)a1+a4(2K)ag+ot3 ; (%)bi .
C((x) - (4/()‘05‘ ll:! (K + %)bi >

thus s(a) = c(a)F(ag; «, %(al — ay), by, b3). For Theorem 5 we set i =m > 1 and
extract the common factor
cay +m, 2as — m, 2a3 — m, m)(—2a3)m(—2a2)m
" SQar + 2, 2a3, 2a, 0)m(2ay + 2)m(dx + 1) (2 + 1)
sy (i 204+ Do+ ar+ Dy (a1 + 3),,, (—203)m(—2a2)n
- (4 + n)(1 — 26 — 2ar — 2a3)2mm!(2a1 + 2)m

Recall that n = Zle a;. When i = 0 we have

(2a1 + 1)(x + ar)c(2ay, 2a3, 2a3, 0)

fo =204k +2n+1)—2
0=20k+2n+1) x + n)s2a; + 2, 2a3, 2ay, 0)

=0.
The plan is to use induction by showing that

(_2a3)m(_2a2)m

tm+dy—d, =0,
m!(2a1+2)m n T dm—1 m

where d,, denotes the claimed expression for the sum. The following multipliers are
needed in the calculation of #,,:

cay +m+2,2a3 —m,2a, —m,m) _ (k + a1 +m)(2a +2m+ 1)

cQay +m,2a3 —m,2as —m,m) (4 +2n+ )2k + n)
c2ay +m+2,2a3 —m,2a, —m,m—12) (2« +2a; — 1)(2k + 2a3 — 1)
cQay +m, 2az —m, 2a, — m, m) Qar — 1)(2az — 1) ’
c(2a1+m+1,2a3—m—1,2a2—m+1,m—1)_2K+2a3—1
cRay +m, 2a3 — m, 2a, — m, m) 205 — 1
cRaj+m+1,2a3 —m+1,2a0—m—1,m—1) _2K+2a2—1
cQay +m, 2a3 —m, 2a, — m, m) 200 — 1
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Write d,, = A F(m — 1,6+ 1,a1 +1,a, — 1, a3 — 1). Then

Am (2a, — m)(2az; —m)
am _ 4 ’
G, = et atm s 1)
An—1 2m—DQRa; +m+ )k + a2 + a3 —m)(/c+a2+a3+ % —m)
A, (k + a1 + m)2ay + 2m — 1)(2a, — m)(2az; — m) '

The expression (%tm + dy,—1 — dy,)/ C,, with each a; replaced by v; (formal

parameters instead of integers) becomes the left side of the equation in the following
result.

THEOREM 7. Suppose that vy, vy, v3 ¢ —% + Np, (v =v; +vy+v3) and m=
1,2,3,.... Then

22y 4+ 2m + 1) (k 4+ vy +m)(dk + vo)F(m; k, v + 1, va, v3)

—{2(k + vi + m)(4k + vo) + m(Bk + vo)}(2vy + m + 1)F(m; k, vy, va, v3)
Quy+ 2k — 1)QRus + 2 — 1)
(21)2 — 1)(21.)3 — 1)

. 2k +2v3 — 1)

—m(m—1) Bx +vo)F(m — 26,01 +2,v—1,v3—1)

Qus —m)F(m— ;6,01 + 1, v, v3 = 1)

21.)3—1
2 2v; — 1
_ Kw(zvz_m)F(m—I;K,v1+1,vz—1»v3)
200 — 1
8k (2 1
Fm(m— 1) “Qui+m+1) (K +v2+v3 —m)

vy — DQRuvs — Qv +2m — 1)
1
X <K+v2+v3+§—m)F(m—2;K+1,v1+1,v2—1,v3—1)

(21}2 - m)(2v3 - m)
vy = DQvs = 1)

—dmx K+vi+mFm—-1Lk+1,v+1Lv,—1,v3—1)

=0.

Proof. We proceed by considering the left side as a polynomial in « of the form

Y (ei + die) )i~k — vi — vy — v3);.

=0

The coefficients are rational functions of vy, vy, v3 and m. Write the identity in
abbreviated form as Zzzl wnF(y,) = 0 using the same order as above (for example,
vy = (m;k, vy, vp, v3) and us = —m;c(z'(;;—izl_l)(sz — m)). Denote term #i of F(y,) by

ti(yn), (where ty(y,) = 1 for all n), so that

(1= %), (3%); (=K — v1 = v2 — v3);

(% —u - m)i (% - Uz)i (% - U3)i !
for example, with the understanding that F(m) = 0 for m < 0. The verification is
carried out by symbolic computation. The underlying idea is to set up the equations as

rational functions of all of the variables. For example, (a); is not rational in i, but for a
fixed integer k the expression («a);/(a + k); is rational in @ and i because of the identity

ti(y3) =
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(a)i/(a+ k); = (a)r/(a + i)i. By use of symbolic calculation we evaluate

+ur+ ) ,
1(y2) s 1i(y2)

7
po(k) = pi(1 4+ t1(y1)) + p2 + Zﬂnv

n=3

o) — g1, 1) i 1i(va)

for 1 <i < [%]. Indeed p;(«) is a polynomial in « of degree 4. (Note that % is

not a polynomial in « for i > 1, and the factor « in ug and w7 is necessary since
% has « in the denominator for n = 6,7.) Further p;(x) is rational in all the
variables (v, vy, v3, k, i, m). Although i is an indexing variable the difference between

the respective parameters in {y,} is one of 0, £1, &2 and thus % is rational in / for

each n. By computer algebra we find the coefficients {Ctlk}i:o» which are functions of
i, m, vy, V2, V3, SO that

pi(k) = cio + ciik + (cip + ¢i3x)gi1(k) + ¢iagia(x),

where g; (k) 1= (k + Di(—« — vo + D) for k = 0. Thus go,i(<)gix(k) = go,i+k(k). For
example
. 42i —m)2i+ 1 —m)

i+ 1) (3 —va+i)(3 —vs+i)

Ci4

for0<i< L%J, but the other coefficients are more complicated. Because the degree
of x in p 18 2 the value of ¢ 4 agrees with the generic ¢; 4 with i = 0. For i > 0 let

i)
L goik)’

e o (=5, :
§o th.at r; is independent of « (thus r; = - E— (%jvz)i (%7%)‘_). The left side of the
identity equals

Lm/2]
> pilk)go.i)r;
i=0
Lm/2]
= Y ril(cio + ci1k)go.i + (cia + €136)g0.41(6) + Ciago.i42())
i=0
lm/2]+2
= Y 20i(rlcio+ ci) +rici(Cin1 2+ €136 + Tioacia).
i=0

By symbolic computation
ri—1 )
(¢io + cink) + ;f(cifl,Z + ¢i136) + ;fci72,4 =0
1 1

for2 <i< L%J. Also

Co,0 + Co1k = 0,
ri(cro + c116) + ro(co2 + co3x) = 0.
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The special cases at the top end of summation occur ati = 5 or i = =5 L (for m being
even or odd, respectively) and in fact ¢;4 = 0 and (¢;2 + ¢i3x) + "'r—*!lc,-,1,4 = 0 for these
values of i. O

This completes the proof of Theorem 5.
We use the same approach to Theorem 6, where we set i = m > 0 and extract the
common factor
cRaj+m—1,2as —m+1,2a5 —m+1,m+ 1) (—2a3 — 1),(—2a; — 1),
s2ay, 2a3 + 2, 2a; + 2, 0)m!(2a; + 1),,(4x + 2n+ 1)(2x + n)
( + a)m ((ll + %)m (=2az — D(—2a2 — D,
(=3 — 2« — 2a; — 2a3)2mq2m!(2ay + 1),

Cp =

_ 22m+1

Next calculate, recalling that n = a; 4+ a; 4+ a3 + 1 and we obtain

cCay+m+1,2a3+1-—m2a+1-—mm+1) («+a +m)Q2ar+2m+1)
cQRay+m—1,2a3+1—m2a+1—mm+1) (4 +2n+ )2« +n)
cQay +m,2a3+2 —m,2a, + 2 — m, m)
cRaj+m—1,2a3+1-—m,2a, +1—m,m+1)
_2(K+a2+a3+1—m)(:<+a2+a3+%—m)
(4k +2n+ 1)(2x + n)
cRaj+m+1,2a3+1-—m,2a,+1—m,m—1) . 2k +2a + D2k +2a3+ 1)

’

cQar+m—1,2a3+1—m2a+1—mm+1) Qar + D)Qaz + 1) ’
cRay +m,2a3 — m,2a, + 2 — m, m) . 2k + 2a3 + 1
cQRar+m—1,2a3+1—m2a+1—mm+1) 2a3+1
cRay +m,2a3 4+ 2 — m, 2a; — m, m) . 2k +2a, + 1
cQRar+m—1,2a3+1—m2a+1—mm+1) 2a+1

Write the right side of the summation formula in Theorem 6 in the form
dy = A F(m;k + 1, ay, az, az). Then

A Qar — m + DQas —m + 1)
n 4 4+ 3n+2 ,
c k(k + a; +m)(4i + 3n+2) Gt D@a T D)

Aoy 2mQay+m)c +ay+az+1—m) (c +ay + a3+ 3 —m)

A,  (k+a +m)Qa;+2m—1)QRa —m+ Qaz —m+1)

The expression (%tm +dy—1 — dy)/ Cy, With a; replaced by v; (formal

parameters instead of integers) for 1 < i < 3 becomes the left side of the equation in
the following result.

THEOREM 8. Suppose that vy, vy, v3 & —% +No, (wo=vi+v+v3+1)and me
No. Then

2Quy + 1 4+ 2m)(k + vy +m)(dk + vo)F(m + 16, v1, v2 + 1, v3 + 1)
3
—4(4k + vo) <K+U2+U3—‘r§ —m> k+va+vs+1—mFm;x,v,v+1,v3+1)

—Quy+m)dx +2vo+ )2k +vo)F(m+ Lk, vy — Lvp+ 1,03+ 1)
2k +2v,+ )2k +2v3+ 1)
QQuy+ DRus + 1)

m(4x + 2vo + 1)2k + vo)F(m — 1k, vy + 1, v2, v3)
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2 +2v34+1)
2us +1)
2 +2v+ 1)
Qv+ 1)
8mx (2v) + m)
+ Quy + DQvs + 1)(2vy +2m — 1)
X (4 4+ 3vg + 2)F(m — 1,k + 1, vy, va, v3)
4cRuy+1—m)Qus+1—m)
B Quy + DQus + 1)

Qus + 1 — m)(4x + 2vo + 1)(2k + vo)F(m; k, vy, v2 + 1, v3)

Quy + 1 — m)(4x + 2vo + 1)(2k + vo)F(m; k, vy, v2, v3 + 1)

3
(K+v2+v3+§—m)(fc+v2+v3+l—m)

(4x + 3vg + 2)(k + v + m)F(m;k + 1, vy, va, v3)
=0.

Proof. The method is similar to the previous one; here we use y3 as the point
of reference for the ratio calculations. Write the identity as Zi:l wnF(y,) =0 and
use the notation #;(y,) as before. As before g; (k) := (k + D)r(—k — vo + i)i (but here
vy = 23:1 v; + 1, different from the previous theorem). Set

2t : )
) — i+ n i\/n .
P = D n= 0 37 e Dt S

2 8
polk) = Z Unt1(Vn) + Z M.
n=1 n=1

Then p;(x) is a polynomial of degree 5 in «. By computer algebra we find the coefficients
{c,-k}f(:(), which are functions of i, m, vy, v,, v3, so that

pilk) = cio + i1k + (cip + ci3k)gii1(k) + (ciga + ¢i56)8i0(K).

Then the left side of the identity equals

L(m+1)/2]
> pilk)go e
=0
[(m+1)/2]
= > rilleio+ cak)goi + (Cia + 310, 1(k) + (Cia + Cisi)go.i42(k))
i=0

Lom+1)/2)+2
= Z 8o.i(ri(cio + cink) + rici(ciz1,2 4 cim1,36) + Fica(ciza.4 + ¢i—2,5K)),
i=0
where r; ;= % The degree of « in w; and u, is 3 and thus cp4 + co 56 agrees

with the generic value of ¢;4 + ¢;s¢ at i = 0. In the range 2 <i < L’"“J the value
of (cio+ ciik) + = l(c, 12+ ciz 13K)+—(C, 2.4+ ¢i—a5k) 1s found to be zero by
symbolic computatlon Also ¢ + co, 16 = 0and ri(c1 0 + ¢, 1/() ~+ ro(co2 + co3x) = 0.
The special cases at the top end of summation occur ati = %5 ori = ’”* (for m being
even or odd, respectively) and in fact ¢; 4 + ¢;s6 = 0 and

ri—
(cip + cizk) + 17(61‘—1,4 +ci1,56) =0
i

for these values of i. O
This completes the proof of Theorem 6.
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4. Closing Comments. First we remark on the difficulty and complexity of the
proof of the intertwining property. We speculate that one reason is that the measure on
the linear transformations t(g) is not uniquely defined. As was seen in the presentation
it is only the integrals of P ,(¢) that matter. By Rosler’s result [8] for each x € R? and
« > 0 there is a positive Baire measure 1, such that Vf(x) = [ fdu. and the support
of p is contained in the closed convex hull of the B,-orbit of x. The explicit measure in
Theorem 4 requires k > % and is not positive. Make the substitutionsu = 1 — ¢, ¢; =
=5 Y1=m—¢eYr=¢(With0) <e < %); then 1 + go(g) + g3(¢) = —1 — cos 6 +
2e + O(¢?), and gy = 2cot? e cosh, so that both terms are negative for small & and
7 < 0 < 7. However the integral formula for the Bessel function K%(x, y) is positive
and works for x > % It would be very interesting if one could develop explicit results
for the Coxeter groups A4, or B, for n > 3. The corresponding compact Lie groups
(U(n + 1) and Sp(n), respectively) are fairly concrete but clearly we need more powerful
techniques than we used here for n = 2.

Secondly there is the two-parameter problem. The group B, allows two parameters
in the associated differential-difference operators (see (1.1)). The approach to finding
the measure u by starting with the Lie group Sp(2) did not (as yet) help us in the two-
parameter problem. This may be the hidden reason why the part of the intertwining
formula associated with the representations of types 1 and 2 (realized on x;x, and
x} — x3 respectively) is so complicated (involving derivatives); we were somehow
(heuristically) close to the kernels forx; =k + 1,k =k and k] =k, kp =« + 1.

Finally we comment on the role of computer algebra. We produced K, (x, y) for
n < 6 by solving the equations T;'K, (x,y) = y;K,—1(x,y),i =1,2. Then by use of
the symmetrized kernels % > wen, Kn(xw, y) we conjectured that the measure u is the
right one. Borrowing the polynomial 2 (q; + q4) + q194 — g2q3 from the S; paper [4]
quickly helped to expand the conjecture. The part of the intertwining operator dealing
with types 1 and 2 (see Section 2.1) turned out to be puzzling. Eventually we had a
formula for V' that worked for each K, (x, y) tried (up to n = 12), but no proof. Then
experimenting with P; ,(¢) led to discovering the single-sum for s(«) (see Section 1.4).
The proof itself depends on classical transformations of hypergeometric series. In turn
the single sum expression (which had three free parameters) made feasible enough
experiments to formulate the identity in Theorem 5. The term-by-term calculations
which prove the contiguity relations in Section 3.3 would be very tedious without
symbolic computation assistance, and much space would be needed to write down
every intermediate step. However it is straightforward to verify these relations for any
particular m (magnitude depending on the size of the computer; m = 1...6 is not too
big). There is some satisfaction in coaxing a symbolic computation system actually to
prove a conjecture after it helped in the conjecture’s formulation.
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