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§1. Introduction

Following eariler work of Kubota and Mennicke, the major work of
Bass, Milnor and Serre [1] constructed characters of congruence subgroups
of the modular subgroups of SL(n) and Sp(2n) over a totally complex
number field, which are related to the power residue symbol. They do
not obtain the lowest possible level of these Kubota characters, nor does
it appear possible to modify their arguments to extend the characters
to the lowest possible level.

It is important for applications, such as our paper [2], that precise
formulae for the Kubota symbol be available. The formulae are simplest
if the ground field contains the fourth roots of unity, and so we will
work over the field Q(i). We shall give here a construction of the
Kubota symbol for Sp(4) over this field, independent of the work of Bass,
Milnor and Serre, with precise formulae for the symbol, and a proof of
its multiplicativity. We will construct the symbol over a larger congru-
ence subgroup of Sp(4, Z[i]) than that afforded by the results of Bass
Milnor and Serre. Because of this feature, our results do not follow
from those of Bass, Milnor and Serre.

Since we wrote this paper, we were surprised to discover that it may
actually be possible to extend the symbol to a character of an even
larger congruence subgroup, I'(2) of Sp(4,Z[i]). (We have not proved
this, but it appears likely to be true.) The formulas which we give for
the symbol are not valid without modification for that group, but it is
likely that our method can be adapted to extend the symbol to that
larger group. However, our results are adequate for the purposes of [2].

It should be mentioned that Johnson and Millson [3] have recently

» This work was supported by grants from the NSF.
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investigated the theta multipliers for Sp(2n,Z). See also Stark [4] and
Styer [5].

To state the main result, let us introduce the following notation.
Let 0 =Z{i], 2=14 i, and M = (). Let Sp(4, 0) denote the subgroup
of SL(4, 0) consisting of matrices g satisfying gJ's = J, where

i 1

Let I'(M) denote the subgroup of Sp(4, ®) of matrices congruent to the
identity modulo M, and let I'x(M) be the subgroup of I'(M) of matrices

having 2 X 2 block form (‘g IB;)

If 7 = (7,;) is any square matrix of degree four, let A,, = A7) denote
the (3, 4) X (i,j) minor 7,7,; — 7.7;;. The A,, are called the invariants (or
Pliicker coordinates) of 7.

Observe that if 7, /e I'(M), then A,(r) = A,(’) if and only if
I's(M)r = I's(M)?', so that the cosets of I"',(M)\I'(M) are parametrized by
these invariants (see Proposition 2.2 below for a more precise statement).

We shall construct a character «: I'(M) — {+1}, which is trivial on
the subgroup 7I'»(M). We shall give an explicit formula for x(7) in terms
of the invariants A,; and the quadratic resdue symbol. The main result is

THEOREM 1.1. There exists a unique character r: I'(M)— {1} such
that if v eI'(M) has invariants A,,, then assuming that A, and A, are
coprime, we have

(1D #(7) = (%i) .

We will also give more complicated formulae for x(y) in terms of the
invariants which are valid even if A,, and A, are not coprime.
§2. Preliminaries

We begin by collecting some facts on the arithmetic of ¢. Recall
that every ideal in @ which is prime to M has a unique generator which
is congruent to 1 modulo M. Such a generator is called primitive. If p
is a prime ideal other than (1), we shall also use the same letter p to
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denote its unique primitive generator.

Let a, b be coprime elements of ¢ such that i does not divide b.
Let (a/b) be the usual quadratic symbol. We have the following prop-
erties:

ProposiTION 2.1. The quadratic symbol satisfies

(a) (a/b) = = 1 if a and b are coprime, zero otherwise;

(b) If p is prime and if pfta, then (a/p) =1 or — 1 according as the
congruence x* = amod p is or is not solvable;

(c) (ad’/b) = (a/b)a'[b);

(d) (a/bb’) = (a/b)(a/b);

(e) If cc 0%, then (aleb) = (a/d);

(f) If a = a’ mod b, then (a/b) = (a’|b);

(g) If a and b are primitive, then (a/b) = (b/a);

(h) If a = A + Bi is primitive, where A, B are rational integers so
that A =1mod2, A — 1= Bmod4, then

(L) — (_ 1)(1/4)(A2+B2—1) , and (i) — (___ 1)(1/4)(,4—3—82—1) .
a a

(i) If b= moda and b = b’ mod 2°, then (a/b) = (a/b’).

(i) If b= b moda and 2*|a, then (a/b) = (a/b").

Also, let us collect some facts concerning the invariants A,;. For
any 7 € Sp(4, 0), the invariants satisfy

(2-1) Au = - Aza )

(2-2) A12A34 - A13A24 - Ah =0 s
and

(2'3) ng (A129 A13, A‘Zb AM) = 1 .

Indeed, (2.1) holds since 7 is symplectic. Also (2.2) follows from (2.1)
and the “Pliicker relation” A;A; — Aj;A, + AL A, = 0, which is valid
for the invariants of any matrix, symplectic or not. To prove (2.3), note
that since 7 is an integral unimodular matrix, so is the six by six matrix
A% of v in the exterior square representation, and so the bottom row of
this matrix is unimodular, i.e. gcd (A, Ay, Ay, Ay, A, 4) = 1. However
by (2.1) and (2.2) any divisor of (2.3) would also divide A,, and A,,, Thus
we have (2.3).
If r e I'(M), then in addition
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2.4 Ay, Ay, Ay, Ay, Ay, = 0mod M, Ay=1mod M.

Conversely, we have

ProposiTioN 2.2. Suppose A,,€0 satisfy (2.1), (2.2), (2.3) and (2.4).
Then there exists a unique coset in I' (M)\I'(M) with these invariants.

One can give an explicit formula for a coset representative. For
this, and the details of the proof, see [2].

§3. The Kubota symbol

First we give a formula for x(r) which is valid even without the as-
sumption that ged (4,, 4,,) = 1.

ProposiTioN 3.1. Let 1 € I'(M) have invariants A,, satisfying (2.2), (2.3)
and (2.4). Let b be the primitive generator of the ideal gecd (4, Ay, A,y
Choose a factorization b = b'b” with b/, b” primitive such that b’ | A, and
" | Ay Let b= vf, b = vp* b’ = v'g"” such that v, V', v are squarefree
and primitive. Factor v = v,v) = vjv, where v, vy, Vi and v, are primitive,
U Agy, ged (v, As) =1, v,| Ay, ged (v, Ay) = 1. Then vy |v” and v{|V, so let
vV =vty, v = viv;. Let Ay, = b"Af, A, = VA, A, = bA}, A= vBAl,

so that
3.1 ApAL — AGAL = vAf.
Then
(3.2) ged (v, Ay) = ged (v, Ag) = ged (v7, A3
= ged (v, A3) = ged (As, A5) = 1.
Thus

33 = () (5 ()

is defined. Moreover, the expression (3.3) is independent of the factoriza-
tion b = b'b".

Proof. To show that ged (vy, 4,,) = 1, observe that any prime common
divisor of v, A,, would divide A, Ay, Ay, As, contradicting (2.3). To
show that ged (v, Ai) = 1, observe that a common divisor would divide
ALA;, = ALAL — VAL, yet A}, AiAl, are coprime. In fact, this proves the
stronger relation
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(3.4) ged (v, A7) = 1.

To prove that ged (v, Af;) = 1, note that a common divisor would divide
ALAl = ALA + VAL and so by (3.4) would divide A,,, Thus a common
factor of v, Aj; would divide A, Ay, Ay, Ay, contradicting (2.3). The re-
maining two assertions of (3.2) are obvious.

To prove that the expression (3.3) is independent of the factorization
b = b'b"”, suppose b = c'c”,c/,c” primitive, ¢'|A,, ¢’|A; and let w” be
the primitive squarefree part of ¢”. Let w” = w{v), Ay = "B, A, =
¢’B;,, We must show that

(3.5) <Au )( " )( Aj, )( Al )( A;,)
v{l U1 U;’ l)1 ;;
= ()G ()
w /\ v vy v, /\ A

There exist primitive p, v where v|ged (43, B, ¢”, b'), | ged (Af;, Bs,, ¢/, b”)
such that & = vu'c/, b’ = w'c”, By = w4, By = vp'A;, and v
equals pw; times a square, so the left side of (3.5) equals the right side,

times a factor which equals

(o)) () (47) = (F)()

17 vy I\ v, /\ A 7y w/’

where we have invoked quadratic reciprocity. Every prime factor which
divides pv divides Aj;Aj,, so (3.1) implies (3.5).

ProrosiTiON 3.2. In the notation of Proposition 3.1,

(3.6) ged (v;, Ay) = ged (vy, Az = ged (v, A) = ged (vy, Aj)
= ged (A, A3) = 1.

Moreover the value of

@ (L) A4 (4)

is independent of the factorization b = b’b”, and equals k(7).

Proof. The proofs of (8.6), and the independence of (3.7) of the fac-
torization b = b’b” are exactly similar to the corresponding assertions in
Proposition 3.1. We will verify that (3.7) equals (7).

By using (3.1), the ratio of (3.3) to (3.7) may be expressed as
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(3.8) ( Ay )( Ajl )( Al )( Al ) '
vlvs/\ vuu, S\ vy S\ vuy

Observe that v,v,v{vy and v,vv)v; are squares and

ged (v, v) = ged (vy, vy) = ged (v, V) =1,

so that the set S of primes dividing any one of v{, v}, v, v, U}, vy may be
partitioned into S;US,US,US,US;US;US; (disjoint) where

plu, vy, vy, P, vy, v if peS;
plu, vy, 07, prvg, vy, vy ifpeS;;
plu, v, v, v, D AU, vy if peS;;
plu, v, DA, vy, v, v if peS,;
plug, v, p Ay, v, v, Uy if peS;;
plu, v, v/, v5,  pfu, v if peSs;
plv/, v, P AUy, Uy, U, Uy if pes§;.

We may evaluate (38.8) by computing separately the contributions from
peS;, i=1,..--,7. Thus (3.8) equals

A12A§2>(A§3Aé4>][ g 1]
.1, (=)A= fr 1]
pPES]

If peS, or S,, p|v and so the first product is one by (3.1). This com-
pletes the proof of Proposition 3.2.

ProrosiTioN 3.3. Let v € I'(M) have invariants A, satisfying (2.2), (2.3)
and (2.4). Let ¢ be a generator of the ideal gcd(A,, AnLAs). Factor
¢ =c'c” where ¢’|A,, and c’|A; is primitive. Let ¢ = ud, ¢ = u'd”,
¢’ = u'6"”, where u,u’, u” are squarefree and u’ is primitive. Factor u =
wuy = uu, where u,| A, is primitive, (uy, Ay) = 1, w,]| Ay, (U, 4 = 1.

Then uw)|u”, ui|vw, so let v’ = u/'uy), v = ulu,. Then A¥u, ul, us, uy,
(3.9) ged (', Ayy) = ged (uy, Aj) = ged (v, Az
= ged (uy, Af) = ged (Ag, Az) =1

and

A A// u// AI 14
@10 =) (S ) () ()
ul u, Aj, U Az,
Proof. 1t is clear that Afuw, uf, u;. Since wujujul’ is a square, it fol-
lows that- 2fuf. The proof of (3.9) is similar to the proof of (3.2). An
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argument similar to the proof of (3.5) shows that the right-hand side of
(3.10) is independent of the choice of factorization ¢ = ¢’¢” (and the other
minor choices involved). To compare (3.10) to (38.3), we may therefore
assume that b’ = ¢’ is the primitive generator of the ideal gecd (A, A,),
so u' = V. Then A;, = b"Aj, A, = c”A},. The ratio of (3.10) to (3.3) is

NN NN
vy’ Uy vy Uy Az uy’ 221 Az U, A,y

Replacing A,,, Al, Ai, and A, by ¢’Aj, ¢”AY, b”AL, and b”Aj, and per-
forming obvious simplifications, this equals

e ()5 )
vy’ v v/ v, AR TIAY.YIAR

_ < AjAL )( AjA, )
vl Wu, )
It is easy to see that v,u'vi’u, is a square and that (1), v)) = 1. As in the

proof that (3.8) equals one, one shows that (3.11) equals one by case-by-
case consideration of the primes dividing any of v, v/, v/, u,. The cases

of concern are

| ’
plvh vl”; p’{u{’ulv
pivl’ U, pku{’, vy,
17 Y24
plulsu,,  Dpfu, .

We have AL A — ALAL = w(Aj)? where Aj, is an integer, and w is the

squarefree part of b¢”. It may be verified that in each of the three cases

( AéiAie.) - <A32Au)
. P p

so there is no contribution. In the other two cases,

above, p|w, so that

plu,w’',  piv,u
plu,vi’,  prul v
it is obvious that there is no contribution. This completes the proof of

Proposition 3.3.

PropositioN 34. Let 1, 6 € ['(M) have invariants A,,;, B,, respectively,
where Ay, = By, Ay, = By, Ay = By, A,y = By, and A14 = Bl4- Then IC(T) =
k(5).
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Proof. This follows by comparing the statements of Propositions 3.1
and 3.2.

We would like to show that the Kubota symbol agrees with (A,,/A;)
as in the statement of Theorem 1.1. It is convenient to prove slightly
more.

ProposrtioN 3.5. Let v I'(M) have invariants A, Let b be the
primitive generator of the ideal ged (A, Ay, and let A, = b’A;,. Assume
that A}, and A,, are coprime. Let b = UB? where v is primitive and
squarefree. Then V' and A,, are coprime, and

= (4)(%)

Proof. Suppose p is a prime dividing v and A,,. Then p|A,, Ay Ap
so by (2.3) pYA,;,. In the notation of Proposition 3.1, let b” be the
primitive generator of the ideal gecd (A, Asb"Y). ' Then plv and ptv” so
plv. Now ALA,, = A, A modv which is a contradiction since p|A,,
pYALAL. Thus (A, V) = 1. Using (8.3), (N(An/V)(As[A,,) simplifies to

( A )( ;;)<A{3A;4)____( Ay )
ZAZALI Uy Uy RVAVA PN

since ALA}, = A Al modv,, This equals 1 since v,vvyv, is a square.

We trun now to the proof of Theorem 1.1. Let [ be the subgroup

of Sp(4, ®) consisting of matrices (é g) where B= C=0mod M and

det (A), det (D) are primitive. Let I', be the subgroup where C = 0.
Clearly I'(M) < I and I'y(M) = I'(M) N I

PROPOSITION 3.6. The natural map I's(MN\I'(M) — ' \I" is a bijection.

Proof. Clearly it is an injection. On the other hand, if re /" the
invariants of 7 satisfy the hypotheses of Theorem 2.5 of [2], and so the
coset [',r contains a representative in I'(M). Thus the natural map is
surjective.

We have pointed out that & is actually a function on I'p(M)\I'(M).
Thus Proposition 3.7 implies that &£ may be regarded as a function on 7.
Theorem 1.1 will follow from Proposition 3.5 and the following stronger

THEOREM 3.7. & is a character of I

Let X be the set of 7€/’ whose invariants satisfy gecd (4,, As) = 1.
Let

https://doi.org/10.1017/50027763000003184 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003184

KUBOTA SYMBOL 181

[y ={relk@r) = k(") and &('7) = (")e@) if 7 eI},
Iy={rel|s() = er-) and &('1) = (")) if V' e I, 7’1 3}.

Evidently Iy is a subgroup of I and & is a character of I, We have
Iy, '. It is not a priori clear that I", is a subgroup of I', but in
fact we will eventually prove that I, = I", = I

LEMMA 3.8. The element
wz =

of I lies in I
In fact, this is simply a restatement of Proposition 3.4.

LeEmMA 3.9. If te M then

r= ely.
1

Proof. Suppose 1’ has invariants A,;,, and 1’y has invariants B,
Then By, = Ay, By = Ay, By = Ay, By = Ay + tAy, By = Ay + tA,. To
prove that x(7'r) = #(r’) (whence 7 e [, since x(r) = 1), it is convenient to
use Proposition 3.3, to which we refer for notation. We have, by Propo-

K1) = ( Ay )( Ay )( uy )( Al )( Aéi)
uy 221 Ag, u, Az
B A u’ Al A

K(1'7) = ( 13 )( 24 )( 2 )( 12 )( ,z4>
uy! u B;, U, B;,

in which Bj, = Aj, + tc”Aj,. Thus Bj;, = A;, mod 2°4;, which by Proposi-
tion 2.1 (1) implies that

(5)- (), (4)-(&)

a) =\ ) \a) =B,

Also, clearly (Ay/ul’) = (Bis/u)’) and so the two symbols x(7’) and «(r'7)
are equal. Thus 7 eI,

sition 3.3

https://doi.org/10.1017/5S0027763000003184 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003184

182 DANIEL BUMP, SOLOMON FRIEDBERG AND JEFFREY HOFFSTEIN

LEMMA 3.10. If ue M then

Proof. Let 1'el’, r'reX. Then if v, 't have invariants A,,, B;, re-
spectively, then B, = A,,, B, = A;;, By, = A,,, B, = A, + ud,, and B;, =
A, + 2uA,, + u*A,. We are assuming B, B,, to be coprime. Thus
k(r'7) = (B,,/B,,) while #(’) is given by Proposition 3.1, to which we refer
for notation. We have

A; Aj] v
= (£ )
A34 A34 34 B34

2By = AfAy + 2uALA, + WALAY
= AjA;, + 2uAjA, + WwPvAL mod A, .

Now

The right side in this congruence equals v(8A;; + uA},)’ and so by Proposi-

tion 2.1 (i)
(i) - ().
AziBs, v

It follows in particular from the preceding congruence that v, A;, are

coprime. Observe that v, and v divide A4,,, so v,v)y and B,, are coprime.

As vu'v, = vuv] is a square, it follows that

()~ 40~ () - ()42
B, B, vy AN

Now A,,B;, = (A, + ©uA;,) mod A,, and since v, vy’| A,, it follows that

o) = (e )(Le)( 42 ).
(212 U0y Az

Now A,A; = A, A; mod v, and so

- (NN -

by Proposition 3.1. Since (7) = 1, this proves that re I,
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LEmMa 3.11. Let A, B,C,Dec @, with A and D coprime. Then there
exists pe O such that A + pB and C + pD are coprime.

Proof. If D=0 we may take p=0. Assume then that D 0.
Observe that if x is a solution to gecd (A + p¢BD, C + pD* =1, then
p = uD is a solution to ged (A + pB, C + pD) = 1. Thus we may assume
that every prime which divides D also divides B. Let d be the greatest
common divisor of C and D. By Dirichlet’s Theorem on Primes in an
Arithmetic Progression, there exist infinitely many p such that C + pD
= pd where p is prime. Since every prime dividing d divides B, and
since gcd (A4,d) = 1, we have gcd (A + pB,d) = 1. Thus either A 4 pB,
C + pD are coprime or p|A + pB. It is sufficient to show that p|A + pB
can occur for only finitely many p. If p|A + pB then (A + pB)/(C + pD)
= g/d where g€ @. Solving for p,

Co — AD
— Do + Bd
However, as ¢ runs through ¢, the right side of (3.12) remains bounded,

hence there are only finitely many possible g.
Let U(M) be the subgroup of /" of all

(3.12) o=

1 u v
1 ¢t u

(3.13) ) , t,u,veM.
1

PrOPOSITION 3.12. If re ", there exists 1’ € U(M) such that 17’ € 3.

Proof. If v has invariants A,; and 7’ is the matrix in (3.13), then 17’
has invariants B,, where B, = A, — vA,; + tA,, + (&’ — tv)A,, + 2uA,,
By, = Ay, — VA, and B, = A;;. Since gecd (4, Ay, Ay, Ay, Ay) =1, we
may clearly arrange that B,, and B,, are coprime. We may then further
adjust using v along with ¢t = u = 0 by Lemma 3.11.

LeEmMA 3.13. UWM) c [,

Proof. First let us show that U(M)  I",. The matrix (3.13) may be
factored as

1 1 1 u

1 1 1
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where the first four matrices lie in /', by Lemmas 3.8 and 3.9, and the
fourth is in /”, by Lemma 3.10. Hence each matrix (3.13) lies in /..

Now to prove that U(M) c I, let ' e ', e UM). By Proposition
3.12, there exists 7”7 € U(M) such that 177/ e 2. Since 17" e I, (as we have
just proved), (') = «(r'rr”). Now as 7’ el «(r'1r") = e(r'7). It follows
that 7 e I,

LemmA 3.14. If e,f.g, he @, eh — fg = 1 mod M then

Proof. Observe that by Proposition 3.5, #() = 1. First let us prove
that 7 e I, Suppose that 7’ e ”, r'reX. If /,r'r have invariants A,,, B,
respectively, then B,, = A,,, B, = e¢’A,; — 2egA,, — g*A,,, B, = h*A,, +
2fhA,, — f?Ay, By = (eh + fg)Ay — efAy, + ghA,, By, = A,. We are as-
suming B,,, B, are coprime. Thus

#(I'7) = ( gz: ) .

We will compare this to x(r’) which is given by Proposition 3.1.

()- (BN

B,, U, vy 4

Since ;| Az, Ay, (Ba/v) = (Ap/vy) = (An/v)(V”’[v).  Also, since vy'| Ay, A
(Bofuy) = (Aafvy) = (A fv))V'[vy). Now AjB, = v'(hf A — fAL) mod A
where A, is defined by A, = vfAj,. It is integral because b’| A}, Since
ged (A3,B,,, Ai)) = 1 this proves that v/, Aj, are coprime and

() = (G )(5s)
w) = \Var\ay,

Thus

AI v// A/ v/ v/ A/
0= () ) ) ()
0= e N &,

Now since vf'| A, AAL = vAfZmod v{ so bearing in mind that vV is
a square,
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(A7) = (5 ) () () = (557 ) (5) -
4 v vy’ vy’ v, I\ N\ v

Thus by Proposition 3.1

0= F)ENE)
) - CIDAEE -

since v,v{v{v] is a square. Thus #(’7) = #(r’), proving that 7 e ;.

Now let us prove more precisely that 7e /. If el is no longer
assumed to be such that 7’7 €Y, nevertheless by Proposition 3.12 there
exists 7" € U(M) such that 777" € ¥. Now by Lemma 3.13, «(7'r) = «('r1"")
= k(r’(7"r")r) and since 7 e, this equals «(’(7'r")). Now 17'1'e
U(M), so by Lemma 3.13 again this equals (). This proves that r e ",

Now

Lemma 3.15. If t,u,re M then
1

7= el,.

1
u t 1
r u 1

Proof. Let 1’el’ have invariants A,,, Then 77 has invariants B,,
where B, = A, + tA,, — rd,, + (u* — tr)A, + 2ud,, B, = A, — rA,,
B,, = A,, + tA,, B, = A, + uA,, By, = A,. In Proposition 3.1, the factors
v, U, U, v” and v, are unchanged from the A,, to the B,,, which makes
the comparison of k(') and £(y’r) simple. Since v!|Ay, A, Ay, Ay, we
have A,, = B,;mod v}’ and so

()= (%)
vy’ 744 ’

As vy | Ay, ged (vf, 0) = 1, so B, = Aj,mod vy and so

By \ _ (A
v -\ v :
2 2
Let us show that v,|b’. Since v, is squarefree, it is sufficient to show

that each prime p dividing v, divides &’. If p|v/, then clearly p|b’. On
the other hand, if pfv/, since v,vyv’ is a square, p|vy. Now p|v, vy so

https://doi.org/10.1017/50027763000003184 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000003184

186 DANIEL BUMP, SOLOMON FRIEDBERG AND JEFFREY HOFFSTEIN

P|Ay, Ay, Ay so by (2.3) prA, Also by (3.2), prAj. As plv, ALAL =
ApAsimodp, so ptA;. Now plA,, ptAj, so p|b’ in this case also. Thus
v |b. Now Bj; = A;; — rb’Aj, and so B; = Aj; modv,. Thus

(%)- (%)

2 v

(5)-(%). (-3
v v Ag 14

and so each symbol in (3.3) equals the corresponding symbol in the corre-

sponding formula for x(r'r). Thus #(r'7) = (') and so 7 e [.
The following lemma contains the heart of the proof.

Clearly

Lemma 3.16. If p,q, r, se(®, <l; Z) = <(1) (1)> mod M, ps — qr = 1,

then

7= P4 el,.
1

Proof. First let us show that e/, Let e[, 7re 2. Let 1,7t have
invariants A,,, B,; respectively. We have B, = pA,, + rA;, B;, = qA,, +
8A;. Our hypothesis that ged (B,,, Bs,) = 1 implies that ged (4,, 4;) = 1,
and so €Y. Now

o-() @-() wn-()

so what we must prove is that

(3.14) <.B24 ) - (L)(:‘ﬁi> .
B,, S Ay,
Let d be the primitive generator of the ideal ged (s, B;). Let s = d¢/,

B,, = dB;,. Note that d, s/, B;, are all primitive. Since A,, = sB,, — rA,,
d|A,. Let A, = dAj,. Now

(3.15) B,, = rA,, mod A,,
(3.16) B;, = s'A,, mod A7,
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(3.17) A, =8B, —rBi,.

(8) = () (o) (B

Using (3.17) and (3.15) to rewrite the second and third symbols on the

right, this equals
( 2 )( : ) ( )( “)
B;, /\ Bj, /\d d /)’

Now observe that 4*| A7, Thus by Proposition 2.1 (i) we may use (3.16)
to evaluate the second symbol and obtain

(3 )C)AEE) = ()R EE)
B, s’ A, /\d d B, /\s'/\ ¢ A, /\d d /)’
where we have used (3.17) again. Now using the quadratic reciprocity
law (Proposition 2.1 (g)) to invert the third and last symbols on the
right, we obtain (3.14). This proves that 7 eI,

To deduce from this that e [, let 7/ e . We are no longer assum-
ing that 7 e€2. Now there exists, by Proposition 3.12, a 7, ¢ U(M) such
that 777, € Y. Now we may write 77, = 1,7, where 7,e ', 7,e ), k(1) =1
and x(7;) = k(7). Indeed, if

Now

1 b ¢
1 a b
7'1= 1
1
let

1 —rb pb ¢ 1

1 pb P q+ap
r2= 9 7’3-:'_“
1 rb r s+ ar
1 1

It follows from Lemmas 3.13 and 3.14 that 7,e /[, and clearly #(7;) = 1.
It has just been established that 7r,eI’,, and by Proposition 2.1 (i) we

have
(5) -0

= (L)
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Now «(r'r) = s(r'17)) = s(r'1a7s) = &(r'T)x(rs) since 7’77, € X and 7,€ I, This
equals £(r")k(r), where 1 eI,

The proof of Theorem 3.7 (and hence Theorem 1.1) is now nearly
complete. It is easily checked that the matrices in Lemmas 3.13, 3.14,
3.15 and 3.16 generate /. Thus the group I', equals ['; since « is a
character on I, it is a character on I.
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