
Proceedings of the Royal Society of Edinburgh, page 1 of 39

DOI:10.1017/prm.2024.18

Multiplicity of positive solutions for a class of
nonhomogeneous elliptic equations in the
hyperbolic space

Debdip Ganguly, Diksha Gupta and K. Sreenadh
Department of Mathematics, Indian Institute of Technology Delhi,
Hauz Khas New Delhi 110016, India (debdip@maths.iitd.ac.in,
dikshagupta1232@gmail.com, sreenadh@maths.iitd.ac.in)

(Received 11 January 2023; accepted 29 January 2024)

The paper is concerned with positive solutions to problems of the type

−Δ
BN u − λu = a(x)|u|p−1 u + f in B

N , u ∈ H1(BN ),

where BN denotes the hyperbolic space, 1 < p < 2∗ − 1 := N+2
N−2

, λ <
(N−1)2

4
, and

f ∈ H−1(BN ) (f �≡ 0) is a non-negative functional. The potential a ∈ L∞(BN ) is
assumed to be strictly positive, such that limd(x,0)→∞ a(x) → 1, where d(x, 0)
denotes the geodesic distance. First, the existence of three positive solutions is
proved under the assumption that a(x) � 1. Then the case a(x) � 1 is considered,
and the existence of two positive solutions is proved. In both cases, it is assumed
that μ({x : a(x) �= 1}) > 0. Subsequently, we establish the existence of two positive
solutions for a(x) ≡ 1 and prove asymptotic estimates for positive solutions using
barrier-type arguments. The proofs for existence combine variational arguments, key
energy estimates involving hyperbolic bubbles.
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mountain pass geometry; Lusternik–Schnirelman category theory; energy
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1. Introduction

In this paper, we aim to study the existence, multiplicity, and asymptotic estimates
of solutions to the following elliptic problem on the hyperbolic space B

N

−ΔBN u − λu = a(x)|u|p−1u + f(x) in B
N ,

u > 0 in B
N ,

u ∈ H1
(
B

N
)
,

⎫⎪⎪⎬⎪⎪⎭ (P)

where 1 < p < 2∗ − 1 := N+2
N−2 , if N � 3; 1 < p < +∞, if N = 2, λ < (N−1)2

4 ,

H1(BN ) denotes the Sobolev space on the disc model of the hyperbolic space B
N ,
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2 D. Ganguly, D. Gupta and K. Sreenadh

ΔBN denotes the Laplace–Beltrami operator on B
N , (N−1)2

4 being the bottom of
the L2− spectrum of −ΔBN , and a(x) ∈ L∞(BN ). Further, 0 < a ∈ L∞(BN ), and
0 �≡ f ∈ H−1(BN ) is a non-negative functional i.e., f(u) � 0 whenever u � 0. Let us
postpone the discussion on the technical assumptions of function a(x) for a while.

If the hyperbolic space B
N is replaced with the Euclidean space R

N , i.e., when
the equation (P) is posed on R

N with f ≡ 0, has been investigated widely in the
last few decades, and several seminal results have been obtained, we name a few,
e.g., [4, 5, 7, 8, 18, 24, 25], and this list is far from being complete. The diffi-
culty in treating this problem arises because the domain R

N is unbounded, and
standard variational methods would fail due to the lack of compactness of Sobolev
embedding even in the subcritical regime. So to tackle such issues, several authors
have introduced new tools, particularly the papers mentioned above. Firstly, the
existence of Ground state is established by using delicate energy estimates and
carefully analysing the breaking levels of Palais-Smale sequences (see [4]); we also
refer to [13] for a comprehensive treatment of the problem in the last thirty years.
Then onwards, the question of the multiplicity of solutions came into prominence
for slightly modified problems in the Euclidean space R

N ,

−Δu + a(x)u = |u|p−1u in R
N ,

u ∈ H1
(
R

N
)
,

}
(EP)

where the potential a(x) → a∞ > 0 as |x| → ∞. Under the radially symmetric
assumption on a(x), existence of infinitely many solutions was obtained by Beresty-
cki–Lions in [8]. Moreover, the question is even more interesting when the symmetric
assumption on the potential a(x) is dropped. However, considerable progress has
also been made in the case in which a(x) is not radially symmetric. The existence
of infinitely many positive solutions is obtained in [14]. Also, see [15–17, 28, 31].

Adachi–Tanaka [2] considered Eq. (P) in the whole Euclidean space, with λ = −1,
and studied the multiplicity results. In fact, the problem (P) is considered as a per-
turbation of the classical scalar field equation. From the mathematical point of
view, it is natural to ask whether the problem (P) admits a positive solution and if
yes, then its multiplicity/uniqueness, i.e., whether the positive solutions are stable
after the perturbation of type (P) is studied. These questions were quite compre-
hensively studied by Adachi–Tanaka [2]. Also, refer to [1, 3]. In [2], the existence
of four solutions has been obtained under the hypothesis (A1) below. Moreover,
in [12, 22], the existence of two positive solutions is established when the poten-
tial a satisfies (A2), and f �≡ 0 (but small). Although, the cases (A1) and (A2) do
not cover the case a(x) ≡ 1, Zhu treated this case in [34], where he proved exis-
tence of two positive solutions. The papers mentioned above employ topological
arguments, like the Lusternik–Schnirelmn (L-S) category and the min–max argu-
ments, to obtain their multiplicity results. But for such arguments to work, precise
energy estimates of solutions to the ‘limiting problem’ are required so that we are
away from the critical level (breaking level) of the Palais–Smale sequences. By the
‘limiting problem,’ we mean the following problem

− ΔRN u + u = up in R
N , u ∈ H1(RN ), u > 0 in R

N . (1.1)
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Multiplicity of positive solutions 3

It is well-known that the above problem admits unique radially symmetric solutions
W ∈ C∞(RN ) up to translations. Furthermore, it satisfies

W (x) ∼ |x|−(N−1)
2 e−|x| as |x| → ∞.

In particular, W ∈ Lp(RN ) for all p � 1. As described, the energy estimates in the
papers mentioned earlier were involved with integrals of W , and this decay estimate
plays a pivotal role in it.

Now coming back to our problem (P) in the hyperbolic space setting, even
if it seems that the equation is a generalization of problems in the Euclidean
space, it has many fascinating phenomena. Let us start with the seminal result
of Sandeep–Mancini [29], where the author showed the existence/uniqueness of
positive solutions to the problem

− ΔBN u − λu = |u|p−1u, u ∈ H1
(
B

N
)
, (1.2)

where λ � (N−1)2

4 , 1 < p � N+2
N−2 if N � 3; 1 < p < ∞ if N = 2. They established in

the subcritical case, i.e., p > 1 if N = 2 and 1 < p < 2� − 1 if N � 3, the problem
(1.2) has a positive solution if and only if λ < (N−1)2

4 . These positive solutions are
also shown to be radially symmetric with respect to some point and unique up to
hyperbolic isometries, except possibly for N = 2 and λ > 2(p+1)

(p+3)2 . Furthermore, the
radially symmetric solution V satisfies the following asymptotic estimates

lim
r→∞

logV2

r
= −(N − 1) +

√
(N − 1)2 − 4λ,

where r := d(x, 0) denotes the geodesic distance (we refer § 2 for more details).
It is worth mentioning that when p = 2∗ − 1, and a(x) ≡ 1, (1.2) is a natural

generalization of the widely recognized Brezis-Nirenberg problem [11] in the hyper-
bolic space. In turn, it is possible to regard the problem (P) addressed in this
article as an extension of a generalized version of the Brezis-Nirenberg problem.
Moreover, the authors in [29] discovered that (1.2) naturally arises when study-
ing the Euler-Lagrange equations that correspond to the Hardy–Sobolev-Maz’ya
(HSM) inequalities. They derived a sharp Poincaré–Sobolev inequality in the hyper-
bolic space (2.3) via the HSM inequality [30] involving first-order derivatives. In
the recent past, this equivalence has sparked the curiosity of mathematicians to
explore analogous HSM inequalities for higher-order derivatives (see [26, 27]). The
authors in [23] have thereafter studied the existence, nonexistence, and symmetry
of solutions to the higher-order Brezis–Nirenberg problem in the hyperbolic space.
The work of the authors highlighted above relies on highly involved estimations of
Green’s functions for the kernels of powers of fractional Laplacian and the Helga-
son–Fourier analysis, as well as the Hardy–Littlewood–Sobolev inequality on the
hyperbolic space. Concerning the multiplicity of (1.2), the existence of infinitely
many radial sign-changing solutions, compactness, and non-degeneracy was stud-
ied in ([9, 19, 20]). We also refer [6, 10] for existence, asymptotics of non-finite
energy solutions. In this article, we are interested in whether the positive solutions
still exist under the perturbation of type (P). If it exists, then study its asymptotic
estimates and multiplicity. In our previous article [21], we showed the existence of
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a positive solution with high energy when f ≡ 0. Here we considered a multiplicity
of solutions along the lines of previous authors. As one anticipates, we follow the
topological /variational arguments to obtain multiple solutions. Still, the major
hurdle lies in the energy estimates involving solutions to (1.2) since one could see
easily that V /∈ Lp(BN ) for p ∈ [1, 2). This step is quite delicately handled in § 6.
Moreover, we also studied asymptotic estimates of solutions to (P) for a(x) ≡ 1 and
f satisfies some decay estimates. Indeed the ode approach won’t work in this case,
as apriori f is not given to be a radial function, and hence we tackle this problem
using the barrier argument (See § 5).

Now let us describe all the necessary assumptions before stating our main
theorems. We investigate the solutions of (P) under the following cases separately:

(A1) : a(x) ∈ (0, 1] ∀x ∈ B
N , μ({x : a(x) �= 1}) > 0, inf

x∈BN
a(x) > 0, and

a(x) → 1 as d(x, 0) → ∞, where μ denotes the hyperbolic measure.

(A2) : a(x) � 1 ∀x ∈ B
N , μ({x : a(x) �= 1}) > 0, a ∈ L∞(BN ) and a(x) → 1

as d(x, 0) → ∞.

(A3) : a(x) ≡ 1 ∀x ∈ B
N .

Further, let us prescribe an assumption on the parameter λ :

λ ∈

⎧⎪⎨⎪⎩
(
−∞, 2(p+1)

(p+3)2

]
, N = 2,(

−∞, (N−1)2

4

)
, N � 3.

(1.3)

We are now in a position to state this article’s main theorems. Let us begin with
the Adachi–Tanaka [2] type result in the hyperbolic space setting :

Theorem 1.1. Let a ∈ C(BN ) satisfies (A1). In addition, assume that a also
satisfies

a(x) � 1 − C exp(−δ d(x, 0)) ∀x ∈ B
N , (1.4)

for some positive constants C and δ. Then there exists δ0 > 0 such that the equation
(P) has at least three positive solutions for any non-negative f ∈ H−1(BN ) with
‖f‖H−1(BN ) � δ0 and for λ satisfying (1.3).

Remark 1.2. In contrast with Adachi–Tanaka [2], here we obtain the existence of
at least three solutions instead of four. This is purely a technical reason for not
getting the fourth solution, which can be attributed to the new energy estimates
phenomenon in the hyperbolic space.

Next, we assume a(x) � 1, and we prove the following result :

https://doi.org/10.1017/prm.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.18


Multiplicity of positive solutions 5

Theorem 1.3. Let a satisfies (A2), 0 �≡ f ∈ H−1(BN ) is a non-negative functional
and S1,λ be defined as in (3.10). Furthermore, if

‖f‖H−1(BN ) < CpS
p+1

2(p−1)

1,λ where Cp :=
(
p‖a‖L∞(BN )

)− 1
p−1

(
p − 1

p

)
.

Then (P) admits at least two positive solutions for λ satisfying (1.3).

Further, if a satisfies (A3), i.e., (P) becomes the following

−ΔBN u − λu = |u|p−1u + f(x) in B
N ,

u > 0 in B
N ,

u ∈ H1
(
B

N
)
,

⎫⎪⎪⎬⎪⎪⎭ (P ′
)

where all the notations are the same as for the problem (P) then we have the
following theorem.

Theorem 1.4. Assume that a satisfies (A3). Then there exists δ
′
0 > 0 such that

the problem (P ′
) has at least two positive solutions any non-negative f ∈ H−1(BN )

with ‖f‖H−1(BN ) � δ
′
0 and for λ satisfying (1.3).

The paper is organized as follows: In § 2, we introduce some of the notations,
geometric definitions, and preliminaries concerning the hyperbolic space. Section 3
describes the energy functional, setting up the problem, and associated auxiliary
lemmas involving functionals. In § 4, we state and prove the Palais-Smale decom-
position theorem as Proposition 4.1 and 4.2. Whereas in § 5, we obtain asymptotic
estimates for the solution of (P ′

) S 6 is devoted to the key energy estimates involv-
ing the solutions of (1.2). The proof of Theorem 1.1 and Theorem 1.3 are given in
§ 7. Finally, § 8 is devoted to the proof of Theorem 1.4.

2. Preliminaries

In this section, we will introduce some of the notations and definitions used in this
paper and also recall some of the embeddings related to the Sobolev space on the
hyperbolic space. We will denote by B

N the disc model of the hyperbolic space, i.e.,
the unit disc equipped with the Riemannian metric gBN :=

∑N
i=1(

2
1−|x|2 )2 dx2

i . To
simplify our notations, we will denote gBN by g. The corresponding volume element
is given by dVBN = ( 2

1−|x|2 )Ndx, where dx denotes the Lebesgue measure on R
N .

Hyperbolic distance on B
N . The hyperbolic distance between two points x and y

in B
N will be denoted by d(x, y). For the hyperbolic distance between x and the

origin we write

ρ := d(x, 0) =
∫ r

0

2
1 − s2

ds = log
1 + r

1 − r
,

where r = |x|, which in turn implies that r = tanh ρ
2 . Moreover, the hyperbolic

distance between x, y ∈ B
N is given by

d(x, y) = cosh−1

(
1 +

2|x − y|2
(1 − |x|2)(1 − |y|2)

)
.
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It easily follows that a subset S of B
N is a hyperbolic sphere in B

N if and only
if S is a Euclidean sphere in R

N and contained in B
N , probably with a different

centre and different radius, which can be computed. Geodesic balls in B
N of radius

a centred at the origin will be denoted by

B(0, a) := {x ∈ B
N : d(x, 0) < a}.

We also need some information on the isometries of B
N . Below we recall the

definition of a particular type of isometry, namely the hyperbolic translation. For
more details on the isometry group of B

N , we refer to [32].

Hyperbolic translation. For b ∈ B
N , define

τb(x) =
(1 − |b|2)x + (|x|2 + 2x.b + 1)b

|b|2|x|2 + 2x.b + 1
, (2.1)

then τb is an isometry of B
N with τb(0) = b. The map τb is called the hyperbolic

translation of B
N by b. It can also be seen that τ−b = τ−1

b .
The hyperbolic gradient ∇BN and the hyperbolic Laplacian ΔBN are given by

∇BN =
(

1 − |x|2
2

)2

∇, ΔBN =
(

1 − |x|2
2

)2

Δ + (N − 2)
1 − |x|2

2
〈x,∇〉.

Laplace–Beltrami operator on B
N . It is well known that the N -dimensional

hyperbolic space B
N admits a polar coordinate decomposition structure. Namely,

for x ∈ B
N we can write x = (r, Θ) = (r, θ1, . . . , θN−1) ∈ (0, ∞) × S

N−1, where r
denotes the geodesic distance between the point x and a fixed pole 0 in B

N and
S

N−1 is the unit sphere in the N -dimensional euclidean space R
N . Recall that the

Riemannian Laplacian of a scalar function u on B
N is given by

ΔBN u(r,Θ) =
1

(sinh r)N−1

∂

∂r

[
(sinh r)N−1 ∂u

∂r
(r,Θ)

]
+

1
sinh2 r

ΔSN−1u(r,Θ),

(2.2)
where ΔSN−1 is the Riemannian Laplacian on the unit sphere S

N−1.

A sharp Poincaré-Sobolev inequality. (see [29])
We will denote by H1(BN ) the Sobolev space on the disc model of the hyperbolic

space B
N , equipped with norm ‖u‖ = (

∫
BN |∇BN u|2) 1

2 , where |∇BN u| is given by

|∇BN u| := 〈∇BN u, ∇BN u〉 1
2
BN .

For N � 3 and every p ∈ (1, N+2
N−2 ] there exists an optimal constant SN,p > 0 such

that

SN,p

(∫
BN

|u|p+1 dVBN

) 2
p+1

�
∫

BN

[
|∇BN u|2 − (N − 1)2

4
u2

]
dVBN , (2.3)

for every u ∈ C∞
0 (BN ). If N = 2, then any p > 1 is allowed.

A basic information is that the bottom of the spectrum of −ΔBN on B
N is

(N − 1)2

4
= inf

u∈H1(BN )\{0}

∫
BN |∇BN u|2 dVBN∫

BN |u|2 dVBN

. (2.4)
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Remark 2.1. A consequence of (2.4) is that if λ < (N−1)2

4 , then

||u||Hλ
:= ||u||λ :=

[∫
BN

(|∇BN u|2 − λu2
)

dVBN

] 1
2

, u ∈ C∞
c (BN )

is a norm, equivalent to the H1(BN ) norm and the corresponding inner product is
given by 〈u, v〉Hλ

.

3. Energy functional and preliminary lemmas

3.1. Unperturbed equation

First, let us recall the asymptotic estimates of positive solutions to the following
homogeneous problem

− ΔBN w − λw = |w|p−1w, w > 0 in B
N , w ∈ H1

(
B

N
)
. (3.1)

Then by elliptic regularity, any solution, w ∈ H1(BN ), is also in C∞ and satisfies
the decay property (See [29, Lemma 3.4]): for every ε > 0, there exist positive
constants Cε

1 and Cε
2 such that there holds

Cε
1e−(c(N,λ)+ε) d(x,0) � w(x) � Cε

2e−(c(N,λ)−ε) d(x,0), for all x ∈ B
N , (3.2)

where c(N, λ) = 1
2 (N − 1 +

√
(N − 1)2 − 4λ).

3.2. Energy functional

For given a(x) and f(x), we define Iλ,a,f (u) : H1(BN ) → R by

Iλ,a,f (u) =
1
2
‖u‖2

Hλ
− 1

p + 1

∫
BN

a(x)up+1
+ dVBN (x) −

∫
BN

f(x)u(x) dVBN (x)

(3.3)
It is obvious that if u is a critical point of Iλ,a,f , then u is the solution to the

following problem

−ΔBN u − λu = a(x)up
+ + f(x) in B

N ,

u ∈ H1
(
B

N
)
.

(3.4)

Remark 3.1. If we take v = u− as a test function in (3.4) where u is a weak
solution of (3.4) and f is a non-negative functional, we obtain u− = 0, i.e., u � 0.
Thus u > 0 follows from the maximum principle, and hence u is a solution to (P).

Define

Jλ,a,f (v) = max
t>0

Iλ,a,f (tv) : Σ̃+ → R, (3.5)

where

Σ :=
{
v ∈ H1

(
B

N
)
; ‖v‖Hλ

= 1
}

,

Σ̃+ := {v ∈ Σ : v+ �≡ 0} .

In the subsequent sections, we will establish that the positive solutions of (P)
correspond to the critical points of Iλ,a,f (u) : H1(BN ) → R or Jλ,a,f (v) : Σ̃+ → R.
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To this end we set

a := inf
x∈BN

a(x) > 0,

ā := sup
x∈BN

a(x) = 1.

Using the definition of Jλ,a,f , and carrying out some easy calculations we obtain

Jλ,a,0(v) = Iλ,a,0

((∫
BN

a(x)vp+1
+ dVBN (x)

)− 1
p−1

v

)

=
(

1
2
− 1

p + 1

)(∫
BN

a(x)vp+1
+ dVBN (x)

)− 2
p−1

. (3.6)

Therefore

ā− 2
p−1 Jλ,1,0(v) = Jλ,ā,0(v) � Jλ,a,0(v) � Jλ,a,0(v) = a−

2
p−1 Jλ,1,0(v).

Further, since w is the unique radial solution of (3.1), we have

max
t∈[0,1]

Iλ,1,0(tw) = Iλ,1,0(w). (3.7)

Moreover,

ā− 2
p−1 Iλ,1,0(w) � inf

v∈Σ̃+

Jλ,a,0(v) � a−
2

p−1 Iλ,1,0(w). (3.8)

We define the functionals J, J∞ : H1(BN ) → R as

J(u) :=
‖u‖2

λ(∫
BN a(x)|u(x)|p+1 dVBN (x)

) 2
p+1

, J∞(u) :=
‖u‖2

λ(∫
BN |u(x)|p+1 dVBN (x)

) 2
p+1

(3.9)
and the energy levels

S1,λ := inf
u∈H1(BN )\{0}

J∞(u), Sm,λ := m
p−1
p+1 S1,λ, m = 2, 3, 4, · · · (3.10)

3.3. Auxliary Lemmas

We require the following auxiliary lemmas to prove Theorem 1.1.
The subsequent lemmas give us the inequalities involving Iλ,a,f (Jλ,a,f ) and

Iλ,a(ε),0 (Jλ,a(ε),0) for ε ∈ (0, 1).

Lemma 3.2.

(i) The following inequality holds for u ∈ H1(BN ) and ε ∈ (0, 1)

(1 − ε)Iλ, a
1−ε ,0(u) − 1

2ε
‖f‖2

H−1(BN ) � Iλ,a,f (u)

� (1 + ε)Iλ, a
1+ε ,0(u) +

1
2ε

‖f‖2
H−1(BN ) . (3.11)
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(ii) Suppose v ∈ Σ̃+and ε ∈ (0, 1). Then there holds

(1 − ε)
p+1
p−1 Jλ,a,0(v) − 1

2ε
‖f‖2

H−1(BN ) � Jλ,a,f (v)

� (1 + ε)
p+1
p−1 Jλ,a,0(v) +

1
2ε

‖f‖2
H−1(BN ) . (3.12)

(iii) In particular, there exists d0 > 0 such that if ‖f‖H−1(BN ) � d0, then,

inf
v∈Σ̃+

Jλ,a,f (v) > 0.

In the next lemma, for v ∈ Σ̃+, we analyse the function g̃(t) : [0, ∞) → R defined
by

g̃(t) := Iλ,a,f (tv).

Lemma 3.3.

(i) The function g̃ has at most two critical points in [0, ∞) for every v ∈ Σ̃+.

(ii) If ‖f‖H−1(BN ) � d0(d0 as chosen in Lemma 3.2), then for any v ∈ Σ̃+, there
exists a unique ta,f (v) > 0 such that Iλ,a,f (ta,f (v)v) = Jλ,a,f (v), where Jλ,a,f

is defined as in (3.6). Moreover, ta,f (v) > 0 satisfies

ta,f (v) >

(
p

∫
BN

a(x)vp+1
+ dVBN (x)

)− 1
p−1

�
(

pS
− (p+1)

2
1,λ

)− 1
p−1

. (3.13)

Additionally, we also have

I ′′λ,a,f (ta,f (v)v) (v, v) < 0. (3.14)

(iii) Any critical point of g̃ distinct from ta,f (v) lies in [0, (1 − 1
p )−1‖f‖H−1(BN )].

We omit the details of the proof of the above two lemmas. They can be proved
exactly in the spirit of [2]. The following proposition characterises all the critical
points of the functional Iλ,a,f in terms of the functional Jλ,a,f .

Proposition 3.4. Assume ‖f‖H−1(BN ) � d2 where d2 = min
{

d1, (1 − 1
p )r1

}
> 0

and d1, r1 as chosen in Proposition 7.1. Then the following holds

(i) Jλ,a,f ∈ C1(Σ̃+, R) and

J ′
λ,a,f (v)h = ta,f (v)I ′λ,a,f (ta,f (v)v) h, (3.15)

for all h ∈ TvΣ̃+ =
{
h ∈ H1(BN ) | 〈h, v〉Hλ

= 0
}
.

(ii) v ∈ Σ̃+is a critical point of Jλ,a,f (v) iff ta,f (v)v ∈ H1(BN ) is a critical point
of Iλ,a,f (u).
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(iii) In addition, the set containing all the critical points of Iλ,a,f (u) can be
written as {

ta,f (v)v | v ∈ Σ̃+, J ′
λ,a,f (v) = 0

}
∪ {Ua,f (x)} , (3.16)

where Ua,f is a critical point of Iλ,a,f obtained in Proposition 7.1.

Proof. We skip the proof for brevity. The proof can be concluded with the necessary
modifications for the hyperbolic space. For details, we refer [2]. �

4. Palais–Smale Characterization

In this section, we study the Palais–Smale sequences (PS sequences) corresponding
to the problem (P). We say a sequence un ∈ H1(BN ) is a Palais-Smale sequence for
Iλ,a,f at a level d if Iλ,a,f (un) → d and I ′λ,a,f (un) → 0 in H−1(BN ). One can easily
see that PS sequences are bounded. Throughout this section, we assume a(x) → 1
as d(x, 0) → ∞.

In the subsequent propositions, we examine the Palais-Smale condition for
Iλ,a,f (u) and Jλ,a,f (v). In particular, we prove the following proposition :

Proposition 4.1. Assume 0 < a ∈ L∞(BN ), a(x) → 1 as d(x, 0) → ∞ and 0 �≡
f ∈ H−1(BN ) is a non-negative functional and suppose that a sequence {uj}∞j=1 ⊂
H1(BN ) satisfies

I ′λ,a,f (uj) → 0 in H−1
(
B

N
)
,

Iλ,a,f (uj) → c ∈ R

as j → ∞. Then there exists a subsequence—still denoted by {uj}∞j=1, a criti-
cal point u0(x) of Iλ,a,f (u), an integer 	 ∈ N ∪ {0}, and 	 sequences of points{
y1

j

}∞
j=1

, . . . ,
{
y�

j

}∞
j=1

⊂ B
N such that

(1) d(yk
j , 0) → ∞ as j → ∞ ∀k = 1, 2, . . . , 	,

(2) d(yk
j , yk′

j ) → ∞ as j → ∞ for k �= k′,

(3)
∥∥∥uj(x) − (u0(x) +

∑�
k=1 w(τ−yk

j
(x)))

∥∥∥
Hλ

→ 0 as j → ∞,

(4) Iλ,a,f (uj) → Iλ,a,f (u0) + 	Iλ,1,0(w) as j → ∞,

where τa, a ∈ B
N denotes the hyperbolic translation, and w is the unique positive

radial solution to the unperturbed equation.

Proof. The proof is a straightforward adaption of [21, Proposition 3.1] in the case
f �≡ 0. We also refer ([24], [25] and [33]) for the Euclidean case. �

Next, we study the Palais–Smale condition for Jλ,a,f .

Proposition 4.2. Suppose ‖f‖H−1(BN ) � d2 for d2 > 0 as given in Proposition 3.4.
Then,
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(a) As the dist Hλ(BN )(vj , ∂Σ̃+) = inf
{
‖vj − u‖Hλ

: u ∈ Σ, u+ ≡ 0
}

j−→0 implies
Jλ,a,f (vj) → ∞.

(b) Suppose that {vj}∞j=1 ⊂ Σ̃+ satisfies as j → ∞

Jλ,a,f (vj) → c for some c > 0,∥∥J ′
λ,a,f (vj)

∥∥
T∗

vj
Σ̃+

≡ sup
{

J ′
λ,a,f (vj) h; h ∈ Tvj

Σ̃+, ‖h‖Hλ
= 1

}
→ 0.

(4.1)

Then there exists a subsequence—still denoted by {vj}∞j=1, a critical point
u0(x) ∈ H1(BN ) of Iλ,a,f (u), an integer 	 ∈ N ∪ {0} and 	 sequences of points{
y1

j

}∞
j=1

, . . . ,
{
y�

j

}∞
j=1

⊂ B
N such that

(1) d(yk
j , 0) → ∞ as j → ∞ ∀k = 1, 2, . . . , 	,

(2) d(yk
j , yk′

j ) → ∞ as j → ∞ for k �= k′,

(3)

∥∥∥∥∥∥vj(x) −
u0(x)+

∑ �
k=1 w(τ−yk

j
(x))∥∥∥∥u0(x)+

∑ �
k=1 w(τ−yk

j
(x))

∥∥∥∥
Hλ

∥∥∥∥∥∥
Hλ

→ 0 as j → ∞,

where τa, a ∈ B
N denotes the hyperbolic translation,

(4) Jλ,a,f (vj) → Iλ,a,f (u0) + 	Iλ,1,0(w) as j → ∞.

Proof. For any ε ∈ (0, 1) and using (3.12) and (3.6), we obtain,

Jλ,a,f (vj) � (1 − ε)
p+1
p−1 Jλ,a,0 (v) − 1

2ε
‖f‖2

H−1(BN )

� (1 − ε)
p+1
p−1

(
1
2
− 1

p + 1

)(∫
BN

a(x)vp+1
j+ dVBN

)− 2
p−1

− 1
2ε

‖f‖2
H−1(BN ).

As dist(vj , ∂Σ̃+) → 0 gives

(vj)+ → 0 in H1
(
B

N
)
,

(vj)+ → 0 in Lp+1
(
B

N
)
.

Therefore, ∣∣∣∣∫
BN

a(x)vp+1
j dVBN

∣∣∣∣ � ‖a‖L∞(BN )

∫
BN

|vj+|p+1 dVBN
j−→ 0.

Hence Jλ,a,f (vj) → ∞ as dist H1(BN )(vj , ∂Σ̃+) → 0. This proves part (a).
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For part (b), using (3.13) and (3.15), we get∥∥I ′λ,a,f (ta,f (vj) vj)
∥∥

H−1(BN )
=

1
ta,f (vj)

∥∥J ′
λ,a,f (vj)

∥∥
T∗

vj
Σ̃+

�
(
pS

− p+1
2

1,λ

) 1
p−1 ∥∥J ′

λ,a,f (vj)
∥∥

Tvj
Σ̃+

j→ 0.

Further, we also have Iλ,a,f (ta,f (vj)vj) = Jλ,a,f (vj) → c as j → ∞. Applying
Palais–Smale lemma for Iλ,a,f (u) (Proposition 4.1), the rest follows. �

The subsequent corollary is an outcome of the above Proposition 4.2. Before
moving to the corollary, note that we say Jλ,a,f (v) satisfies (PS)c if and only if
any sequence (vj)∞j=1 ⊆ Σ̃+satisfying (4.1) has a strongly convergent subsequence
in H1(BN ).

Corollary 4.3. Suppose that ‖f‖H−1(BN ) � d2 for d2 as in Proposition 3.4. Then
Jλ,a,f (v) satisfies the condition (PS)c for c < Iλ,a,f (Ua,f (x)) + Iλ,1,0(w) where w is
the unique radial solution of (3.1) and Ua,f is the critical point of Iλ,a,f obtained
in Proposition 7.1.

Proof. Proposition 4.2 suggests that the condition (PS)c breaks down only at levels

c = Iλ,a,f (u0) + 	Iλ,1,0(w),

where 	 ∈ N and u0 ∈ H1(BN ) is a critical point of Iλ,a,f (u) .
From Proposition 7.1, we have

Iλ,a,f (Ua,f (x)) = inf
u∈B(r1)

Iλ,a,f (u) � Iλ,a,f (0) = 0, (4.2)

Furthermore, all the critical points of Iλ,a,f (u) except Ua,f (x) corresponds to a
critical point Jλ,a,f (v), which follows from (8.3). Thus there exists v1 ∈ Σ̃+ for a
critical point u1 of Iλ,a,f (u) such that Iλ,a,f (u1) = Jλ,a,f (v1) > 0 by using (iii) of
Lemma 3.2. Consequently,

Iλ,a,f (Ua,f (x)) = inf
{
Iλ,a,f (u0) | u0 ∈ H1

(
B

N
)

is a critical point of Iλ,a,f (u)
}

.

Hence Iλ,a,f (Ua,f (x)) + Iλ,1,0(w) is the lowest level where (PS)c breaks. �

5. Asymptotic estimates for solutions of (P ′
)

This section is devoted to deriving asymptotic estimates for positive solutions to
(P ′

) for λ � 0. It is worth noting that when f ≡ 0, the precise estimates were
obtained by Sandeep–Mancini in their seminal paper (See [29, Lemma 3.4]) and has
been slightly improved in [10] for λ = 0. Indeed they showed using the moving plane
method that all positive solutions to the homogeneous equation are radial with
respect to a point. Further, asymptotic was obtained by analysing the corresponding
ode. On the other hand, when dealing with f �≡ 0 and non-radial, the solution u need
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not be radial; hence, this approach does not help us obtain asymptotic estimates for
solutions of (P ′

) Thus we follow the approach of constructing suitable barriers as
sub and super-solutions to obtain the desired asymptotic estimates. When f ≡ 0,
we recover the optimal estimates obtained by Sandeep-Mancini [29] and and also
([10], λ = 0) for radial solutions. In particular, we prove the following theorem:

Theorem 5.1. Let u be a positive solution of (P ′
) and f ∈ L2(BN ), non-negative

and assume

f(x) � C exp−(k + ε)p d(x, 0),

for all x ∈ B
N and for some positive constants k, C, and ε.

Then, for any δ > 0, there exist positive constants C1, C2 such that

C1 exp(−((N − 1) + δ)d(x, 0)) � u(x) � C2 exp(−((N − 1) − δ)d(x, 0))

for all x ∈ B
N , and λ = 0. Furthermore, for λ < 0, there exist positive constants

C
′
1, C

′
2 such that

C
′
1 exp(−(c

′
(n, λ) + δ)|λ|d(x, 0)) � u(x) � C

′
2 exp(−(c

′
(n, λ) − δ)|λ|d(x, 0))

for all x ∈ B
N and c

′
(n, λ) = (N−1)+

√
(N−1)2−4λ

2|λ| .

Proof. The solution u ∈ H1(BN ), this immediately implies limd(x,0)→∞ u(x) = 0
a.e. Furthermore, using the Calderon–Zygmund estimate and elliptic regularity, we
have u ∈ C2(BN ); thus, limd(x,0)→∞ u(x) = 0 for all x ∈ B

N . The proof is divided
into two cases: λ < 0 and λ = 0.

Case 1: λ < 0
Choose α > 0 such that α2|λ|−1

α(N−1) � 1. To be precise, α ∈ [c
′
(N, λ), ∞) where

c
′
(N,λ) =

(N − 1) +
√

(N − 1)2 − 4λ

2|λ| .

Thus we can choose R1 > 0 large enough such that

α2|λ| − α(N − 1) coth d(x, 0) � 1, ∀d(x, 0) � R1. (5.1)

For m = min
{

1
|λ|u(x) | d(x, 0) = R1

}
> 0, set v1(x) := v1(r) = me−α|λ|(d(x,0)−R1),

where r := d(x, 0). Now for any L > R1, denote

Ω(L) =
{
x ∈ B

N | R1 < d(x, 0) < L and |λ|v1(x) > u(x)
}

.

https://doi.org/10.1017/prm.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.18


14 D. Ganguly, D. Gupta and K. Sreenadh

Then Ω(L) is open. Moreover, for x ∈ Ω(L) and using (5.1) we have

ΔBN (u − |λ|v1) (x) = ΔBN u(x) − |λ|ΔBN (v1(x))

= −λu − up − f(x) − |λ|
(

∂2

∂r2
v1(r) + (N − 1) coth r

∂

∂r
v1(r)

)
= −λu − up − f(x) − |λ| [α2|λ|2 − α|λ|(N − 1) coth r

]
v1(x)

� |λ|u(x) − |λ|2 [
α2|λ| − α(N − 1) coth r

]
v1(x)

� |λ| (u − |λ|v1) (x)

< 0

Applying the maximum principle, for x ∈ Ω(L) will result in

u(x) − |λ|v1(x) � min {(u − |λ|v1) (x) | x ∈ ∂Ω(L)}

= min
{

0, min
d(x,0)=L

(u − |λ|v1) (x)
}

.

Since lim
d(x,0)→+∞

u(x) = lim
d(x,0)→+∞

v2(x) = 0, by letting L → ∞, we see that Ω(L)

is empty and hence

u(x) � |λ|v1(x) for all d(x, 0) � R1, (5.2)

By the supposition on f(x) there exists some ε, and C > 0 such that

f(x) � Ce−(c
′
(N,λ)+ε)|λ|p d(x,0) for all x ∈ B

N . (5.3)

(5.2) will imply the existence of a C1 > 0

u(x) � C1e
(c

′
(N,λ)+δ)|λ|d(x,0) for all x ∈ B

N , and for any δ > 0. (5.4)

Choosing ε appropriately, and using (5.3), (5.4) together will provide R2 > 0 such
that

(u(x))p � f(x) for d(x, 0) � R2.

Moreover, since p > 1, there holds

up = ◦(u) for d(x, 0) → ∞.

Let β > 0 be such that β2|λ| − (N − 1)β � 1, i.e., β � c(n, λ)
′
.
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Define v2(x) = Me−β|λ|(d(x,0)−R4), where

M = max {u(x) | d(x, 0) = R2} > 0.

Further, for any L > R4, denote

Ω̃(L) =
{
x ∈ B

N | R4 < d(x, 0) < L and u(x) > v2(x)
}

.

Then Ω̃(L) is open and, for x ∈ Ω̃(L),

ΔBN (v2 − u) (x) =
[
β2|λ|2 − β|λ|(N − 1) coth r

]
v2(x) + λu + up + f(x)

� −λv2 + λu + 2up

� −λv2 + λu + ◦(u)

= −λ(v2 − u)(x) + ◦(u)

< 0.

By the maximum principle, for x ∈ Ω̃(L),

v2(x) − u(x) � min
{

(v2 − u) (x) | x ∈ ∂Ω̃(L)
}

= min
{

0, min
d(x,0)=L

(v2 − u) (x)
}

.

Since lim
d(x,0)→+∞

u(x) = lim
d(x,0)→+∞

v2(x) = 0, by letting L → ∞, we see again that

Ω̃(L) is empty and hence

v2(x) � u(x) for all d(x, 0) � R4.

Now by choosing α = β = c
′
(N, λ), the proof is complete.

Case 2: λ = 0
This case can also be tackled similarly by appropriately choosing the functions

v1 and v2.
To be precise, let

v1 = me
−γ

(
d(x,0)−R

′
1

)
and v2 = Me

−η
(

d(x,0)−R
′
2

)
for some γ,R

′
1, η, R

′
2 > 0

where m = min
{

u(x) | d(x, 0) = R
′
1

}
> 0 and M = max

{
u(x) | d(x, 0) = R

′
2

}
> 0.

Indeed γ > 0 satisfies γ > N − 1, and thus R
′
1 is chosen such that γ − (N − 1)

coth r > 0 for all r > R
′
1. Also, R

′
2 is chosen similarly as R3 mentioned above.

Further, we can conclude the lemma by applying the maximum principle in the
hyperbolic balls of radius R

′
1 and R

′
2 and proceeding as in the previous case. �

https://doi.org/10.1017/prm.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.18


16 D. Ganguly, D. Gupta and K. Sreenadh

6. Key Energy Estimates

This section is devoted to deriving key energy estimates for the functional Iλ,a,f

with a(x) � 1. The subsequent energy estimates will play a pivotal role in the
existence of solutions. In fact with the help of the proposition 6.1, we shall show
that the energy of the functional is below the critical level given in the Palais–Smale
decomposition.

Proposition 6.1. Let a satisfies 0 < a ∈ L∞(BN ), a(x) → 1 as d(x, 0) → ∞ and
(1.4). Further, assume that ‖f‖H−1(BN )� d2, f � 0, f �≡ 0 and Ũa,f is any critical
point of Iλ,a,f . Then there exists R > 0 such that

Iλ,a,f

(
Ũa,f (x) + tw(τ−y(x))

)
< Iλ,a,f

(
Ũa,f (x)

)
+ Iλ,1,0(w), (6.1)

for all d(y, 0) � R and t > 0.
Moreover, if a satisfies (A3), i.e., a ≡ 1, we have

sup
t�0

Iλ,1,f

(
Ũ1,f + tw (τy(x))

)
< Iλ,1,f

(
Ũ1,f

)
+ Iλ,1,0(w), (6.2)

for all d(y, 0) � R.

Proof. Performing straightforward calculations implies

Iλ,a,f

(
Ũa,f (x) + tw(τ−y(x))

)
=

1
2

∥∥∥Ũa,f (x) + tw(τ−y(x))
∥∥∥2

Hλ

− 1
p + 1∫

BN

a(x)
(
Ũa,f (x) + tw(τ−y(x))

)p+1

dVBN (x)

−
∫

BN

f(x)
(
Ũa,f (x) + tw(τ−y(x))

)
dVBN (x)

=
1
2

∥∥∥Ũa,f (x)
∥∥∥2

Hλ

+
t2

2
‖w‖2

H1(BN )

+ t
〈
Ũa,f (x), w(τ−y(x))

〉
Hλ

− 1
p + 1

∫
BN

a(x)
(
Ũa,f (x)

)p+1

dVBN (x)

− tp+1

p + 1

∫
BN

a(x) (w(τ−y(x))p+1 dVBN (x)

− 1
p + 1

∫
BN

a(x)
{(

Ũa,f (x) + tw(τ−y(x))
)p+1

−
(
Ũa,f (x)

)p+1

− tp+1w(τ−y(x))p+1

}
dVBN (x)

−
∫

BN

f(x)
(
Ũa,f (x) + tw(τ−y(x))

)
dVBN (x).

(6.3)
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Now for all h ∈ H1(BN ), we have

0 = I ′λ,a,f

(
Ũa,f (x)

)
(h)

=
〈
Ũa,f (x), h

〉
Hλ

−
∫

BN

a(x)
(
Ũa,f (x)

)p

h dVBN (x) −
∫

BN

fh dVBN (x),

i.e., 〈
Ũa,f (x), h

〉
Hλ

=
∫

BN

a(x)
(
Ũa,f (x)

)p

h dVBN (x) +
∫

BN

fh dVBN (x).

In particular, for h = tw(τ−y(x)) in the above yields

t
〈
Ũa,f (x), w(τ−y(x))

〉
Hλ

= t

∫
BN

a(x)
(
Ũa,f (x)

)p

w(τ−y(x)) dVBN (x) + t

∫
BN

fw(τ−y(x)) dVBN (x).

Hence utilizing the above equation and appropriately rearranging the terms in (6.3)
will result in

Iλ,a,f

(
Ũa,f (x) + tw(τ−y(x))

)
= Iλ,a,f

(
Ũa,f (x)

)
+ Iλ,1,0(tw)

+
tp+1

p + 1

∫
BN

(1 − a(x))w(τ−y(x))p+1 dVBN (x)

− 1
p + 1

∫
BN

a(x)
{(

Ũa,f (x) + tw(τ−y(x))
)p+1

−
(
Ũa,f (x)

)p+1

−t(p + 1)
(
Ũa,f (x)

)p

w(τ−y(x)) − tp+1w(τ−y(x))p+1
}

dVBN (x)

= Iλ,a,f

(
Ũa,f (x)

)
+ Iλ,1,0(tw) + (I) − (II)︸ ︷︷ ︸ .

where

I :=
tp+1

p + 1

∫
BN

(1 − a(x))w(τ−y(x))p+1 dVBN (x), (6.4)

and

II :=
1

p + 1

∫
BN

a(x)
{(

Ũa,f (x) + tw(τ−y(x))
)p+1

−
(
Ũa,f (x)

)p+1

−t(p + 1)
(
Ũa,f (x)

)p

w(τ−y(x)) − tp+1w(τ−y(x))p+1
}

dVBN (x).

(6.5)

To complete the proof of the proposition, we need to show that (I) − (II) < 0,
for suitably chosen R > 0.
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Using the continuity, we easily get

Iλ,a,f

(
Ũa,f (x) + tw(τ−y(x))

)
→ Iλ,a,f (Ũa,f (x))

as t → 0. In addition, we also have

Iλ,a,f

(
Ũa,f (x) + tw(τ−y(x))

)
→ −∞ as t → ∞.

Thus using the above two facts, we can find m, M with 0 < m < M such that

Iλ,a,f

(
Ũa,f (x) + tw(τ−y(x)

)
< Iλ,a,f

(
Ũa,f (x)

)
+ Iλ,1,0(w) for all t ∈ (0,m) ∪ (M,∞).

As a result, to prove the proposition at hand, it suffices to show (6.1) for t ∈
[m, M ]. Hence to finish the proof, we need to show I < II. To this end, let us recall
the following standard pth inequalities from calculus.

(1) (s + t)p+1 − sp+1 − tp+1 − (p + 1)spt � 0 for all (s, t) ∈ [0, ∞) × [0, ∞).

(2) For any r > 0 we can find a constant A(r) > 0 such that

(s + t)p+1 − sp+1 − tp+1 − (p + 1)spt � A(r)t2,

for all (s, t) ∈ [r, ∞) × [0, ∞).

We can estimate II with the help of the above inequality as follows:
Set A := A(r) := A(mind(x,0)�1 Ũa,f (x)) > 0, then

II :=
1

p + 1

∫
BN

a(x)
{(

Ũa,f (x) + tw(τ−y(x))
)p+1

−
(
Ũa,f (x)

)p+1

−t(p + 1)
(
Ũa,f (x)

)p

w(τ−y(x)) − tp+1w(τ−y(x))p+1
}

dVBN (x)

� 1
p + 1

∫
d(x,0)�1

a(x)A(r)t2w2(τ−y(x)) dVBN (x)

� m2aA(r)
p + 1

∫
d(x,0)�1

w2(τ−y(x)) dVBN (x)︸ ︷︷ ︸
E1

Estimate of E1 : We shall estimate E1 in the domain d(x, 0) � 1. Using traingle
inequality we have

1 − d(x, 0)
d(y, 0)

� d(x, y)
d(y, 0)

� 1 +
d(x, 0)
d(y, 0)

.

Since, d(x, 0) � 1, there exist R > 0 and εR > 0 such that whenver d(y, 0) > R,
there holds

1 − εR � d(x, y)
d(y, 0)

� 1 + εR,
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where εR → 0 as R → ∞. Thus using above and (3.2) we conclude for any ε > 0,

E1 :=
∫

d(x,0)�1

w2(τ−y(x)) dVBN (x) � Cε

∫
d(x,0)�1

e−2(c(N,λ)+ε)d(x,y) dVBN (x)

� Cε e−2(c(N,λ)+ε)(1+εR)d(y,0)

∫
d(x,0)�1

dVBN (x)︸ ︷︷ ︸
:=C

= C̃ε e−2(c(N,λ)+ε)(1+εR)d(y,0).

Therefore we have

II � C̃εm
2aA(r)

p + 1
e−2(c(N,λ)+ε)(1+εR)d(y,0). (6.6)

Estimate of I : Let us now compute an estimate on I for δ > c(n, λ)(p + 1) +
(N − 1), then for every ε′ > 0,
δ > (c(n, λ) − ε′)(p + 1) + (N − 1). We shall estimate I as follows:

I =
tp+1

p + 1

∫
BN

(1 − a(x))w(τ−y(x))p+1 dVBN (x)

� Cε′
tp+1

p + 1

∫
BN

(1 − a(x))e−(c(n,λ)−ε′)(p+1)d(x,y) dVBN (x)

� Cε′
tp+1

p + 1

∫
BN

e−δd(x,0)e(c(n,λ)−ε′)(p+1)(d(x,0)−d(y,0)) dVBN (x)

� Cε′
tp+1

p + 1
e−(c(n,λ)−ε′)(p+1)d(y,0)

∫
BN

e−δd(x,0)+(c(n,λ)−ε′)(p+1)d(x,0) dVBN (x)

� Cε′
tp+1

p + 1
e−(c(n,λ)−ε′)(p+1)d(y,0)

∫ ∞

0

e−δr+(c(n,λ)−ε′)(p+1)r+(N−1)r dr

� Cε′
Mp+1

p + 1
e−(c(n,λ)−ε′)(p+1)d(y,0).

(6.7)
Thus we have deduced

I � Cε′
Mp+1

p + 1
e−(c(n,λ)−ε′)(p+1)d(y,0). (6.8)

Now applying(6.6) and (6.8), we can choose R0 > R > 0 large enough and also
choose ε and ε′ appropriately such that

(I) < (II) for d(y, 0) � R0.

As a result, (6.1) is proved. This completes the proof (6.1). Now the proof of (6.2)
can be concluded in a similar line by noting that (I) is zero and a = 1. �
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7. Proof of Theorem 1.1 and Theorem 1.4

7.1. Existence of the first solution of (P) for a(x) satisfying (A1) or
(A3)

The below-mentioned proposition helps us establish the existence of the first
positive solution in the neighbourhood of 0.

Proposition 7.1. For d0 as chosen in Lemma 3.2 and a(x) satisfying (A1) or
(A3), there exists r1 > 0 and d1 ∈ (0, d0] such that

(i) Iλ,a,f (u) is strictly convex in B(r1) =
{
u ∈ H1(BN ) : ‖u‖Hλ

< r1}.
(ii) If ‖f‖H−1(BN ) � d1, then

inf
‖u‖Hλ

=r1

Iλ,a,f (u) > 0.

Moreover, there exists a unique critical point Ua,f (x) of Iλ,a,f (u) in B(r1).
Furthermore, Ua,f (x) satisfies

Ua,f (x) ∈ B (r1) and Iλ,a,f (Ua,f (x)) = inf
u∈B(r1)

Iλ,a,f (u).

Proof. We proceed to prove part (i) as follows:

I ′′λ,a,f (u)(h, h) = ‖h‖2
Hλ

− p

∫
BN

a(x)up−1
+ h2 dVBN (x). (7.1)

Applying Hölder inequality, Sobolev inequality and the fact that a � 1 or a ≡ 1, we
get an estimate on the second term of RHS of (7.1) as follows

∫
BN

a(x)up−1
+ h2 dVBN (x) �

(∫
BN

|u|p+1 dVBN

) p−1
p+1

(∫
BN

|h|p+1 dVBN

) 2
p+1

� S
− p−1

2
1,λ S−1

1,λ‖u‖p−1
Hλ

‖h‖2
Hλ

= S
− p+1

2
1,λ ‖u‖p−1

Hλ
‖h‖2

Hλ
.

Thus using this above estimate in (7.1) yields

I ′′λ,a,f (u)(h, h) �
(
1 − pS

− p+1
2

1,λ ‖u‖p−1
Hλ

)
‖h‖2

Hλ
.

Defining r1 = p−
1

p−1 S
p+1

2(p−1)

1,λ results in I ′′λ,a,f (u) being positive definite for u ∈ B(r1).
Therefore, Iλ,a,f (u) is strictly convex in B(r1). We are done with the proof of
part (i).
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(ii) Assuming ‖u‖Hλ
= r1 gives

Iλ,a,f (u) =
1
2
‖u‖2

Hλ
− 1

p + 1

∫
BN

a(x)up+1
+ dVBN (x) − 〈f, u〉

� 1
2
r2
1 − 1

p + 1
S
− p+1

2
1,λ rp+1

1

− r1‖f‖H−1(BN )

=
(

1
2
− 1

p + 1
S
− p+1

2
1,λ rp−1

1

)
r2
1 − r1‖f‖H−1(BN ).

Further,

Iλ,a,f (u) �
(

1
2
− 1

p(p + 1)

)
r2
1 − r1‖f‖H−1(BN ),

where we have used rp−1
1 = 1

pS
p+1
2

1,λ .
Thus there exists d1 ∈ (0, d0] such that

inf
‖u‖Hλ

=r1

Iλ,a,f (u) > 0 for ‖f‖H−1(BN ) � d1.

Moreover, there exists a unique critical point Ua,f (x) of Iλ,a,f (u) in B(r1) because
Iλ,a,f (u) is strictly convex in B(r1) and inf‖u‖Hλ

= r1 Iλ,a,f (u) > 0 = Iλ,a,f (0).
Furthermore, this critical point satisfies

Iλ,a,f (Ua,f (x)) = inf
‖u‖Hλ

<r1

Iλ,a,f (u).

This completes the proof of the proposition. �

7.2. The case a(x) � 1, µ{x : a(x) �= 1} > 0 : Existence of second and
third solutions.

We now aim to prove the existence of the second and third positive solutions. To
fulfil this aim, we will utilize the Lusternik–Schnirelman category theory, a care-
ful investigation of Palais–Smale characterization, and energy estimates involving
hyperbolic bubbles to prove the multiplicity result. The following notation will be
used to define level sets in the subsequent sections.

[Jλ,a,f � c] =
{

v ∈ Σ̃+|Jλ,a,f (v) � c
}

for c ∈ R. To compute the critical points of Jλ,a,f (v), we will show for a sufficiently
small ε > 0,

cat ([Jλ,a,f � Iλ,a,f (Ua,f (x)) + Iλ,1,0(w) − ε]) � 2

where cat denotes Lusternik–Schnirelman Category.
We now study the properties of the functional Jλ,a,0 under the condition A1.

Lemma 7.2. Assume a satisfies 0 < a ∈ L∞(BN ), a(x) → 1 as d(x, 0) → ∞, (1.4)
and A1. Then there holds
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(i) infv∈Σ̃+
Jλ,a,0(v) = Iλ,1,0(w).

(ii) infv∈Σ̃+
Jλ,a,0(v) is not attained.

(iii) Jλ,a,0(v) satisfies (PS)c for c ∈ (−∞, Iλ,1,0(w)) ∪ (Iλ,1,0(w), 2Iλ,1,0(w)).

Proof. Using (3.8) and A1, we immediately get

inf
v∈Σ̃+

Jλ,a,0(v) � Iλ,1,0(w).

Now define wl(x) = w(τle(x)) for a unit vector e in R
N and 0 < l < 1 so that

le ∈ B
N . Moreover, l → ∞ in the disc model of the hyperbolic space means l → 1.

Applying Lemma 3.3, corresponding to w̄l = wl

‖wl‖ ∈ Σ̃+ implies the existence of a
unique ta,0(w̄l) such that

Jλ,a,0

(
wl

‖wl‖
)

= Iλ,a,0

(
ta,0 (w̄l)

wl

‖wl‖
)

.

Let us now determine the RHS of the above equation

Iλ,a,0

(
ta,0 (w̄l)

wl

‖wl‖
)

=
t2a,0 (w̄l)

2
‖w̄l‖2

Hλ
− tp+1

a,0 (w̄l)
p + 1

∫
BN

a(x) (w̄l)
p+1 dVBN (x).

Also, ta,0(w̄l) can be expressed in an explicit form that occurs in the proof of Lemma
3.3 which is given by

ta,0 (w̄l) =
(∫

BN

a(x)w̄p+1
l dVBN (x)

)− 1
p−1

l→∞−→
( ‖w‖Hλ

‖w‖Lp+1(BN )

) p+1
p−1

.

Since w is the unique radial solution of (3.1), we further get

Jλ,a,0 (w̄l)
l→∞−→ 1

2

{ ‖w‖Hλ

‖w‖Lp+1(BN )

} 2(p+1)
(p−1)

− 1
p + 1

⎛⎝{ ‖w‖Hλ

‖w‖Lp+1(BN )

} (p+1)2

(p−1)

×
‖w‖p+1

Lp+1(BN )

‖w‖p+1
Hλ

⎞⎠
=

(
1
2
− 1

p + 1

)
‖w‖p+1

Lp+1(BN )
= Iλ,1,0(w).

Hence (i) follows.
We will now show (ii) by contradiction, i.e., let us assume that there exists v0 ∈

Σ̃+ such that Jλ,a,0(v0) = infv∈Σ̃+
Jλ,a,0(v) = Iλ,1,0(w). Define, the Nehari manifold
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N as

N :=
{
u ∈ H1

(
B

N
)

: (Iλ,1,0)
′ (u)(u) = 0

}
.

It is not difficult to find a tv0 > 0 such that tv0v0 ∈ N . Further, note that that for
any v ∈ N , we have ‖v‖2

Hλ
=

∫
BN (v)p+1

+ dVBN , and consequently,

Iλ,1,0(v) =
p − 1

2(p + 1)
‖v‖2

Hλ
=

p − 1
2(p + 1)

∫
BN

(v)p+1
+ dVBN � p − 1

2(p + 1)
S

p+1
p−1
1,λ ,

where S1,λ is as defined in (3.10). Thus Iλ,1,0(v) � Iλ,1,0(w) for all v ∈ N . Moreover,
w ∈ N , and hence

inf
v∈N

Iλ,1,0(v) = Iλ,1,0 (w) .

Therefore,

Iλ,1,0 (w) = Jλ,a,0 (v0) := max
t>0

Iλ,a,0 (tv0) � Iλ,a,0 (tv0v0)

=
t2v0

2
‖v0‖2

Hλ
− tp+1

v0

p + 1

∫
BN

a(x) (v0)
p+1
+ dVBN (x)

=
t2v0

2
‖v0‖2

Hλ
− tp+1

v0

p + 1

∫
BN

(v0)
p+1
+ dVBN (x)

+
tp+1
v0

p + 1

∫
BN

(1 − a(x)) (v0)
p+1
+ dVBN (x)

= Iλ,1,0 (tv0v0) +
tp+1
v0

p + 1

∫
BN

(1 − a(x)) (v0)
p+1
+ dVBN (x)

� Iλ,1,0 (w) +
tp+1
v0

p + 1

∫
BN

(1 − a(x)) (v0)
p+1
+ dVBN (x).

(7.2)
Thus the above inequality and A1 result in

tp+1
v0

p + 1

∫
BN

(1 − a(x)) (v0)
p+1
+ dVBN (x) = 0. (7.3)

Thus

(v0)+ ≡ 0 in
{
x ∈ B

N : a(x) �= 1
}

. (7.4)

Moreover, the inequality in (7.2) becomes an equality by substituting (7.3) into
(7.2). Therefore,

inf
N

Iλ,1,0(v) = Iλ,1,0 (w) = Iλ,1,0 (tv0v0) .

Thus tv0v0 is a constraint critical point of Iλ,1,0. Therefore tv0v0 > 0 follows from
the Lagrange multiplier and maximum principle, which further implies v0 > 0 in
B

N . This contradicts (7.4). Hence (2) holds.
The proof of part (3) follows from the Palais–Smale decomposition. �
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Lemma 7.3. Let a as in Theorem 1.1. Then there exists a constant δ0 > 0 such that
if Jλ,a,0(v) � Iλ,1,0(w) + δ0, then∫

BN

x

m(x)
|v(x)|p+1 dVBN (x) �= 0, (7.5)

where m(x) > 0 is defined such that d( x
m , 0) = 1

2 , i.e., m(x) = |x|
tanh( 1

4 )
.

Proof. Suppose on the contrary that there exists a sequence {vn} ⊂ Σ̃+ such that

Jλ,a,0(vn) � Iλ,1,0(w) +
1
n

and
∫

BN

x

m
|vn(x)|p+1 dVBN (x) n→∞−→ 0 hold.

Then there exists ṽn ⊂ Σ̃+ by Ekeland’s variational principle such that

‖vn − ṽn‖Hλ

n→∞−→ 0,

Jλ,a,0 (ṽn) � Jλ,a,0 (vn) � Iλ,1,0(w) +
1
n

,

J ′
λ,a,0 (ṽn) n→∞−→ 0 in H−1

(
B

N
)
.

The above implies {ṽn} is a Palais Smale sequence for Jλ,a,0 at the level Iλ,1,0(w).
Further, by Proposition 4.2, we have {yn} ⊂ B

N such that d(yn, 0) n→ ∞ and∥∥∥∥∥ṽn − w (τ−yn
(x))

‖w (τ−yn
(x))‖H1(BN )

∥∥∥∥∥
H1(BN )

n→∞−→ 0

Therefore,

∥∥∥∥∥vn − w (τ−yn
(x))

‖w (τ−yn
(x))‖Hλ

∥∥∥∥∥
Hλ

� ‖vn − ṽn‖Hλ

+

∥∥∥∥∥ṽn − w (τ−yn
(x))

‖w (τ−yn
(x))‖Hλ

∥∥∥∥∥
Hλ

n→∞−→ 0.

Thus we can deduce

◦(1) =
∫

BN

x

m
|vn(x)|p+1 dVBN (x)

=
∫

BN

tanh(
1
4
)

x

|x|

(
w (τ−yn

(x))
‖w (τ−yn

(x))‖Hλ

)p+1

dVBN + ◦(1)

=
tanh(1

4 )

‖w‖p+1
Hλ

∫
BN

τyn
(y)

|τyn
(y)| |w(y)|p+1 dVBN (y)

n→∞
�−→ 0, upto a subsequence.

Hence we have come to a contradiction. �
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Finally, in this section, we state some refinement of Corollary 4.3.

Proposition 7.4. Assume a as in Lemma 1.1. Then for any ε > 0, there exists
d(ε) ∈ (0, d2] such that for ‖f‖H−1(BN ) � d(ε), the following holds

(i) infv∈Σ̃+
Jλ,a,f (v) ∈ [Iλ,1,0(ω) − ε, Iλ,1,0(ω) + ε].

(ii) Jλ,a,f (v) satisfies (PS)c for

c ∈ (−∞, Iλ,a,f (uloc min(a, f ;x)) + Iλ,1,0(ω))

∪ (Iλ,a,f (uloc min(a, f ;x)) + Iλ,1,0(ω), 2Iλ,1,0(ω) − ε) .

Now Lusternik–Schnirelmn (L–S) category theory will help us find the second and
third positive solutions to (P). Note that the (L − S) category of A with respect
to M is denoted by cat (A, M). Particularly, cat (M) denotes cat (M, M).

The following proposition is vital to obtain the second and third solutions to (P).

Proposition 7.5. Suppose M is a Hilbert manifold and Ψ ∈ C1(M, R). Assume
that for c0 ∈ R and k ∈ N

(i) Ψ(x) satisfies (PS)c for c � c0.

(ii) cat({x ∈ M : Ψ(x) � c0}) � k.

Then Ψ(x) has at least k critical points in {x ∈ M : Ψ(x) � c0}.

Lemma 7.6 [2], lemma 2.5. Let N � 1 and M be a topological space. Assume that
there exist two continuous mappings

F : SN−1
BN

(
:=

{
x ∈ B

N : d(x, 0) = 1
}) → M, G : M → SN−1

BN

such that G ◦ F is homotopic to the identity map Id: SN−1
BN → SN−1

BN , i.e, there is a
continuous map η : [0, 1] × SN−1

BN → SN−1
BN such that

η(0, x) = (G ◦ F )(x) for all x ∈ SN−1
BN

η(1, x) = x for all x ∈ SN−1
BN

Then cat (M) � 2.

Taking into account the above lemma, our next goal will be to construct two
mappings:

F : SN−1
BN → [Jλ,a,f � Iλ,a,f (Ua,f (x)) + Iλ,1,0(w) − ε] ,

G : [Jλ,a,f � Iλ,a,f (Ua,f (x)) + Iλ,1,0(w) − ε] → SN−1
BN

such that G ◦ F is homotopic to the identity map.
Let us define FR : SN−1

BN → Σ̃+ as follows:
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For d(y, 0) � R0, where R0 is as found in Proposition 6.1, (6.1) holds for all
t > 0. For d(y, 0) � R0, we will find s = s(f, y) such that

Ua,f (x) + sw(τ−y(x)) = ta,f

(
Ua,f (x) + sw(τ−y(x))

‖Ua,f (x) + sw(τ−y(x))‖Hλ

)

× Ua,f (x) + sw(τ−y(x))
‖Ua,f (x) + sw(τ−y(x))‖Hλ

.

This implies

‖Ua,f (x) + sw(τ−y(x))‖Hλ
= ta,f

(
Ua,f (x) + sw(τ−y(x))

‖Ua,f (x) + sw(τ−y(x))‖Hλ

)
. (7.6)

Therefore,

Jλ,a,f

(
Ua,f (x) + sw(τ−y(x))

‖Ua,f (x) + sw(τ−y(x))‖Hλ

)
= Iλ,a,f (Ua,f (x) + sw(τ−y(x)))

< Iλ,a,f (Ua,f (x)) + Iλ,1,0(w).

Proposition 7.7 [2], proposition 2.6. Assume a as in Theorem 1.1. Then there
exists d3 ∈ (0, d2] and R1 > R0 such that for any ‖f‖H−1(BN ) � d3 and any
d(y, 0) � R1, there exists a unique s = s(f, y) > 0 in a neighbourhood of 1,
satisfying (7.6). In addition,{

y ∈ B
N : d(y, 0) > R1

} → (0,∞); y �→ s(f, y)

is continuous.

Now we define a function FR : SN−1
BN → Σ̃+by

FR(y) =

Ua,f (x) + s(f,
tanh( R

2 )

tanh 1
2

y)w(τ
− tanh( R

2 )

tanh 1
2

y
(x))∥∥∥∥∥Ua,f (x) + s(f,

tanh( R
2 )

tanh 1
2

y)w(τ
− tanh( R

2 )

tanh 1
2

y
(x))

∥∥∥∥∥
Hλ

for ‖f‖H−1(BN ) � d3 and R � R1.
Then we have,

Proposition 7.8. For 0 < ‖f‖H−1(BN ) � d3 and R � R1, there exists
ε0 = ε0(R) > 0 such that

FR

(
SN−1

BN

) ⊆ [Jλ,a,f � Iλ,a,f (Ua,f (x)) + Iλ,1,0(w) − ε0] .

Proof. The following expression follows from the construction of FR

FR

(
SN−1

BN

) ⊆ [Jλ,a,f < Iλ,a,f (Ua,f (x)) + Iλ,1,0(w)]

Hence the proposition follows as F (SN−1
BN ) is compact. �
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Thus we construct a mapping

FR : SN−1
BN → [Jλ,a,f � Iλ,a,f (Ua,f (x)) + Iλ,1,0(w) − ε0(R)]

Now the following lemma is crucial for constructing the mapping G.

Lemma 7.9. There exists d4 ∈ (0, d3] such that if ‖f‖H−1(BN ) � d4, then

[Jλ,a,f < Iλ,a,f (Ua,f (x)) + Iλ,1,0(w)] ⊆ [Jλ,a,0 < Iλ,1,0(w) + δ0] (7.7)

where δ0 > 0 is as found in lemma 7.3.

Proof. for any ε ∈ (0, 1), the following holds using (3.12)

Jλ,a,0(v) � (1 − ε)−
p+1
p−1

(
Jλ,a,f (v) +

1
2ε

‖f‖2
H−1(BN )

)
for all v ∈ Σ̃+. (7.8)

Now, if

v ∈ [Jλ,a,f < Iλ,a,f (Ua,f (x)) + Iλ,1,0(w)] ,

then

Jλ,a,f (v) < Iλ,1,0(w)

because Iλ,a,f (Ua,f (x)) � 0.
Therefore, (7.8) implies

Jλ,a,0(v) � (1 − ε)−
p+1
p−1

(
Iλ,1,0(w) +

1
2ε

‖f‖2
H−1(BN )

)
,

for all v ∈ [Jλ,a,f � Iλ,a,f (Ua,f (x)) + Iλ,1,0(w)].
Thus v ∈ [Jλ,a,0 � (1 − ε)−

p+1
p−1 (Iλ,1,0(w) + 1

2ε‖f‖2
H−1(BN ))].

Since ε ∈ (0, 1) is arbitrary, we get

v ∈ [Jλ,a,0 < Iλ,1,0(w) + δ0] for sufficiently small ‖f‖H−1(BN ).

Hence (7.7) follows. �

We are now in a position to define the function G as follows:

G : [Jλ,a,f < Iλ,a,f (Ua,f (x)) + Iλ,1,0(w)] → SN−1
BN

G(v) := tanh(
1
2
)

∫
BN

x
m |v|p+1 dVBN (x)∣∣∫

BN
x
m |v|p+1 dVBN (x)

∣∣
where m as defined in Lemma 7.3, and the above function is well defined again by
Lemma 7.3 and by Lemma 7.9. Besides, we will show that these developments, i.e.,
F and G will serve our purpose.

https://doi.org/10.1017/prm.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.18


28 D. Ganguly, D. Gupta and K. Sreenadh

Proposition 7.10. For a sufficiently large R � R1 and for sufficiently small
‖f‖H−1(BN ) > 0, we have,

G ◦ FR : SN−1
BN → SN−1

BN

is homotopic to identity.

Proof. The proof follows as in [2]. �

We are now in a situation to establish our main results:

Proposition 7.11. For sufficiently large R � R1,

cat ([Jλ,a,f < Iλ,a,f (Ua,f (x)) + Iλ,1,0(w) − ε0(R)]) � 2

Proof. The proof of the proposition follows by combining Lemma 7.6 and Proposi-
tion 7.10. �

The above proposition led us to the following multiplicity results.

Theorem 7.12. Let a satisfy the assumptions as in Theorem 1.1. Then there exists
d5 > 0 such that if ‖f‖H−1(BN ) � d5, f � 0, f �≡ 0, then Jλ,a,f (v) has at least two
critical points in

[Jλ,a,f < Iλ,a,f (Ua,f (x)(a, f ;x)) + Iλ,1,0(w)]

Proof. Combining Corollary 4.3, Proposition 7.11, and Proposition 7.5, the theorem
follows. �

We can now finish the proof of Theorem 1.1 as follows:
Firstly, set u(1)(x) = Ua,f (x) as found in Proposition 7.1. Also, using (4.2) u(1)(x)

satisfies

Iλ,a,f

(
u(1)(x)

)
� 0.

By Theorem 7.12, Jλ,a,f (v) has at least two critical points v(2)(x), v(3)(x) in

[Jλ,a,f < Iλ,a,f (Ua,f (x)(a, f ;x)) + Iλ,1,0(ω)] .

Then u(2)(x) = ta,f (v(2))v(2)(x), u(3)(x) = ta,f (v(3))v(3)(x) will be the correspond-
ing solutions to (P) using Proposition 3.4. Moreover, by Lemma 3.2, we get

0 < Iλ,a,f

(
u(k)(x)

)
= Jλ,a,f

(
v(k)(x)

)
< Iλ,a,f

(
u(1)(x)

)
+ Iλ,1,0(ω) for k = 2, 3.

Hence u(1)(x), u(2)(x), u(3)(x) are distinct, and P possesses at least three positive
solutions.
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7.3. The case a(x) ≡ 1 : Existence of the second solution

The Remark 3.1 suggests that we need to find the critical points of the energy
functional Iλ,1,f to guarantee the existence of solutions to (P ′

).

Proof. There exists r1 > 0 such that

Iλ,1,f (u) > 0 for u ∈ Sr1 =
{
u ∈ H1

(
B

N
) | ‖u‖ = r1

}
, (7.9)

where r1 is as found in Proposition 7.1. Also, using Proposition 7.1 and (4.2), we
found a positive solution U1,f (x) of (P ′

) in B(r1) with Iλ,1,f (U1,f (x)) � 0.
Now fix y such that (6.2) holds. Further, it is not difficult to find t0 > 0 such

that Iλ,1,f (U1,f (x) + tw(τy(x))) < 0 and ‖U1,f (x) + tw(τy(x))‖Hλ
> r1 for t � t0.

Set

Γ =
{
γ ∈ C

(
[0, 1],H1

(
B

N
)) | γ(0) = U1,f , γ(1) = U1,f + t0w (τy)

}
,

c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)).

Moreover, we have

0 < c = inf
γ∈Γ

max
s∈[0,1]

I(γ(s)) < Iλ,1,f (U1,f (x)) + Iλ,1,0(w), (7.10)

which follows from (7.9) and 6.2.
Thus applying the mountain-pass theorem of Ambrosetti and Rabinowitz and

then using PS characterisation (4), we get a solution of (P ′
), say V1,f , such that

c = Iλ,1,f (V1,f (x)) + mIλ,1,0(w), (7.11)

for some non-negative integer m. Furthermore, 7.11 and 7.10 imply U1,f �= V1,f .
We have finished the proof of Theorem 1.4. �

8. Proof of Theorem 1.3

In this section, we prove Theorem 1.3 by finding two positive critical points of the
functional Iλ,a,f (as defined in (3.3)). We essentially follow the approach in the
spirit of Jeanjean [22]. Towards that, we partition H1(BN ) into the following three
disjoint sets:

U1 :=
{
u ∈ H1

(
B

N
)

: u = 0 or g(u) > 0
}

, U2 :=
{
u ∈ H1

(
B

N
)

: g(u) < 0
}

,

U :=
{
u ∈ H1

(
B

N
) \{0} : g(u) = 0

}
where g : H1(BN ) → R is defined as

g(u) := ‖u‖2
Hλ

− p‖a‖L∞(BN )‖u‖p+1
Lp+1(BN )

.

Remark 8.1. Observe that ‖u‖Hλ
and ‖u‖Lp+1(BN ) are bounded away from 0 for

all u ∈ U . It follows from the fact that p > 1 and Poincaré-Sobolev inequality on
the hyperbolic space.
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Further, define

c0 := inf
U1

Iλ,a,f (u) and c1 := inf
U

Iλ,a,f (u). (8.1)

Remark 8.2. Clearly, g(tu) = t2‖u‖2
Hλ(BN ) − tp+1p‖a‖L∞(BN )‖u‖p+1

Lp+1(BN )
for any

t > 0. Moreover, for u ∈ H1(BN ) with ‖u‖Hλ
= 1, there exists unique t = t(u) such

that tu ∈ U . On the other hand, g(tu) = (t2 − tp+1)‖u‖2
Hλ

for any u ∈ U . Thus

tu ∈ U1 for all t ∈ (0, 1) and tu ∈ U2 for all t > 1.

Lemma 8.3. The following inequality holds ∀u ∈ U ,

p − 1
p

‖u‖Hλ
� CpS

p+1
2(p−1)

1,λ ,

where S1,λ as defined in (3.10) and Cp as defined in Theorem 1.3.

Proof. As u ∈ U , we get ‖u‖Lp+1 =
‖u‖

2
p+1
Hλ(BN )

(p‖a‖L∞(BN ))
1

p+1
. This, together with the

definition of S1,λ, gives

‖u‖Hλ
� S

1
2
1,λ‖u‖Lp+1(BN ) = S

1
2
1,λ

‖u‖
2

p+1
Hλ(

p‖a‖L∞(BN )

) 1
p+1

∀u ∈ U.

Therefore, for all u ∈ U , we have

‖u‖Hλ
�

S
p+1

2(p−1)

1,λ(
p‖a‖L∞(BN )

) 1
p−1

=
p

p − 1
CpS

p+1
2(p−1)

1,λ .

Thus the lemma follows. �

Lemma 8.4. Suppose

inf
u∈H1(BN ), ‖u‖Lp+1(BN )=1

{
Cp‖u‖

2p
p−1
Hλ

− 〈f, u〉
}

> 0, (8.2)

where Cp is defined in Theorem 1.3. Then c0 < c1, where c0 and c1 are as defined
in (8.1).

Proof. Define,

J̃(u) :=
1
2
‖u‖2

Hλ
− ‖a‖L∞(BN )

p + 1
‖u‖p+1

Lp+1(BN )
− 〈f, u〉, u ∈ H1

(
B

N
)
. (8.3)

step 1: This step aims to show the existence of a constant α > 0 such that

d

dt
J̃(tu)

∣∣∣∣
t=1

� α ∀u ∈ U.
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It directly follows from the definition of J̃ that

d

dt
J̃(tu)

∣∣∣∣
t=1

= ‖u‖2
Hλ

− ‖a‖L∞(BN )‖u‖p+1
Lp+1(BN )

− 〈f, u〉.

Therefore, from the definition of U and substituting the value of Cp, we
have for u ∈ U

d

dt
J̃(tu)

∣∣∣∣
t=1

=
p − 1

p
‖u‖2

Hλ
− 〈f, u〉 =

(
p‖a‖L∞(BN )

) 1
p−1 Cp‖u‖2

Hλ
− 〈f, u〉

=

(
‖u‖2

Hλ

‖u‖p+1
Lp+1(BN )

) 1
p−1

Cp‖u‖2
Hλ(BN )

− 〈f, u〉 = Cp

‖u‖
2p

p−1
Hλ

‖u‖
p+1
p−1

Lp+1(BN )

− 〈f, u〉.

(8.4)
Furthermore, the given hypothesis, i.e., (8.2) implies there exists d > 0
such that

inf
u∈H1(BN ),‖u‖Lp+1(BN )=1

{
Cp‖u‖

2p
p−1
Hλ

− 〈f, u〉
}

� d. (8.5)

Now,

(8.5) ⇐⇒ Cp

‖u‖
2p

p−1

Hλ(BN )

‖u‖
p+1
p−1

Lp+1(BN )

− 〈f, u〉 � d, ‖u‖Lp+1(BN ) = 1

⇐⇒ Cp

‖u‖
2p

p−1

Hλ(BN )

‖u‖
p+1
p−1

Lp+1(BN )

− 〈f, u〉 � d‖u‖Lp+1(BN ), u ∈ H1
(
B

N
) \{0}.

Hence, step 1 follows by using the above estimate in (8.4) and by Remark
(8.1).

Step 2 Let un be a minimizing sequence for Iλ,a,f on U , i.e.,
Iλ,a,f (un) → c1 and ‖un‖2

Hλ
= p‖a‖L∞(BN ) ‖un‖p+1

Lp+1(BN ). Thus for n large,
we get

c1 + o(1) � Iλ,a,f (un) � J̃ (un) �
(

1
2
− 1

p(p + 1)

)
‖un‖2

Hλ

− ‖f‖H−1(BN ) ‖un‖Hλ
.

As a result,
{

J̃(un)
}

is a bounded sequence. Also, ‖un‖Hλ
and

‖un‖Lp+1(BN ) are bounded.

https://doi.org/10.1017/prm.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.18


32 D. Ganguly, D. Gupta and K. Sreenadh

Claim: c0 < 0.
To prove the above claim, it suffices to show that there exists v ∈ U1 such
that Iλ,a,f (v) < 0. Remark (8.2) implies we can choose u ∈ U such that
〈f, u〉 > 0. Therefore,

Iλ,a,f (tu) � t2‖u‖p+1
Lp+1(BN )

[
p‖a‖L∞(BN )

2
− tp−1

p + 1

]
− t〈f, u〉 < 0.

for t << 1. Moreover, by Remark (8.2), tu ∈ U1. This proves the claim.
Now Iλ,a,f (un) < 0 for large n by using the above claim. Consequently,

0 > Iλ,a,f (un) �
(

1
2
− 1

p(p + 1)

)
‖un‖2

Hλ
− 〈f, un〉 .

Therefore, p > 1 implies 〈f, un〉 > 0 for all large n . As a a result,
d
dt J̃(tun) < 0 for t > 0 small enough. Thus, by Step 1, there exists tn ∈
(0, 1) such that d

dt J̃(tnun) = 0. In addition, tn is unique because

d2

dt2
J̃(tu) = ‖u‖2

Hλ
− p‖a‖L∞(BN )t

p−1‖u‖p+1
Lp+1(BN )

=
(
1 − tp−1

) ‖u‖2
Hλ

> 0, ∀u ∈ U, ∀t ∈ [0, 1).

Step 3 The goal of this step is to prove the following

lim inf
n→∞

{
J̃ (un) − J̃ (tnun)

}
> 0. (8.6)

We can notice that J̃(un) − J̃(tnun) =
∫ 1

tn

d
dt

{
J̃(tun)

}
dt and that for all

n ∈ N, there is ξn > 0 such that tn ∈ (0, 1 − 2ξn) and d
dt J̃(tun) � α for

t ∈ [1 − ξn, 1].
To prove (8.6), it is enough to show that ξn > 0 can be chosen inde-
pendently of n ∈ N. But this is true because, by step 1, we have
d
dt J̃(tun)

∣∣∣
t=1

� α. Moreover, the boundedness of {un} gives∣∣∣∣ d2

dt2
J̃ (tun)

∣∣∣∣ =
∣∣∣‖un‖2

Hλ(BN ) − p‖a‖L∞(BN )t
p−1 ‖un‖p+1

Lp+1(BN )

∣∣∣
=

∣∣∣(1 − tp−1
) ‖un‖2

Hλ

∣∣∣ � C,

for all n � 1 and t ∈ [0, 1].

Step 4 It straight away follows from the definition of Iλ,a,f and J̃ that
d
dtIλ,a,f (tu) � d

dt J̃(tu) for all u ∈ H1(BN ) and for all t > 0. Therefore,

Iλ,a,f (un) − Iλ,a,f (tnun) =
∫ 1

tn

d

dt
(Iλ,a,f (tun)) dt �

∫ 1

tn

d

dt
J̃ (tun) dt

= J̃ (un) − J̃ (tnun) .
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Since {un} ∈ U is a minimizing sequence for Iλ,a,f , and tnun ∈ U1, we
deduce using (8.6) that

c0 = inf
u∈U1

Iλ,a,f (u) < inf
u∈U

Iλ,a,f (u) = c1

This completes the proof of the lemma. �

It is worth mentioning explicitly the problem at infinity corresponding to (3.4) :

− ΔBN w − λw = wp
+, in B

N , w ∈ H1
(
B

N
)
. (8.7)

and the associated functional Iλ,1,0 : H1(BN ) → R defined by

Iλ,1,0(u) =
1
2
‖u‖2

Hλ(BN ) −
1

p + 1

∫
BN

up+1
+ dVBN .

Define,

X1 :=
{
u ∈ H1

(
B

N
) \{0} : (Iλ,1,0)

′ (u) = 0
}

, S∞ := inf
X1

Iλ,1,0. (8.8)

Remark 8.5. We can easily see Iλ,1,0(u) = p−1
2(p+1)‖u‖2

Hλ
on X1. Further,(3.10) also

gives ‖u‖2
Hλ

� S
p+1
p−1
1,λ on X1. Consequently, S∞ � p−1

2(p+1)S
p+1
p−1
1,λ > 0. Moreover, it is

known from [29] that S1,λ is achieved by unique positive radial solution w of (3.1).
Therefore,

Iλ,1,0 (w) =
p − 1

2(p + 1)
S

p+1
p−1
1,λ .

Thus S∞ is achieved by w.

Proposition 8.6. Suppose (8.2) and all the assumptions in the Theorem 1.3 hold.
Then there exists a critical point u0 ∈ U1 of Iλ,a,f such that Iλ,a,f (u0) = c0. In
particular, u0 is a weak positive solution to (P).

Proof. We divide the proof into the following few steps.

Step 1 c0 > −∞.
As Iλ,a,f (u) � J̃(u) so, to prove Step 1, it is enough to show that J̃ is
bounded from below. The definition of U1 implies

J̃(u) �
[
1
2
− 1

p(p + 1)

]
‖u‖2

Hλ
− ‖f‖H−1(BN )‖u‖Hλ

for all u ∈ U1. (8.9)

Since the RHS of the above inequality is a quadratic function in ‖u‖Hλ

implies J̃ is bounded from below. Hence Step 1 follows.

Step 2 We aim to find a bounded PS sequence {un} ⊂ U1 for Iλ,a,f at the
level c0.
Let {un} ⊂ Ū1 such that Iλ,a,f (un) → c0. As Iλ,a,f (u) � J̃(u) so, from
(8.9), we get {un} is a bounded sequence. Since by Lemma 8.4, c0 < c1,

https://doi.org/10.1017/prm.2024.18 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.18


34 D. Ganguly, D. Gupta and K. Sreenadh

without restriction we can assume un ∈ U1. Therefore, by Ekeland’s varia-
tional principle, we can extract a PS sequence from {un} in U1 for Iλ,a,f at
the level c0. We still denote this PS sequence by {un}. Thus step 2 follows.

Step 3 In this step, we show that there exists u0 ∈ U1 such that un → u0 in
H1(BN ).
Applying PS decomposition (4) gives

un − u0 −
m∑

i=1

wi
(
τ i
n(x)

) → 0 in H1
(
B

N
)

(8.10)

for some u0 such that (Iλ,a,f )′(u0) = 0 and some appropriate wi and
{
τ i
n

}
.

We will proceed by the method of contradiction to show that m = 0, which
in turn will imply step 3. Assume that there is wi �= 0 for i ∈ {1, 2, · · · , m}
such that (Iλ,1,0)′(wi) = 0, i.e,

∥∥wi
∥∥2

Hλ
=

∫
BN (wi)p+1

+ dVBN . Therefore,

g
(
wi

)
=

∥∥wi
∥∥2

Hλ
− p‖a‖L∞(BN )

∥∥wi
∥∥p+1

Lp+1(BN )

=
∫

BN

(
wi

)p+1

+
dVBN − p‖a‖L∞(BN )

∫
BN

∣∣wi
∣∣p+1

dVBN

�
∥∥wi

∥∥p+1

Lp+1(BN )

(
1 − p‖a‖L∞(BN )

)
< 0,

where for the last inequality, we have used that p > 1 and ‖a‖L∞(BN ) �
1. Further, using the Remark 8.5, we get Iλ,1,0(wi) � S∞ > 0 for all
1 � i � m. Therefore, Iλ,a,f (un) → Iλ,a,f (u0) +

∑m
i=1 Iλ,1,0(wi) implies

Iλ,a,f (u0) < c0. Thus u0 /∈ U1, i.e., g(u0) � 0.
We have g(un) � 0 because un ∈ U1. We now compute g(u0 +∑m

i=1 wi(τ i
n(x))). Thus (8.10) and uniform continuity of g implies

0 � lim inf
n→∞ g (un) = lim inf

n→∞ g

(
u0 +

m∑
i=1

wi
(
τ i
n(x)

))
. (8.11)

On the other hand, as τ i
n(0) → ∞, d(τ i

n(0), τ j
n(0)) → ∞ for 1 � i �= j � m

the supports of u0(•) and wi(τ i
n(•)) are going increasingly far away as

n → ∞. Therefore,

lim
n→∞ g

(
u0 +

m∑
i=1

wi
(
τ i
n(x)

))
= g (u0)

+ lim
n→∞

m∑
i=1

g
(
wi

(
τ i
n(x)

))
= g (u0) +

m∑
i=1

g
(
wi

)
,

where the last equality follows from the translation invariance of g. Now
because g(u0) � 0 and g(wi) < 0 for 1 � i � m, we get a contradiction to
(8.11). This proves step 3.
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Step 4 Using the previous steps, we can conclude that Iλ,a,f (u0) = c0 and
(Iλ,a,f )′(u0) = 0. Thus, u0 is a weak solution to (3.4); combining this with
Remark 3.1, we complete the proof of the proposition. �

Proposition 8.7. Assume (8.2) holds. Then Iλ,a,f has a second critical point v0 �=
u0. In particular, v0 is a positive solution to (P).

Proof. For u0 to be the critical point found in Proposition 8.6 and w to be as in
Remark 8.5, set wt(x) := tw(x).

Claim 1: u0 + wt ∈ U2 for t > 0 large enough.
As p > 1 and ‖a‖L∞(BN ) � 1, we have

g (u0 + wt) � ‖u0‖2
Hλ

+ ‖wt‖2
Hλ

+ 2 〈u0, wt〉Hλ

− p
(
‖u0‖p+1

Lp+1(BN ) + ‖wt‖p+1
Lp+1(BN )

)
� (1 + ε) ‖wt‖2

Hλ
+ (1 + C(ε)) ‖u0‖2

Hλ

− p
(
‖u0‖p+1

Lp+1(BN ) + ‖wt‖p+1
Lp+1(BN )

)
= t2(1 + ε) ‖w‖2

Hλ
+ (1 + C(ε)) ‖u0‖2

Hλ

− p
(
‖u0‖p+1

Lp+1(BN ) + tp+1 ‖w‖p+1
Lp+1(BN )

)
,

where the second last step follows from Young’s inequality with ε > 0. Moreover,
as w is the solution to (3.1) implies

‖w‖p+1
Lp+1(BN ) = ‖w‖2

Hλ
.

Finally,

g (u0 + wt) � (1 + C(ε)) ‖u0‖2
Hλ

− p ‖u0‖p+1
Lp+1(BN ) + ‖w‖2

Hλ

[
(1 + ε)t2 − ptp+1

]
Thus choosing ε > 0 such that 1 + ε < p gives g(u0 + wt) < 0 for t > 0 large enough.
Hence the claim follows.

Claim 2: Iλ,a,f (u0 + wt) < Iλ,a,f (u0) + Iλ,1,0(wt)∀t > 0.
As u0, wt > 0, using wt as the test function for (3.4) yields

〈u0, wt〉Hλ
=

∫
BN

a(x)up
0wt dVBN + 〈f, wt〉 .

Therefore, utilizing the above expression and assumption a � 1, we compute the
following

Iλ,a,f (u0 + wt) =
1
2
‖u0‖2

Hλ
+

1
2
‖wt‖2

Hλ
+ 〈u0, wt〉Hλ

− 1
p + 1

∫
BN

a(x) (u0 + wt)
p+1 dVBN (x) − 〈f, u0〉 − 〈f, wt〉
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= Iλ,a,f (u0) + Iλ,1,0 (wt) + 〈u0, wt〉Hλ

+
1

p + 1

∫
BN

a(x)up+1
0 dVBN (x)

+
1

p + 1

∫
BN

wp+1
t dVBN

− 1
p + 1

∫
BN

a(x) (u0 + wt)
p+1 dVBN − 〈f, wt〉

� Iλ,a,f (u0) + Iλ,1,0 (wt)

+
1

p + 1

∫
BN

a(x)
[
(p + 1)up

0wt + up+1
0 + wp+1

t

− (u0 + wt)
p+1

]
dVBN (x)

<Iλ,a,f (u0) + Iλ,1,0 (wt)

This proves the claim. Further, the straightforward calculation gives

Iλ,1,0 (wt) =
t2

2
‖w‖2

Hλ
− tp+1

p + 1
‖w‖p+1

Lp+1(BN ) → −∞ as t → ∞. (8.12)

From (8.12) and Remark 8.5, we have

sup
t>0

Iλ,1,0 (wt) = Iλ,1,0 (w1) = Iλ,1,0 (w) = S∞.

Combing this with Claim 2 yields

Iλ,a,f (u0 + wt) < Iλ,a,f (u0) + S∞ ∀t > 0. (8.13)

Claim 2, together with (8.12), results in

Iλ,a,f (u0 + wt) < Iλ,a,f (u0) for t large enough. (8.14)

We now fix t0 > 0 large enough such that (8.14) and Claim 1 are satisfied. Then
set

γ := inf
i∈Γ

max
t∈[0,1]

Iλ,a,f (i(t)),

where

Γ :=
{
i ∈ C

(
[0, 1],H1

(
B

N
))

: i(0) = u0, i(1) = u0 + wt0

}
As u0 ∈ U1 and u0 + wt0 ∈ U2, for every i ∈ Γ, there exists ti ∈ (0, 1) such that
i(ti) ∈ U . Therefore,

max
t∈[0,1]

Iλ,a,f (i(t)) � Iλ,a,f (i (ti)) � inf
U

Iλ,a,f (u) = c1.

Thus, using Lemma 8.4, we have γ � c1 > c0 = Iλ,a,f (u0).

Claim 3: For S∞, as defined in (8.8), γ < Iλ,a,f (u0) + S∞.
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Observe that limt→0 ‖wt‖Hλ
= 0. Thus, if we define ĩ(t) = u0 + wtt0 ,

then limt→0

∥∥ĩ(t) − u0

∥∥
Hλ

= 0. As a result, ĩ ∈ Γ. Therefore, using (8.13) will
give us

γ � max
t∈[0,1]

Iλ,a,f (̃i(t)) = max
t∈[0,1]

Iλ,a,f (u0 + wtt0) < Iλ,a,f (u0) + S∞

Hence the claim follows. Thus

Iλ,a,f (u0) < γ < Iλ,a,f (u0) + S∞.

Applying Ekeland’s variational principle, there exists a PS sequence {un} for Iλ,a,f

at the level γ. Also, note that {un} is a bounded sequence. Further, from PS
decomposition and Remark (8.5), we have S∞ = Iλ,1,0(w) and un → v0 for some
v0 ∈ H1(BN ) such that (Iλ,a,f )′(v0) = 0 and Iλ,a,f (v0) = γ. Further, as Iλ,a,f (u0) <
γ, we conclude v0 �= u0. Finally, (Iλ,a,f )′(v0) = 0, along with the Remark 3.1,
completes the proof of the proposition. �

Lemma 8.8. If ‖f‖H−1(BN ) < CpS
p+1

2(p−1)

1,λ , then (8.2) holds.

Proof. We can find an ε > 0 such that ‖f‖H−1(BN ) < CpS
p+1

2(p−1)

1,λ − ε using the given
assumption. Therefore, using Lemma 8.3. we have

〈f, u〉 � ‖f‖H−1(BN )‖u‖Hλ
<

[
CpS

p+1
2(p−1)

1,λ − ε

]
‖u‖Hλ(BN )

� p − 1
p

‖u‖2
Hλ

− ε‖u‖Hλ(BN ), ∀u ∈ U.

Thus

inf
U

[
p − 1

p
‖u‖2

Hλ
− 〈f, u〉

]
� ε inf

U
‖u‖Hλ

.

Moreover, Remark 8.1 gives us that ‖u‖Hλ
is bounded away from 0 on U , so the

above expression yields

inf
U

[
p − 1

p
‖u‖2

Hλ
− 〈f, u〉

]
> 0.

On the other hand,

(8.2) ⇔ Cp

‖u‖
2p

p−1
Hλ

‖u‖
p+1
p−1

Lp+1(BN )

− 〈f, u〉 > 0 for ‖u‖Lp+1(BN ) = 1

⇔ ‖u‖
2p

p−1
Hλ

‖u‖
p+1
p−1

Lp+1(BN )

− 〈f, u〉 > 0 for u ∈ U

⇔ p − 1
p

‖u‖2
Hλ

− 〈f, u〉 > 0 for u ∈ U.

Hence the lemma follows. �
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Combining Proposition 8.6 and Proposition 8.7 with Lemma 8.8, we conclude the
proof of Theorem 1.3.
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25 P. L. Lions. The concentration-compactness principle in the calculus of variations. The
locally compact case. II. Ann. Inst. H. Poincaré Anal. Non Linéaire 1. 4 (1984), 223–283.
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