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Oxide-supported noble metal catalysts play significant roles in promoting the necessary catalytic reactions 

in our daily life, ranging from electrocatalytic reactions in fuel cells to exhaust gas emission reduction in 

the automotive industry. Among them, gamma-alumina supported rhodium (Rh) nanoparticles automotive 

catalysts in the catalytic converter act as a key component to reducing the majority of nitric oxides emitted 

from the combustion engines. The scarcity of Rh and increasingly stringent emission regulations 

necessitate the deep understanding of mechanisms behind catalysts aging phenomenon. 

The porous and semi-amorphous characteristics of industrial gamma-alumina support provide significant 

advantages such as high surface area and anchoring sites for catalysts nanoparticles. However, this makes 

it difficult to study the microstructure of the material under ideal imaging and spectroscopy conditions. 

Previous researchers have shown that alumina-supported Rh-based catalysts (Rh/Al2O3) exhibit 

deactivation phenomena at elevated temperatures with various and highly debated explanations [1]–[6]. 

The ambiguity in such deactivation mechanisms is due to the limited information from the chosen method 

of characterization and the lack of direct atomic-scale visualization of the evolution of catalysts’ 

microstructure. In this study, scanning transmission electron microscopy (STEM) and electron energy-

loss spectroscopy (EELS) are used to study the microstructure evolution of nanoparticles in industrial 

Rh/Al2O3 catalysts upon accelerating aging treatments. 

One challenge for imaging heterogeneous catalysts is the non-uniform substrate with highly 

dispersed metallic nanocatalysts that hinders the interpretation of the original structure based on 2D 

projections. In addition, aberration-corrected STEM enables sub-Angstrom spatial resolution but reduces 

significantly the depth of field due to the larger convergence angle. The effects of reduced depth of field 

will be more challenging for supported nanocatalysts. To visualize the three-dimensional information, 

STEM optical depth sectioning methods have been applied to reveal the microstructure of ideal 

semiconductors with dopants [7] and three-dimensional nanoparticles [8]. Newly formed phases with 

substitutional Rh atoms in gamma-alumina support under high-temperature oxidizing treatments will be 

revealed with depth sectioning STEM analysis to deeply understand the deactivation and regeneration 

phenomenon after environmental treatments. With the collections of focus series using aberration-

corrected ThermoFisher Themis Z STEM microscope, three-dimensional representation of microstructure 

will facilitate the interpretation of Rh-alumina interacting species with high-spatial resolution. In the 

meantime, in order to avoid microstructure alteration of beam-sensitive gamma-alumina supports, the low-

dose analysis will be carried out and show the optimal conditions due to the trade-off between high 

contrast and minimum beam effects [9]. 
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