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Summary

In crosses between inbred lines linear regression can be used to estimate marker effects ; these

marker effects then allow marker-assisted selection (MAS) for quantitative traits. Weighting of

marker and phenotypic information in MAS requires estimation of genetic variance associated

with the markers : the usual estimators are biased, resulting in too much weight being placed on

marker information relative to phenotypic information. In this paper we develop a cross-validation

method to remove this bias, and show by simulation that response to selection using this method is

almost as high as that achieved using optimal weighting of marker and phenotypic information.

1. Introduction

Lande & Thompson (1990) suggested that the linkage

disequilibrium between genetic markers and quan-

titative trait loci (QTL) created when two inbred lines

are crossed could be used to facilitate marker-assisted

selection (MAS). They used multiple regression of

phenotype onmarker-type to selectmarkers associated

with the trait through linked QTL, estimated the effect

on the trait associated with these selected markers,

and then combined these marker effects with pheno-

typic information using a selection index. Computer

simulations (Gimelfarb & Lande, 1994a; Whittaker

et al., 1995) have shown that the method is more

effective than selection on phenotype alone when

population sizes are large and heritability low. Zhang

& Smith (1992, 1993) obtained similar results when

comparing selection on the BLUP estimate of an

individual’s genetic value with selection based on an

index combining marker effects and the BLUP

estimate.

However, problems arise in calculating the relative

weighting of marker and phenotypic information,

because the same data are used to select the markers

that affect the trait and to estimate relative weights

given to marker and phenotypic information. This

leads to overestimation of the magnitude of the

marker effects and overestimation of the variance

* Corresponding author. Telephone: ­44 (0)1734 318023. e-mail :
j.c.whittaker!reading.ac.uk.

explained by the markers, so that too much weight is

put on the marker score relative to the phenotypic

information, and selection response is reduced. We

describe these problems more fully in Section 2, and

suggest a solution based on cross-validation (Efron &

Tibshirani, 1993). Simulation results indicate that this

solution works well and gives a useful improvement

in selection response in comparison with existing

methods.

2. Methods

We shall consider a cross between two inbred lines,

each assumed homozygous (for different alleles) at all

loci. We label the alleles at the ith QTL in the first line

Q
i
, and the alleles at the jth marker locus M

j
. The

corresponding alleles in the second line are labelled q
i

and m
j
.

For each individual in the population we know the

phenotype y and the number of M
i
alleles at the ith

marker locus, x
i
, so that the marker genotype of an

individual is described by x¯ (x
"
,x

#
,… ,x

n
). From

these we wish to construct an estimate zW of the genetic

value of the individual, z. Ideally we would use the

regression of z on y and x,E(z r y,x), but this is difficult

to evaluate (Whittaker et al., 1995). Lande &

Thompson (1990) suggested using a linear approxi-

mation, so that

zW ¯ b
!
y­b

"
s
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where, for any individual, the marker score s is given

by

s¯β
!
­ 3

i`!

β
i
x
i
.

Here β
i
is the additive effect associated with the ith

marker and ! is the set of markers for which effects

have been fitted. The effects β
i
are fitted by multiple

linear regression, that is by minimizing

3
n

j="

(y
j
®β

!
® 3

i`!

β
i
xj

i
)#,

where y
j
and xj are the phenotype and marker-type

respectively of the jth individual. Whittaker et al.

(1996) showed that in F
#

populations

E(z rx)¯β
!
­ 3

i`!

β
i
x
i
,

and in the Appendix we show that this also holds for

generations subsequent to the F
#
provided there is no

selection, so the main approximation here is in the

linear combination of marker and phenotypic in-

formation. An algorithm to select the set of important

markers ! is necessary: we use the one based on

Mallow’s C
p

described by Whittaker et al. (1995).

Expressions for the relative weights of marker and

phenotypic information b are in principle easily

calculated (Lande & Thompson, 1990), for by stan-

dard theory (Falconer, 1989)

b¯P−"G

where

P¯ 9 var (y)

cov (y, s)

cov (y, s)

var (s) :
and

G¯ (cov (z, y), cov (z, s))T

¯ (var (z), cov (z, s))T.

However, for this to be of use we need estimates of

var (z) and cov (z, s). Previous work (Lande &

Thompson, 1990; Gimelfarb & Lande, 1994a) has

tended to estimate cov (z, s) by cov (y, s), arguing that

all the phenotypic variance explained by the markers

is by definition genetic. However, as noted above, a

variable selection technique has been used to choose

the subset of markers to include in the marker score s.

Markers are selected because they explain a high

proportion of the phenotypic variance so using the

same data to select markers and to estimate marker

effects clearly leads to cov (y, s) overestimating cov (z,

s) and hence to overestimation of the weight to be

placed on marker score in the selection index. Indeed,

this leads to virtually all weight being placed on the

marker score (Whittaker et al. 1995; Gimelfarb &

Lande, 1994a), so that the index is effectively

equivalent to selection on the markers alone.

Zhang & Smith (1992, 1993) avoid this problem by

generating two independent sets of F
#

data from the

same population, applying their marker selection

procedure to one to give ! and then obtaining

unbiased marker effects for this ! from the other set

of data. The same set of markers ! is then used in all

subsequent generations, so that bias in estimates due

to the marker selection procedure is eliminated.

However, this is clearly not an efficient use of data:

much of the information from the first of these F
#
data

sets is wasted. Also, Gimelfarb & Lande (1994a) have

shown that MAS is more efficient if the marker

selection procedure is repeated every generation. We

shall repeat the marker selection procedure every

generation whilst estimating cov (z, s) using cross-

validation (Shao, 1993).

Cross-validation estimates are constructed as

follows. We split the data set into two parts, denoted

by the set S and its complement Sc respectively. The

data in S are used to select and estimate marker

effects ; these marker effects are then used to calculate

marker scores s for the individuals in Sc, and cov (z, s)

estimated by cov (y, s) calculated over all individuals

in Sc. There is no bias here, because no data point

contributing to cov (y, s) was used in the marker

selection procedure. Averaging over a number of sets

S gives the cross-validation estimate of cov (z, s).

This gives a range of possible cross-validation

estimates, varying in the choices of S used. We

minimize the computational cost of the estimation

procedure by splitting the data into two parts of equal

size, and using each half as S in turn. This gives the

following procedure. The data are divided into two

halves, to one of which the variable selection procedure

is applied to select a set of markers and produce

estimates of marker effects. For every individual in the

other half of the data these marker effects are used to

calculate a marker score s(") and, using this section of

data only, cov (y("), s(")) calculated. The process is then

repeated, swapping the roles of the sections of data, to

get a score s(#) for the other section of data and hence

cov (y(#), s(#)). All the data are then used to select !
and produce the marker effects used in calculating the

marker scores s actually used in selection. We could

use

0±5(cov (y("), s("))­cov (y(#), s(#)))

to estimate cov (z, s), but this will result in an

underestimate because we would expect to be able to

select markers explaining more of the variation in z

using all the data than using any part of it. We make

a rough correction using n, n(") and n(#), the number of

markers used in calculating s, s(") and s(#) respectively,

to get the estimate of cov (z, s) :

0±5n 0cov (y("), s("))

n(")
­

cov (y(#), s(#)

n(#)
1 .

This correction is ad hoc but seems to result in

satisfactory performance.
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Fig. 1. Selection response for map 1 (20 chromosomes,
100 QTL, positive and negative alleles allocated at
random between the two lines as described in Section 3),
n¯ 400, h#¯ 0±1.

Two methods for the estimation of var (z) were

considered. The first assumed that the environmental

variance σ#
e
was known, for instance from a very large

F
"

generation, with var (z) estimated by

var (y)®σ#
e
.

The second method is based on the use of family

structure. The simulations in Section 3 are based on

full sib families. For such a family structure let f be the

number of sibs in a family and ya
f

be the mean

phenotypic value of such a group of sibs. Then,

var (y®ya
f
)¯ var (y)®cov (y, ya

f
)

because

cov (y, ya
f
)¯ var (ya

f
)

and

cov (y, ya
f
)¯

1

f
[var (y)­( f®1) cov (y, y

s
)]

where cov (y, y
s
) is the covariance between the

phenotypic values of sibs. If we write ρ for the

correlation between the genetic values of sibs we have

cov (y, y
s
)¯ cov (z, z

s
)¯ ρ var (z)

and this implies that

var (z)¯
1

ρ 9var (y)®
f

f®1
var (y®ya

f
): .

We can calculate the phenotypic variance var (y) and

the variance of family deviations var (y®ya
f
) but ρ is

unknown. In the absence of selection, ρ¯ 0±5, but this

is not true in selected populations. Ignoring changes

in QTL frequencies (i.e. assuming an infinitesimal

genetic model), selection reduces the between-family

variance whilst leaving the within-family variance

unchanged. Here we will have changes in gene

frequency but we still expect that in selected popu-

lations ρ! 0±5. However, estimation of ρ has proved

difficult so we have ignored the effect of selection and

assumed ρ¯ 0±5 in all generations. There is no family

information in the F
#
so we have selected on markers

alone in the F
#

generation.

A priori we expect to put positive weight on both

marker score and phenotypic value. We therefore

allow only positive values of b
!
and b

"
. If, for instance,

b
!
! 0 we set b

!
¯ 0 and b

"
¯1 so that selection is

exclusively on marker score. If both b
!
! 0 and b

"
!

0 we set b
!
¯1 and b

"
¯ 0 so that selection is

exclusively on phenotype.

3. Simulations

Four methods were compared using computer

simulations. They were:

Selection based solely on an individual’s phenotypic

value (PHENO).

Selection based solely on the marker score s

(MARKER).

Selection based on the combination of s and y in an

index as described in Section 2, with the optimal, but

in practice unknown, weights used in the selection

index. That is, the true values of cov (z, s) and var (z)

are used in calculating the weights b, with the marker

scores s estimated as above. Note that by true values

of cov (z, s) and var (z) we mean the actual values in

the finite simulated population rather than the

expected infinite population values (CHEAT).

Selection based on the combination of s and y in an

index as described in Section 2, with cov (z, s)

calculated using the cross-validation method described

there and var (z) estimated using family structure

(INDEX).

For each method the model-fitting procedure was

repeated every generation so that markers for which

effects are fitted may change with time. Note that

CHEAT should give an upper bound to the methods

discussed here. To improve on CHEAT we must

either incorporate additional information, for example

by using information on relatives to augment the

phenotype information, or improve the marker selec-

tion and estimation procedure. In order to get a rough

idea of the increase in selection response that is

possible by improving the marker selection and

estimation procedure, we considered selection on

https://doi.org/10.1017/S0016672397002711 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672397002711


J. C. Whittaker et al. 140

marker score where the individual marker effects are

obtained by regressing genetic value on marker-type

rather than regressing phenotypic value on marker-

type. This should produce marker effects which are

almost, but not exactly, optimal. Selection response

obtained using this method (TRUE) will therefore

give an upper bound to the performance of MAS.

Note that this upper bound will be less than that

obtained by direct selection on genetic value.

Simulations were done using the two maps described

by Whittaker et al. (1996). For both maps QTL are

assumed to combine additively both between and

within loci. The first had 20 chromosomes, each of

length 1 morgan; 5 marker loci were spaced evenly

along each chromosome, with a marker located at

each end of every chromosome. Using the Haldane

(1919) mapping function this gives the probability of

recombination between two adjacent markers on the

same chromosome to be 0±1967. Locations for

100 QTL were chosen from a uniform distribution,

with the effect of these QTL, a
i
, for i¯1, 2,… ,100

generated assuming that the amount of additive

genetic variance due to QTL may be approximated by

a power series, as in Lande & Thompson (1990).

Positive and negative alleles were allocated at random

between the two lines. We refer to this map as map 1.

In addition we used the map from Gimelfarb &

Lande (1994a) ; this has 110 markers evenly spread

over 10 chromosomes of length 1 morgan, with

25 QTL placed randomly on the map. Using the

Haldane mapping function this gives the probability

of recombination between two adjacent markers on

the same chromosome to be 0±0906. We refer to this

map as map 2. As in Gimelfarb & Lande (1994a),

simulations of two types were run. In the first, ‘ total

coupling’, the effects of QTL were in the same

direction; that is one of the initial lines has all the

alleles with positive effect on that chromosome and

the other line all the negative effects. In ‘total

repulsion’, QTL effects alternate in sign along the

genome. Neither total repulsion nor total coupling is

likely to occur in reality : they represent extreme cases

and are included here to show the range of possible

behaviour.

Note that results are grouped according to the

heritability in an F
#
population. The fact that QTL on

the same chromosome are positively correlated in

coupling phase but negatively correlated in repulsion

phase means that, with environmental variance fixed,

QTL effects must be larger in repulsion than in

coupling to give the same heritability in the F
#
.

Simulations were run for 20 generations with

heritabilities 0±1 and 0±2, and 200 and 400 individuals

of each sex. The number of replicates was varied with

the population size: 60 for 200 individuals and 40 for

400 individuals. In every generation the top 20% of

individuals of each sex was selected and paired at

random: each pair is then assumed to produce five

offspring of each sex.

4. Results and discussion

The results obtained are shown in Figs. 1–4 for 400

individuals of each sex and heritabilities of 0±1 and 0±2.

Results for 200 individuals of each sex are similar in

that the ordering of the methods is unchanged, though

the differences between the methods are reduced;

0 10 20
Generations

1·0

0·9

0·8

0·7

0·6

0·5

0·4

0·3

0·2

0·1

0·0

–0·1

R
es

po
ns

e
Pheno
Marker
Cheat
Index
True

Fig. 2. Selection response for map 1 (see caption for Fig.
1), n¯ 400, h#¯ 0±2.
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Fig. 3. Selection response for map 2 (10 chromosomes, 25
QTL, positive and negative alleles allocated in coupling
or repulsion as described in Section 3), n¯ 400, h#¯ 0±1.
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Fig. 4. Selection response for map 2 (see caption for Fig.
3), n¯ 400, h#¯ 0±2.

Table 1. Standard errors of accumulated selection

response for map 2, repulsion (see caption for Fig. 3),

n¯ 400, h#¯ 0±1

gen PHENO MARKER CHEAT INDEX

0 0±0034 0±0034 0±0034 0±0034
1 0±0083 0±0105 0±0092 0±0105
2 0±0121 0±0153 0±0155 0±0142
3 0±0156 0±0213 0±0153 0±0176
4 0±0163 0±0220 0±0184 0±0199
6 0±0193 0±0265 0±0263 0±0241

8 0±0223 0±0321 0±0345 0±0319
10 0±0266 0±0387 0±0403 0±0316
15 0±0258 0±0593 0±0346 0±0465
20 0±0232 0±0617 0±0365 0±0349

these results are therefore not shown here. Standard

errors of accumulated selection response for map 2 in

repulsion, 400 individuals of each sex, h#¯ 0±1 are

given in Table 1. Standard errors for other maps and

other values of n and h# are similar. Results for TRUE

have been given only for map 1 for the sake of clarity :

results for map 2 are similar. In all cases results are

given as percentages of the maximum genetic value

obtainable, that is the genetic value of an individual

possessing all favourable alleles.

As usual, the marker-assisted methods are

increasingly favoured, in comparison with selection

on phenotype, by increasing population size and

decreasing heritability. The advantage of INDEX

over PHENO and MARKER is clear for all parameter

values with map 1 and map 2 in repulsion mode, with

CHEAT in most cases performing marginally better

than INDEX. For map 2 in coupling mode, for all

parameter values, CHEAT, MARKER and INDEX

are virtually indistinguishable, all performing much

better than PHENO. This is reasonable : we know

MARKER works very well for map 1 (Whittaker et

al., 1995; Gimelfarb & Lande, 1994a) because it can

identify good and bad chromosomes instead of having

to separate linked good and bad QTL, so we might

expect that phenotypic information is of little benefit

in selection using this map. In all cases TRUE does

dramatically better than all other methods; clearly

there is considerable room for improvement in marker

selection and estimation. Comparison with the results

in Whittaker et al. (1995) is interesting. MGLMAS in

Whittaker et al. (1995) used the approach described in

Lande & Thompson (1990) to combine marker and

phenotypic information and, as explained above; this

causes the mean selection index coefficient for marker

score to be very high relative to that for phenotypic

value. Thus we might expect the performance of

MGLMAS to be close to that of MARKER. In fact,

selection response using MGLMAS is about midway

between that obtained using MARKER and that

obtained using INDEX. Presumably this is because

the mean selection index coefficients are distorted by

a few very large values, with MGLMAS assigning

sensible weights to phenotype a reasonable proportion

of the time.

It is a little surprising to find that INDEX does so

well relative to CHEAT, particularly given that the

weights given to phenotypic and marker information

in INDEX can be quite different from the optimal

weights (Table 2). It seems that selection is reasonably

robust to errors in the selection index weights. This is

presumably because marker score and phenotype are

correlated so that the position is similar to selection

indices involving information on relatives, where Sales

& Hill (1976) have shown that selection is reasonably

robust to errors in the selection index weights.

We know (e.g. Whittaker et al. 1995) that the

relative efficiency of MARKER and PHENO changes

with time, PHENO doing relatively better in later

generations. This is partly a consequence of

MARKER being more successful in fixing QTL than

PHENO in early generations, so that the heritability

in populations selected using MARKER is lower than

that in populations selected using PHENO, and partly

due to recombination eroding marker QTL cor-

relation. We would expect weight to be transferred

from marker score to phenotype with time, and Table

2 confirms that this does happen.

The other notable feature of Table 2 is the number

of times one of the components of b would be negative

if not for the constraint discussed in Section 2. Since

this is a much rarer occurrence for the optimal

weights, it would seem that the major cause is error in

the variance estimation procedure: as the genetic

variance is very low in later generations, small errors
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Table 2. Estimated and optimal selection index coefficients, together with the number of runs for which each

was negati�e for map 2, repulsion, n¯ 400, h#¯ 0±1

Estimated Optimal

Gen b
"

b
#

b
"
! 0 b

#
! 0 b

"
, b

#
! 0 b

"
b
#

b
"
! 0 b

#
! 0 b

"
, b

#
! 0

1 0±0762 0±9238 21 1 1 0±0677 0±9323 0 0 0
2 0±0720 0±9280 18 0 0 0±0831 0±9169 0 0 0
3 0±1643 0±8357 13 2 1 0±0897 0±9103 0 0 0
4 0±1878 0±8122 9 2 1 0±1090 0±8910 0 0 0
6 0±3011 0±6989 11 6 1 0±1389 0±8611 0 0 0
8 0±2149 0±7851 11 5 0 0±1525 0±8475 0 0 0

10 0±2737 0±7263 10 6 0 0±1485 0±8515 0 0 0
15 0±3653 0±6347 7 8 2 0±1724 0±8276 0 0 0
20 0±3614 0±6386 13 11 1 0±2422 0±7578 0 3 0

Table 3. Actual and estimated genetic �ariances and and co�ariances for

map 2, repulsion, n¯ 400, h#¯ 0±1, with root mean square errors

(r.m.s.e.) ; ρ is the correlation between the genetic �alues of sibs

Actual Est. Actual Est.
Gen var (z) var (z) r.m.s.e. ρ cov (z,x) cov (s, z) r.m.s.e. cov (y, z)

1 0±0847 0±0461 0±0536 0±3572 0±0572 0±0545 0±0225 0±1233
2 0±0765 0±0578 0±0432 0±3796 0±0489 0±0520 0±0239 0±1177
3 0±0664 0±0546 0±0402 0±3837 0±0373 0±0429 0±0239 0±1083
4 0±0632 0±0302 0±0498 0±4110 0±0304 0±0263 0±0234 0±0909
6 0±0554 0±0406 0±0331 0±4268 0±0239 0±0235 0±0177 0±0889
8 0±0548 0±0507 0±0396 0±4439 0±0241 0±0274 0±0228 0±0922

10 0±0539 0±0406 0±0336 0±4349 0±0212 0±0201 0±0224 0±0849
15 0±0378 0±0289 0±0368 0±4504 0±0146 0±0148 0±0148 0±0745
20 0±0181 0±0166 0±0305 0±4678 0±0065 0±0088 0±0182 0±0643

in estimation can cause the variance estimates to

become negative and this leads to one of the

components of b becoming negative. Similar

constraints on the components of b were used in

MGLMAS (Whittaker et al., 1995).

Table 3 gives variance estimates and actual values

for one parameter set, together with the root mean

square error (r.m.s.e.) of the estimates. The r.m.s.e. of

an estimate xW of x over n replicates is

'91n 3
n

i="

(xW ®x)#:
and is a more appropriate measure of variability than

standard error here because the variances we are

trying to estimate are themselves random variables. It

seems that our cross-validation estimate of cov (z, s) is

approximately unbiased but very variable. It is a

much better estimate of cov (z, s) than cov (y, s) : cov

(y, s) gives estimates that are heavily biased upwards,

particularly in later generations when we may have

cov (y, s)" var (z). The estimates of var (z) are biased

downwards because we have assumed in calculating

them that the correlation between the genetic values

of sibs is 0±5, which is greater than the true values.

Again, these estimates are rather variable. Estimating

genetic variance by var (y)®σ#
e

gave better variance

estimates but had no effect on selection response. We

would expect that downward bias in our estimates of

var (z) would result in b
"

being reduced from its

optimal value, whereas we can see from Table 2 that

in fact it is increased. This is because the constraint

that b
i
be non-negative pushes the estimated selection

index coefficients towards putting equal weight on

phenotype and marker-type. Runs with b uncon-

strained resulted in lower selection response, pre-

sumably because errors in estimation caused negative

weight to be put on phenotype or marker score when

the selection index coefficients should have been

positive.

Fortunately, these estimation problems do not

affect the selection response greatly in the situations

discussed here. This may not be true for other maps or

parameter values, so we shall discuss briefly ways of

improving the variance estimates. Firstly, consider the

estimation of the covariance of marker score and

genetic value. This is essentially equivalent to es-

timating the prediction error in regression models, a

problem on which there is a large literature (Breiman,

1992). The most promising approaches have been

data re-use methods such as the boot-strap or cross-

validation: we have used a very simple form of cross-

validation, but it seems likely that more sophisticated
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methods such as the balanced incomplete cross-

validation of Shao (1993), the 0±632 bootstrap (Efron

& Tibshirani, 1993) or Breiman’s (1992) little boot-

strap would give better variance estimates, though

with much higher computational cost. It is rather

harder to see how the estimates of genetic variance

could be improved.

5. Conclusions

If correctly weighted, both marker and phenotypic

information are of value in MAS, with marker

information important in early generations and

phenotypic information of greater importance later

on. Estimation of weights is difficult ; the methods

discussed here are far from ideal, but are good enough

to produce better response than selection on either

markers or phenotypic information alone in most of

the situations considered. Indeed, it seems that the

performance of MAS is robust with respect to the

relative weighting of marker and phenotypic in-

formation, and this means that methods discussed

here give almost as great a selection response as the

optimal weighting. It would therefore seem that any

further improvements in selection response under

MAS must be gained by improving the components of

the selection index. One way to do this is to incorporate

information on relatives, for instances by using BLUP

methodology (Zhang & Smith, 1992, 1993) or selection

indices. We believe the cross-validation approach

developed here would be of value in correctly

weighting phenotypic and marker information in

more complex models, but have used linear fixed effect

models here for the sake of simplicity and compu-

tational ease. Alternatively, selection response can be

increased by improving the procedure used to select

and estimate marker effects, for instance by using

information on previous generations in this procedure.

We hope to discuss these points elsewhere.

Appendix. Linearity of E(z rx)

Consider a QTL flanked by markers, with recom-

bination fractions r
L

and r
R

between the QTL and the

left and right flanking markers respectively and

recombination fraction θ between the markers. Let

the number of Q alleles at the QTL be g­1 and the

number of M
L
or M

R
alleles at the left- and right-hand

flanking markers be x
L
­1 and x

R
­1 respectively.

Then writing P
t
(ABC ) for the frequency of ABC

gametes in the F
t
th generation, where A is M

L
or m

L
,

B is Q or q and C is M
R

or m
R
, we have in an infinite

population with no selection and random mating

P
t
(ABC )¯ (1®θ®r

L
r
R
)P

t−"
(ABC )

­r
L
(1®r

R
)P

t−"
(BC )P

t−"
(A)

­r
R
(1®r

L
)P

t−"
(AB)P

t−"
(C )

­r
R

r
L
P
t−"

(AC )P
t−"

(B) (A 1)

for t" 2. Now suppose that

P
t−"

(MQm)¯P
t−"

(mqM )

P
t−"

(mQm)¯P
t−"

(MqM )

P
t−"

(mQM )¯P
t−"

(Mqm)

P
t−"

(MQM )¯P
t−"

(mqm). (A 2)

It is easy to check that (A 1) implies that corresponding

relations hold at generation t also. All F
"
individuals

have one MQM and one mqm gamete, so that

P
#
(MQm)¯P

#
(mqM )¯1®θ®r

R
r
L

P
#
(mQm)¯P

#
(MqM )¯ r

L
(1®r

R
)

P
#
(mQM )¯P

#
(Mqm)¯ r

R
(1®r

L
)

P
#
(MQM )¯P

#
(mqm)¯ r

R
r
L

and, by induction, (A2) holds for all t& 2. It follows

immediately that

P
t
(Q rMm)¯P

t
(q rmM )

P
t
(Q rmm)¯P

t
(q rMM )

P
t
(Q rmM )¯P

t
(q rMm)

P
t
(Q rMM )¯P

t
(q rmm). (A 3)

Let

λ¯P(Q rMm)®P(q rMm)®P(Q rmm)­P(q rmm)

ρ¯P(Q rmM )®P(q rmM )®P(Q rmm)­P(q rmm)

where the t subscripts have been suppressed for

convenience. It is easy to check using (A3) that

E(g rx
L
x
R
)¯λx

L
­ρx

R
,

and extending to multiple QTL and flanking markers

as in Whittaker et al. (1996) we see that

E(z rx)¯β
!
­ 3

i`!

β
i
x
i
,

as required.
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