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Abstract. By employing a regularizing transformation, the problem of bifurcation
of relative equilibria in the Newtonian 4-body problem is reduced to a study of an
algebraic correspondence between real algebraic varieties. The finiteness theorems
of algebraic geometry are used to find an upper bound for the number of affine
equivalence classes of relative equilibria which holds for all masses in the comple-
ment of a proper, algebraic subset of the space of all masses.

1. Introduction; relative equilibria of the N-body problem

The Newtonian N-body problem concerns the motion of N point masses under the
influence of their mutual gravitational attraction. We will consider the case when
all the particles move in a fixed plane which we take to be the complex plane, C.
The position vector ze C" is the vector (z,,..., z,) where z;=x;+iy;€C is the
position of the jth particle. The mass vector meR"" is (m,, ..., my) where m; is
the mass of the jth particle. In complex notation, Newton’s laws are:

.. oU
2
where
mem <] 1/ 9 0
U=Y —— and ~—== (——~+i—>.
k<l lzk - le E)zj 2 axj ay]
We require z ¢ A, where A ={z: z; = z, for some k # [}.

Let A,(C) be the affine group, i.e. the group of all affine transformations w > aw + b,
where w, be C and ae C\0. A,(C) acts componentwise on C"~ \ A and Newton’s
equations areinvariant (up toscale) underthe action. We will use the term configuration
to mean an affine equivalence class of position vectors. Within a configuration the
shape of the array of points is constant; only the size and position varies.

An affine motion of N points is a curve z(t) in C™ \ A given by
z(t) = a(t)z;(0)+ b(1); a(t)eC\\0, b(1)eC.
Thus, during an affine motion, the configuration is constant.

Definition. A relative equilibrium of the N-body problem with mass vector m is a
position vector ze CV\ A with the property: there exists an affine motion z(1) with
z(0) = z which satisfies Newton’s equations.

Note that if z is a relative equilibrium so is every position vector which is affine-
equivalent to z. So it is sensible to speak of relative equilibrium configurations.
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Following Siegel and Moser we derive the equations for relative equilibria [21].
The potential function U has the property that };dU/9z; =0. Then Newton’s
equations applied to an affine motion give: '

O=Ymz=d} mz+b3 m,
J j j
Let M=) myand c=M - 2, myz;, the centre of mass of the initial position vector.
then the equation becomes:
b=—ci. (1.1)
Consequently,
Z=d(z—c).

If we substitute this into Newton’s equations we find:
a my(z; — 2,)

a(z;—¢)y=——3 .
’ lal’ &% 12—z
Here z is the time-independent initial position vector. It follows that |a|’a™'d is

time-independent. Let A be its constant value. Thus

i=2a (12)
|al
and
mk(zj_zk)
Aizi—c)=—-Y ———~ (1.3)

k=j |Zj—2k|3 '
Equation (1.3) is a necessary and sufficient condition for a position vector z to be
a relative equilibrium. Equations (1.1) and (1.2) determine the corresponding affine
motions.

Equation (1.2) can be written

4=
oa

with V = —A/|a|. This is just the Kepler problem in complex notation. Therefore the
possible motions a(t) are motions on conic sections with one focus at the origin
obeying Kepler’s laws. The resulting affine motion z(¢) can be described as follows.
The centre of mass of the N particles moves uniformly along some line in C. The
motion of each point relative to the centre of mass is on a conic section and obeys
Kepler’s laws. All of the N conic sections are similar and the position z(¢) of the
N particles is always similar to the initial position vector z. As a special case we
can take the circular solution of the Kepler problem. So if z is a relative equilibrium,
one possible motion is that the array of particles rotates uniformly around their
centre of mass. Relative to a rotating coordinate system with origin at the centre of
mass, the position z would be an equilibrium.

When N =2, all positions z are equivalent under A,(C) so every z is a relative
equilibrium. Equation (1.3) holds automatically in this case. The discussion above
is just the reduction of the 2-body problem to the Kepler problem. When N =3
there are just five affine equivalence classes of relative equilibria [21]. For any choice
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of m the two equilateral triangular configurations (corresponding to clockwise or
counter-clockwise arrangement of the points) are relative equilibria. In addition,
for each of the three possible orders of the points along a line there is a unique
collinear relative equilibrium. The spacing of the points depends on the choice of
m. For N = 4 there are no configurations which are relative equilibria for all masses
[29].

The collinear relative equilibria were discovered by Euler in 1767 [4]. Lagrange
found the equilateral solutions in 1772 [7]. It seems fair to say that when N =4,
equation (1.3) has eluded explicit solution. For example, it is not known how many
relative equilibria there are for the 4-body problem with equal masses.

By exploiting symmetries to reduce the number of variables, many special solutions
have been found. Moulton has proved the existence of a unique collinear relative
equilibrium for each of the 3N! affine-inequivalent orderings of the N points on
the line [13]). The existence of at least one equilibrium for each ordering was proved
in 1891 [8]. A regular polygon is a relative equilibrium in the case of N equal masses
and only in this case [18], [29]. More intricate configurations involving nested
polygons have been shown to be relative equilibria when the masses on each polygon
are equal [1], [6], [10].

Morse theory has been used to derive lower bounds for the number of relative
equilibria valid for arbitrary masses [15], [16], [24]. It is possible to apply Morse
theory because equation (1.3) can be interpreted as the equation for critical points
of U(z) subject to the constraint:

Y mlz;—c =1 (1.4)
j

Here A plays the role of a Lagrange multiplier. After passing to a quotient manifold
of the manifold (1.4) under the action of the affine group one can use Morse theory
to prove the existence of non-collinear relative equilibria for all N and m. Note
that the manifold of interest here is not compact since we had to delete A from C"
at the outset. Thus it is an important fact (due to Shub [23]) that for fixed m one
can bound the relative equilibria away from A. It follows from this that if the critical
points of U on the quotient manifold are isolated, then there are only finitely many
of them. Since the problem has no other obvious symmetries it is natural to conjecture
that this is in fact the case for all, or at least most, m [24]. The isolation condition
is satisfied for m if the corresponding U has only non-degenerate critical points,
i.e. if U is a Morse function. Palmore has shown that this is not always true [17].
The set of masses for which he can give examples of degenerate critical points is
of codimension one in the set of all masses. Palmore has also announced that the
set of masses which admit degenerate critical points has measure zero in the set of
all masses [17]; however, no proof has appeared.

Much of the work described above deals with the problem of determining for
each fixed m the corresponding relative equilibria. Another approach to the subject
is to ask which position vectors z are relative equilibria for some m, and then, given
such a relative equilibrium, to find all of the corresponding mass vectors. Such a
study was carried out by Dziobek [3] and by W. D. MacMillan and W. Bartky [11]

https://doi.org/10.1017/50143385700003047 Published online by Cambridge University Press


https://doi.org/10.1017/S0143385700003047

420 R. Moeckel

in the case N =4 and by W. L. Williams [28] in the case N =5. Among the results
are beautiful characterizations of the set of all non-collinear relative equilibria by
explicit equations and uniqueness theorems for the corresponding mass vectors.
Part of this paper is devoted to presenting new proofs of these results for N =4
(see theorems 1 and 2). We then apply these results to study the bifurcation theory
of relative equilibria in the 4-body problem.

The first step is an analysis of the equations for the set of all non-collinear relative
equilibria. We are able to prove that the equations are independent and that this
set is a real analytic manifold (theorem 4). The uniqueness theorem for mass vectors
then provides a mapping from the manifold of relative equilibria to the space of
(normalized) mass vectors which is shown to be real analytic and proper. The
bifurcation theory reduces to a study of this mapping.

In celestial mechanics, transformations discovered by Levi-Civita [9] can be used
to eliminate the singularities caused by double collisions. We apply similar transfor-
mations to the equations for relative equilibria with the result that the mapping
described above is replaced by a polynomial mapping of real, projective varieties.
In other words, real analytic equations become polynomial equations. This brings
the forces of real algebraic geometry into play.

Our main results could be described as finiteness theorems. Theorem 35 states that
the set of all non-collinear relative equilibria has a finite number of components.
These components correspond to components of the bifurcation diagram of the
problem. The difficulty here is that the parameter space, R**, is not compact. Now
we fix a mass vector m € R** and study the corresponding relative equilibria. Theorem
6 gives a bound for the number of components of this set of relative equilibria
which is independent of the choice of m. This shows, in particular, that whenever
m admits only finitely many relative equilibrium configurations, the number of
configurations cannot exceed this fixed bound. The last result, theorem 7, concerns
the bifurcation set. We take this to be the complement of the set of masses which
admit only non-degenerate relative equilibrium configurations. We show that the
bifurcation set is contained in a proper, real algebraic subset of R*", i.e. the zero
set of polynomials in the masses. Such a set is small in any sense of the word. The
complement is open and dense and has full measure. On this complementary set
of masses, the fixed bound on the number of relative equilibrium configurations
holds.

The proofs of theorems 5 and 6 extend easily to the N-body problem. We do not
know whether the analogues of theorems 4 and 7 hold for N = 5. For more informa-
tion on the significance of relative equilibria in classical mechanics see [24], [25],
[20], [19]. For a numerical study of the bifurcation problem when N =4 see [22].

2. The set of all relative equilibria

We saw that ze CV\ A is a relative equilibrium for some fixed mass m if and only
if there is some A € R such that equation (1.3) holds. From now on we will call z a
relative equilibrium if (1.3) is satisfied for some A and for some m. We want to
characterize the set of all relative equilibria. This set is invariant under the affine
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group and it is sometimes more convenient to consider the set of all configurations
(affine equivalence classes) whose representatives are relative equilibria. These will
be called relative equilibrium configurations. To study this question it is desirable
to transform (1.3) to make the mass m appear in the simplest possible way. To this
end we define (following [11]):
A=MTIA,

where M =3 m; If we recall that c=M™'Y, mz we find that (1.3) becomes a
linear, homogeneous function of m. A little algebra yields

Am=0, (2.1)
where A is the N X N complex matrix with entries
A; =Sjk(zj_2k), Sjk=|zj-zk|‘3+A. (2.2)

The matrix A is anti-symmetric (not anti-Hermitian).

It is useful to recall some of the theory of anti-symmetric matrices. An anti-
symmetric matrix defines a complex-valued two-form @ on C" by the formula
(v, w) = v"Aw. The use of the transpose means we are viewing C" as a Euclidean
space instead of as a Hermitian space.

Definition. A two-form w is degenerate if there is some ve C" for which the interior
product v_lw =0, i.e. if w(v, w)=0 for all we C". A two-form is decomposable if
it is the product of two one-forms: w = a A B.

The next proposition summarizes some of the theory.
PROPOSITION. A two-form w on C" is decomposable if and only if o Aw =0. If N is

odd, every two-form is degenerate. If N =2n then o is degenerate if and only if the
volume form w" =w A - Aw=0.

COROLLARY. A two-form w in C* is degenerate if and only if it is decomposable if and
only if w Aw=0.

From now on suppose N =2n. Let e,, ..., e,, be the standard basis of C>" and let
e¥, ..., e* bethe dualbasis of C*". Every volume form is a multiple of e¥ A - - - A e¥,.

Definition. The Pfaffian of a two-form o is the unique complex number pf(w) such
that
w" =pf(w)efa---nef,.

COROLLARY. w is degenerate if and only if pf(w)=0.

Returning to the anti-symmetric matrix A we see that « is degenerate if and only
if det (A) = 0. This leads one to suspect a connection between pf (w) and det (A).
ProrosITION. det (A) =[pf (w)]*

Proof. See [5].

In the case of a 4 X4 anti-symmetric matrix A = (a;;) we have by direct computation
of wAw:

pf () = a13a2,— a1,035— a,4a53 (2.3)
and det (A) = pf°.
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We are going to reformulate the equations for relative equilibria as equations on
the space of complex anti-symmetric matrices. To any position vector ze CV\ A
we associate a decomposable two-form

o=z*a1% (2.4)

where z*=Y zie¥ and 1* =Y e}. In terms of matrices z* and 1* are represented by
the row vectors (z, z5,...,2zn) and (1, 1,..., 1) respectively and o is represented
by the anti-symmetric matrix with entries z;,— z.. It is easy to characterize, in the
space of anti-symmetric N X N complex matrices, those arising from position vectors
z via this construction.

PROPOSITION. A two-form o represented by an anti-symmetric matrix (o) is of the
Jorm o =z*aA1* if and only if o A1* =0, or equivalently if the ‘cocycle equations’
ow =05+ oy hold for all i, j, k.

Proof. The first part is an application of the ‘division theorem’ for forms: if 6 is a
1-form and a a k-form then a A 6 =0 if and only if a = 5 A 0 for some (k —1)-form
7. The proof of this is elementary. The cocycle equations result from expressing
o A 1* in the standard basis for 3-forms and setting all coefficients to zero.

The vector space of 2-forms on C" is isomorphicto CNV~"/2 The map z > z* a 1*
of C" into CY™W =12 has a one-dimensional kernel (spanned by 1) and so the image
has dimension N —1. The image is the zero set of the cocycle equations. However
only JN(N —1)— (N —1) of the (}) cocycle equations are independent. For N =4
the space of 2-forms is 6-dimensional and 3 of the cocycle equations are independent.

O

PROPOSITION. A 2-form o on C* is of the form z* A 1* for some z € C* if and only if
(©) O3 =01t 0p3, O=01310, Oyu=0310,

Let A denote the set of 2-forms on C~ with o; =0 for some i # j. If 0 € CN V=172 A
and A €R then we can construct S;; =|o;| >+ A for i # j and another 2-form (o, A)
with w; = Sjoy;. If o is z* A 1* then, by (2.1), z is a relative equilibrium if and only
if for some A and some positive, real vector m, m_lw =0.

PROPOSITION. Let ze CNN\ A and o =z*aA1*e CVNN-V/2\ A. Then z is a relative
equilibrium if and only if for some A and some real, positive vector m,

(D) m_lw(o,A)=0.

The last two propositions can be combined to state the whole problem in C VV=172,

PROPOSITION. A 2-form o € CN™N™V/2 js 2% A 1* for some relative equilibrium z if and
only if equations (C) and (D) hold for some real A and real positive vector m.

From the general theory we can derive some other equations from (C) and (D)
which are especially useful in the case N =4.

Since o satisfies (C) it is decomposable. Of course it is then also degenerate.
Since w satisfies (D) it is also degenerate. So we have pf (o) =pf(w)=0.
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ProPOSITION. Suppose N =4 and (C) and (D) hold. then

(P1) 013024 = 012034 — 014053 =0,
and
(P2) 513824013024 — 812834012034 — 814523014023 = 0.

These equations are the key to the characterization of non-collinear relative equilibria
discovered by Dziobek and later by MacMillan and Bartky. It is actually more
convenient to consider the set of pairs (z, A) such that z is a relative equilibrium
for A and for some m or equivalently the pairs (o, A) such that (C) and (D) hold
for some real, positive m. First we relax the constraints to allow any real vector m
in equation (D).

PrROPOSITION A. The set of pairs (o, A) € (C®\\A) XR such that o = z* A 1* for some
non-collinear position vector z and (D) holds for some non-zero real (but not necessarily
positive) vector m is precisely the solution set of the real analytic equations (C) and

(MB) 512834 = 813824 = 51452.

The only additional condition needed to guarantee that o arises from a relative
equilibrium is the positivity of the vector m. Hence,

THEOREM 1. The pairs (o, A) € (C*\A) XR arising from non-collinear relative equili-
bria form an open subset of the solution set of equations (C) and (MB). The boundary
is contained in the set where (D) holds for some real m with at least one component
vanishing.

The theorem follows immediately from proposition A. We will prove the proposition
by means of two lemmas.

Lemma 1. If o =z* A 1* and z,, z,, z5, z4 are collinear then (MB) does not hold.
Proof. Assume that the points lie on the real line in the order z; <z, <z;<z,. Set
Z,— 2, =X, z3— 2, =y and z,— z; = z. Equations (MB) become
(xXPHA)ETHN) = ((x+Y) 2 HAN(+2) P+ A) =((x+y+2) P+ Ay P +A).
We will show that these equations have no positive solutions. The first equation gives:
(x+») 3 (y+z)2-x3273
Tx A= (x4 ) = (y+2)

The second equation gives:

. x+y)P+)—y N xty+2)

YRty ) () =y
Both expressions are homogeneous so we may assume without loss of generality
that x+ y+z=1. Eliminating y and equating the two expressions gives

x32z2-(1-x)1-2)7  (Q-x-2)7-(1-x)7(1-2)"
x4z -0-x)-(1-2)7 1+(1-x-2)2-(1-x)3-(1-2)¥

We will show that the left side is strictly greater than 1 and the right side is strictly
less than 1 to complete the proof.
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Since x+y+z=1 we have x<1—z and z<1-—x. So the numerator and
denominator on the left are positive. Also

(x7-DET-D>((-x)7-1)((1-2)7 - 1)
or
x 2z -1-x)0-2) > x4+ -0 -x)2 -1 -2)7
This shows that the left side is strictly bigger than 1.
The numerator and denominator on the right are also positive and we can derive

(1-x)2-1D)((1-2)7-1)>0
or
1-(1-x)-(1-2)3>-(1-x)31-2)"3

Addin (1 —X— Z) 3 to both sides shows that the right side is strictly less than 1.
g
d

Lemma 2. If (C) and (D) hold for some non-zero, real vector m then either (MB)
holds or z,, z,, z5, z4 are collinear.

Proof. If (C) and (D) hold then both of the 2-forms, o and w, are degenerate. Hence
(P1) and (P2) hold. Suppose first that the complex numbers 30,4, 71,03,, and
014073 are not proportional over R. Then (P1) and (P2) represent non-trivial depen-
dence relations between them (with real coefficients). Therefore the coefficients in
(P2) are proportional to those in (P1). This is exactly the condition (MB).

The case when the products of the o’s are proportional over R uses the fact that
m is real. However we can prove immediately that z,, z,, z;, 2, lie either on a circle
or on a line. Namely, we find that the cross ratio ;30,4014 055 is real and use a
theorem of projective geometry [2]. Also it is easy to see that if one of the equations
(MB) holds so does the other. So we suppose that neither equation holds and prove
that z,, z,, z;, z, are collinear.

It is impossible to construct a quadrilateral with all six mutual distances equal.
Therefore at least one of the quantities w; = S;o; is non-zero (see 2.2). Assume
without loss of generality that S,,0,# 0. Then also S,,0,,=—S8,,0,,#0 and it
follows that the matrix of w has rank at least 2. On the other hand the two independent
vectors (—wazq, @14, 0, —@2) and (w,3, —®,3, w5, 0) are in the kernel. Therefore they
are a basis over C. Any real vector in the kernel must take the form

(—1@12024+F SG 12023, T304~ SG1203, s|w,2|2, —r|w,2|2),

where r and s are real. For this to be real for some non-trivial r and s it is necessary
and sufficient that

S513824 Im @103 Im 64,054 = 81453 Im 61,04 Im &1,0,;. (2.5)

Now setting o0; =z, —2 one finds that Im &,,0;=Im &,,0,; and Im &,0,,=
Im 6,05, Since §,35,47 $,45,; by hypothesis, some of these expressions must
vanish. Suppose without loss of generality that Im &,,0,,=0. Then z,, z,, z; are
collinear. But since we already know that z, lies on the circle determined by z,, z,,
z; we find that all four particles are collinear. O
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Proof of proposition A. Suppose (C) and (D) hold for some non-zero real vector m
and that z is not collinear. Then by lemma 2, equations (MB) hold.

Conversely, suppose equations (C) and (MB) hold. From equations (C) we have
o =z* A 1* for some z and equation (P1) (which says o is decomposable). By lemma
1, the vector z cannot be collinear. (P1) together with (MB) immediately yield (P2)
so w is also decomposable and degenerate. This means that there are some non-zero
vectors m (real or complex) in the kernel. As in the proof of lemma 2 we may
suppose that w;, = —w,; # 0 and construct a basis for the kernel. The condition for
a real vector in the kernel is exactly (2.5) but this time we have $,35,,=5,455;. As
before the imaginary parts in the equation are equal in pairs so (2.5) does in fact
hold. This completes the proof. O

We introduce the symbol # for the set of all pairs (o, A) corresponding to non-
collinear relative equilibria. Theorem 1 asserts that & is an open subset of a certain
real analytic variety in (C®\\A) XR, the solution set of (C) and (MB). Before studying
the structure of ® we turn to the other main result of MacMillan and Bartky
concerning the uniqueness of the mass vector.

THEOREM 2. Let (o, A) € R. Then the real mass vector m is unique up to a constant
multiple.

Proof. First we allow any (o, A) in the solution set of (C) and (MB). We will make
use of the description of the kernel of w obtained during the proof of lemma 2.
The real vectors in the kernel form a real subspace and we must show that its
dimension is 1. Refering to the expression for an arbitrary real vector in the kernel
in the proof of lemma 2 we see that to get a two-dimensional set of real vectors we
would have to have
Im @,04=Im @ w3 =IM @04 =Im @,0,;=0.

Remember that we are assuming w;; # 0. From the first equation we have either
S,4=0 or G,,0,4€R. Similar dichotomies arise from the other equations.

First suppose S,4# 0. Then &,,0,,€ R so z,, z,, z, are collinear. Then the distances
from z; to the others are not all equal so at least one of the quantities S;5, i=1, 2,
4, is non-zero. Equations (MB) show that S;, cannot be the only one which is
non-zero. From the dichotomies we conclude that at least one of &,03 Or 01,02
is real. Then z; is on the same line as the other particles which contradicts lemma
1. The same conclusion can be drawn if we assume some other S; besides S, is
non-zero. The only other possibility is that S;;=8,,=S,; = 8,,= S3,=0. Then one
finds that the kernel of w is {m; = m,= 0} contradicting the existence of a positive
mass vector in the kernel. O

The results to follow are easier to state if we eliminate the constant multiple from
the mass vector. Let

M={meR*": m,+my+my+m,=1}.
By theorem 2 there is a well-defined mapping ¢ : & - # taking a pair (o, A) arising
from a non-collinear relative equilibrium to the corresponding normalized mass
vector.
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PROPOSITION. ¢ : R - M is continuous.

Proof. Let (o, A)e ® and m = ¢(o, A). Since m is the unique element of # in the
kernel of w(o, A) we have for each ¢, a positive 8 such that |m'_ w(o, A)|> 8 for
|m’'—m|> e. For (&, 1) sufficiently close to (o, A), [m'_]w(&, X)|> 8/2 holds for the
same m'. But for m = ¢(4, ) we have m_Jw(d, 1) =0, hence |m—m|<e. O

Stronger statements can be made after we eliminate another constant from the
description. The group C\0 acts on (C*\A)XR:(cd,A)~>(ca,|c|™3A); ceC\0.
This multiplies w(a, A) by c|c|™ and so has no effect on the kernel. The action has
a global cross section {(o, A): oy, = 1}. We identify pairs which are equivalent by
this action. The quotient space is of the form (CP(5)\ A) XR.

@ is invariant under the action. Let & denote the quotient space of &. The map
¢ descends to a continuous map é:g}—nﬂ. The bifurcation theory of relative
equilibria of the 4-body problem reduces to a study of ¢.

THEOREM 3: ¢: R->Mis a continuous, proper mapping.

Proof. To show ¢ is proper, consider a compact set K < #. We must show ¢~ '(K)
is compact. First we show that ¢ '(K) is closed in (CP(5)\\A) XR. For this we can
revert to ¢ and consider ¢ '(K) in (C®*\\A) xR. By continuity ¢ '(K) is closed in
%R. The second sentence of theorem 1 shows ¢ '(K) is closed in the solution set of
equations (C) and (MB). Since this set is closed in (C®\A) XR so is ¢ '(K).

Next we must show that ¢ '(K) is contained in some compact subset of
(CP(5)\\A) XR. For this we identify (CP(5)\ A) xR with {(o, A): o,, =1} as above.
First we must see that ¢ is bounded away from A. A result of Shub for the N-body
problem shows that if m is fixed and the size of the position vector z is normalized
the relative equilibria can be bounded away from A [23)]. This extends immediately
to a compact set K of mass vectors and when translated to the o notation is precisely
what we require. Finally we obtain a bound for A by means of an explicit formula.
If equation 1.3 is multiplied by m;(z;— (z;— ) and summed for j=1,..., N we find

AZ jlzj_cl =—U(Z),
J

where we have used the homogeneity of U(z). If we recall that A=M"'A and
M =1 we have

A=-U(2) (z miz-ef)

For o with o;, =1, Shub’s result gives positive lower bounds for the denominators
of the potential function. The particles cannot then all be close to ¢ so we have a
lower bound for ¥, mj|z;~ c|? as n varies over K. Hence A is bounded on ¢ (K).
Since ¢ '(K) is closed and is contained in a compact set, it is compact. Note for
later use that A <0 on R. O

In[11], MacMillan and Bartky also show thatfor (o, A) € R, A is uniquely determined
by o except in the case that o represents the following configuration: three particles
form an equilateral triangle with the fourth at the centre. So except in this case, the
configuration determines the mass ratios uniquely.
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To obtain further results, some information on the dimension or measure of 2
and its subsets is needed. & is an open subset of the solution set of equations (C)
and (MB). These represent 8 real analytic constraints in a 13-dimensional space.
Remarkably, these equations are independent at every point of &. The equations
are independent at every point (o, A ) where the following 8 X 13 matrix has maximal

rank:
I -1 0 I 0 o0 : 0
A I o -1 o0 I 0 0
o I -1 0 o0 I - 0

A12 Al3 A14 A23 A24 A34 : AA

Here all entries except the last column represent 2 X2 real matrices. I is the 2 X2
identity matrix. A; is the matrix of partial derivatives

oF oF
A,": y y s
156 26
0X;j 9y

where F = 8,35,,— 5,,85:4 and G = 8,38, ~ 8145,; and o;; = x;; + iy;. Finally A, is the
column vector

aF

oA

’G .

dA

A=

LEMMA 3. Let (o, A) be a point of the solution set of equations (C) and (MB) where
A fails to have maximal rank. Then

8512834= 813824 = 514523 =0.

Before proving this key lemma we apply it to the description of the set of all relative
equilibria of the 4-body problem.

THEOREM 4. R is a 5-dimensional real analytic submanifold of (C*\\A) XR. Risa
3-dimensional real analytic submanifold of (CP(5)\ A) XR.

Proof. The second statement follows from the first by taking quotient manifolds
under the C\\ 0 action. By lemma 3 it will be enough to show that if (o, A) € & then
the products §,,5:4, S13524 and S,,5,; are non-zero. Suppose to the contrary that,
for example, Sy, = §,; = S,,=0. Then the kernel of w is spanned over C by (1, 0, 0, 0)
and (0, w34, —w,4, w,3). By theorem 2 the only real vectors are of the form (r, 0, 0, 0)
and therefore (o, A) cannot be in R. Now suppose S,3=3S,,=S5;,=0. Then
any vector in the kernel satisfies m; =0 and again (o, A) £ R. Finally any other
choice for which the S; vanish reduces to one of these two by permuting subscripts.

O
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_Proof of lemma 3. By elementary operations we can reduce A to the matrix

I -1 0 I 00 : 0
I 0 o | 010 : 0
0 I | 00 I : 0

A12_A23_A24 A13+A23_A34 A14+A24+A34 0 00 A,
This will have rank 8 if and only if the 2 X 13 bottom ‘row’ has rank 2. For brevity
of notation we will replace A; by the complex vector
F oF  aF
o 222
aa; ax;  dyy
oG 3G . aG
Py —ti—

If A fails to have rank 8 we must have (from the first column)

&( OF aF aF)_f(aG 3G aG) (26)
A \8G 1, 00, 9Fr) OA N3G, 00, 0024 ’
and two similar equations (from the other columns). Now
as,“ 0 _3__3 T;; BS,
—_=—_(0‘ij20_'ij’+)\)=—— "5 and —=1.
a0y, 3G 2oy dA
From these we compute the derivatives of F and G. One finds
aF _ _ _ _
8_A:|013| 3'*"0'24| 3_|0'12| 3_|CT34| ’
or, using the fact that F =0,
oF _ _
_)\£:|013024| 3_|‘7120'34| 3,
.7
oG
—A——=|013024| > = |01405| 2.
BA l 13 24| | 14 23|
After some computation (2.6) becomes
oG _ _ oF _ _
_(534|0'12| 50'12'*'513|0'24| 50’24)=_(_Sl4|0'23| 50'23+513|‘724| 5024)-
9A oA
The other equations analogous to (2.6) give
oG oF

a_A (_Sz4|0'13|_50'13 - 51210'34|ﬁ50'34) = a (_524!0'13|_50'13 + Sl4|¢723|_50'23)

and

Z_AG ("513|0'24|_5024+ 512|U34|_50'34) = %:('*'stlo'ml—so'm_ Sls|0'24|_50'24)-

Using (C) we can eliminate o,,, 03 and 0,3 in terms of o4, 034 and o3, Then the
three equations just derived become dependence relations among these three com-
plex numbers with real coefficients. Since the three numbers are not proportional
over R (lemma 1 again) the coefficients in these three dependence relations are
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proportional. After some calculation we obtain the following simple conditions
which must hold whenever A fails to have rank 8:
(f)z 51483 (92)2 S12834 (ﬂ: &)2 S13524

aA '0'14023|5_ aA |0'12‘734|5_ 3 ar) |o30ud”

To complete the proof we will assume that the common value of §,534, S13524 and
514553 is non-zero and then study the solutions of these equations. Once we cancel
the S’s these equations involve only the quantities r =|0,,034 ", s =|030,4 " and
t=|014023]7". Using (2.7) we get
(s> =(P-Hr=(-r)s’.
An obvious positive solution is r=s=1 In fact this is the only positive solution.
To see this, assume without loss of generality that r< s=<1t. Then t*~s*= *—r* and
r’=<s°. Therefore the second equation holds if and only if equality holds in both
inequalities, i.e. r = s. But if r = s then the first equation gives r = s = ¢. This then is
a necessary condition for a point where A fails to have rank 8. We now show that
A does in fact have rank 8 when r=s=1.
Suppose |01,034] = | 013024 =|014053). From equations (MB) we find
|‘7'12|_3 + '034l_3 = |0'13|_3+ |024|*3 = '014'_3 + 10231_3-
Together these equations imply that the lengths |o,,|, |o34| equal the lengths |05,
|o24| in some order and also equal |o,4|, |03 in some order. Therefore three of the
particles are arranged in an equilateral triangle and the fourth is equidistant from
the other three, i.e. at the centre of the triangle. All such position vectors are affine
equivalent so we may take (assuming z, at the centre) z,=0, z,=1, z,= —%+s/%i,
z;=—1—V3i A direct computation gives: .
0 -v3

;v
and S]z = Sl3 = Sz3 = 3‘% + A. Since we have aSS“med that 312534 = 513524 = 514523 # 0,
the matrix has rank 2 and so A has rank 8. This completes the proof. O

A14+ A24+A34= B_%"')t)

With the structure of & and & in mind it is natural to wonder about the smoothness
of ¢ and ¢. Note that the range 4 is also a real analytic manifold.

PROPOSITION. ¢ and ¢ are real analytic mappings.

Proof. It is enough to consider ¢. Recall that ¢(o, A) is the normalized real vector
in the kernel of w(o, A). The entries of w are real analytic functions of o and A.
The kernel of w is the span of (—w,4, w14, 0, ~®,5) and (w33, —w;3, W2, 0), at least
if w;,#0 (compare the proof of lemma 2). These vectors are also real analytic
functions of (o, A). The real vector in the kernel is the linear combination of these
with coefficients r@,,, s@,, where the real vector (r, s) satisfies:

[—Im @12Way Im a')lzwn] [ r] -0

Imo,0w, —Imopw;]ls
If (o, A)e R the rows are automatically proportional and we may choose r=
Im @,,w,; and s = Im &,,w,, Thus the coeflicients in the expansion of a real vector
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in the kernel are real analytic functions of (o, A) as (o, A) varies in &. Finally we
can normalize this real vector by dividing by the sum of its components. As this
sum is non-zero in &, ¢ is real analytic. O

3. Regularization of singularities and finiteness theorems

We have seen that R, the set of all pairs (o, A) which arise from non-collinear
relative equilibria, is an open subset of a real-analytic variety in (C®*\ A) XR. This
variety, which we denote by V, is just the solution set of equations (C) and (MB).
To obtain the deeper results we are after we need more information on the structure
of V.

The most important step is to compactify V. Using a transformation reminiscent
of the Levi-Civita regularization of double collisions [9] we can replace V by an
algebraic (and later even a projective) variety. Then the techniques of algebraic
geometry can be used.

From the definition of S;, equations (MB) are:

(|012|_3+)‘)(|‘734|—3+A) = (|013|—3+)‘)(|‘724I_3+A),
(MB) and
(lf"lzl_3 + A)(l‘7'34|_3 +A)= (l0'14|_3 +A )(|¢7'23|_3 +A).
Multiplying the first equation by |01,0340130,4)° and the second by |0,03,01405;°
gives:
l0'130'24|3(1 + )\|012|3)(1 + A|0'34|3) = |0'120'34|3(1 + A|‘713|3)(1 + )\‘024‘3)
(NMB) and
|0'14023|3(1 +A |‘712|3)(1 +A |034|3) = |0'120'34|3(1 +A |0'14|3)(1 +A |‘723|3)-
Let W={(o, A)eC®XR: (C) and (NMB) hold}. Clearly V=W (C°\A)XR. W
is defined by equations which fail to be analytic on A. However, we now introduce
the squaring map S:C®- C°®, defined in coordinates 7 on the domain and o on the
range by o, =75; 1=<i<j=4. Note that S(A)=A, S7'(A)=A and that S|cs. is a
64-fold covering map. Define a map T:C®xX(R\0)->C°®XR™ by T(r,a)=
(8(7), —a~%). Substitution into (C) and (NMB) and multiplication of the latter by

a® gives:
(C) Tfa = T%z"' T%s, 7%4 = T%z‘*’ 7'%4, 7%4 = 7'%3 + T§4,
and
17'137'24|6(a6‘ |712|6)(a6_ |7'34|6) = |"'127'34|6(a6_ |"'13|6)(016— |7'24|6)
(NMB’)

|’7'147'23|6(016 - 17'12!6)(016 - |7'34|6) = |"'12”'34|6(a6 - |‘1'14|6(C¥6 - |723|6)v

The point of this is that |7;|° is a polynomial function of the real and imaginary
parts of 7;. Furthermore, both sets of equations are homogeneous, of degrees 2 and
18, respectively.

Let W' ={(1, @): (C") and (NMB’) hold}. Clearly

W rn{a=0=T " (Wn{Ar<0}).
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Since A <0 on R, T '(R) is an open subset of W’. We will now show that the map
@oT: T Y(R)-> M is part of an algebraic correspondence. To do this we introduce
the analogue of equation (D) inthe (7, @)-space. Toeach (7, a) € C* xR we associate a
matrix o’ via:

o= x(a|7y| = 1)7},
when x =|7,2713714T23 724734/, Note that w}; is a homogeneous polynomial in the
thirteen (7, ) variables of degree 38. w’ can be viewed as a symmetric 2-tensor.

ProPOSITION. Let (1, a) € C® XR satisfy ax =0 and let (o, A)=T(r, a). Then (D)
holds if and only if (D’) holds where (D') is:

(D") m_iw'(r,a)=0.

Proof. (D’) is obtained from (D) by substitution of T{r, a) for (o, A) and multiplica-
tion by a®y. Since a®y # 0, the equations are equivalent. O

Recall that an algebraic correspondence between RP(m) and RP(n) is an algebraic
subset Z < RP(m)xRP(n). Thus Z is given in homogeneous coordinates
(X4, .-y Xm+1: Y1r---»Vu+1) Dy polynomial equations which are separately
homogeneous in x and in y. This concept generalizes the graph of a polynomial
mapping from X =I1,(Z) to Y =I1,(Z) where I, and II, are the projections of
RP(m) XRP(n) to its factors. In general Z is not the graph of any mapping.

PrROPOSITION. Z ={(7, A, m): (C"), (D) and (NMB') hold} is an algebraic correspon-
dence in RP(12) XRP(3).

Proof. v’ is homogeneous of degree 38 in the 13 variables (7, A) and equation (D’)
is also homogeneous of degree 1 with respect to m = (m,, ..., m,). (C') and (NMB")
are also homogeneous in (7, A). O

Suppose (7, a)e T"(R). Then (7, @, m)e Z if and only if m=¢°T(7, a), by
the previous proposition. Thus if ' is the graph of oo T we have I'= Z A II7(T~Y(R))
where I1,: RP(12) XRP(3) > RP(12) is projection. In the following theorem, Z,= {(r,
a, m): m; =0 for some i or « =0 or 7; =0 for some i, j}. Thus Z, is an algebraic
set which contains A.

ProrosITION. I is an open and closed subset of Z\ Z,, the difference of two algebraic
varieties.

Proof. On I" we have m; >0, a #0 and 7; # 0 so I'c Z\ Z,. Since I1,(Z)< W’ and
since T"(R) is open in W', I'=II;(T""(®))~Z is open in Z and so also in
Z\ Z,. To show that I is closed let (7, a, ) represent a point of T N (Z\ Z,). We
must show it lies in I'..By definition of Z,, & # 0 and 7; # 0. Since m; >0 on I' and
m; #0, we alsb have m;>0. We have already seen that under these conditions,
equation (D’) implies equation (D) where (&, A)= T(7, a). Also, since (C) and
(NMB') hold for (7, @) we have (C) and (MB) for (&, A). By definition, @ is the
set of pairs (o, A) such that (C), (MB) and (D) hold for some positive m. Hence
(G, \)eR and (7 & m)eI;(T"(R))~Z=T. O
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As a first application of algebraic geometry we will combine theorem 4 with the
following result of Whitney [27]: a set which is the difference of two algebraic
varieties has finitely many topological components.

THEOREM 5. R has finitely many components.
Proof. Let I1,:RP(12) xRP(3) > RP(12) be projection. Then T~'(R)=1I1,(T) so by
the last proposition and Whitney’s result, T77'(R) has finitely many components.

As the continuous image of a connected set is connected, the same is true for &.
a

Now another result of Whitney states that any real algebraic variety is a finite
stratified union of submanifolds. Such a set is locally path connected so components
and path components agree. Theorem 5 can be rephrased as follows: say that two
relative equilibria are equivalent if by changing the masses we can find a continuous
path of relative equilibria connecting them; then there are finitely many equivalence
classes.

We now turn to the bifurcation theory of relative equilibria. This amounts to the
study of the restriction of the projection II,:RP(12) XRP(3) » RP(3) to I', the graph
of ¢o T. We are interested in how the fibres I1; '(m) change as we vary the mass vector.

LEMMA 4: Let X be any algebraic set in RP(12) XRP(3). Then I'n X is open and
closed in Z n X\ Zy~ X, and so has finitely many components.

Proof. Zn X and Z;n X are also algebraic. The lemma then follows from the last
proposition and Whitney’s theorem. O

THEOREM 6. Fix m € M. The set of relative equilibria of the 4-body problem with mass
vector m has finitely many components. The number of components is majorized by a
bound which is independent of m.

Proof. Let X < RP(12) XRP(3) be the algebraic set defined by fixing the mass vector
in RP(3) to be the given m. Then Zn X is algebraic and so has finitely many
components. In fact a result of Milnor and Thom implies that the number of
components is majorized by a bound which depends only on the degrees of the
defining equations and the dimension of the ambient space [12], [26]. In particular
this bound is independent of m. A component of relative equilibria for m appears
in the (o, A)-space as a component of ¢ "'(m) in &. In T"'(R) it has several (<128)
pre-images which are components of T"'(R)n T~ '(¢~'(m)). Finally in the graph
I' each component of relative equilibria is represented by several components of
I'n X. We will complete the proof by showing that each component of 'n X is a
component of Zn X. Now by lemma 4 we need only show 'n XnZ,=C. On
I’ X we have definite lower bounds for |7;| and |a| and of course m is constant.
Therefore on T m X, 7; #0, a # 0 and m; >0 as required. O

The main bifurcation theorems we will prove depend on the strengthened versions
of Sard’s theorem which hold for algebraic correspondences. Unfortunately the
literature of algebraic geometry deals almost exclusively with the case of complex
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varieties. To understand how these results can be used for real varieties we must
discuss the complexiﬁéation of real varieties. We refer to [27] for proofs of the basic
facts.

Let X cR" be a real algebraic variety. The ideal of X, I(X), consists of all real
polynomials which vanish on X. The rank of a point x € X is the maximum number
of polynomials f; € I(X) with df;(x) independent. The rank of X is the maximum
rank of any point. The set of points of maximum rank is an open subset of X and
is a submanifold of R of dimension n —(rank (X)). These are called smooth
points. Other points are called singular points. A singular point is smooth in some
subvariety of X. Varieties in RP(n) and RP(m) XRP(n) are handled by choosing
affine local coordinates on these spaces.

If Y<C" is a complex variety we proceed in exactly the same way, except linear
independence of differentials means independence over C. Given a complex variety
Y we can form Y AR" This is a real variety, the zero set of all real parts of
polynomials in I(Y). If X = R" is a real variety we can construct a complex variety
X*< C" merely by viewing all variables as complex. Then one can show that for
any complex variety Y © X, we also have Y o X*. In particular, (Y R")*< Y for
every complex variety Y.

Consider a polynomial map 7: X -» X'. We call xe X a critical point of w if x is
smooth in X, #(x) is smooth in X', but d=(x) fails to have maximal rank. Note
that a singular point is not a critical point. When x and =(x) are smooth points
this definition agrees with the usual one for maps of manifolds. Critical values are
the images of. critical points. When X and X' are complex we have a strong version
of Sard’s theorem: there is a proper subvariety of X' containing all the critical
values [14]. We will use this to get a similar result for real varieties.

LEMMA 5. Let I1: X > X' be a map of real, algebraic varieties. Then there is a proper
subvariety of X' which contains all the critical values of 1.

Proof. Suppose X <cR™ and X'<R". Complexify to obtain X*<C™ and X'*<C",
The map II is defined by restricting a polynomial map R™ -»R" (by definition) and
this can be complexified too. Apply the complex Sard’s theorem to IT*: X* > X"™*
to find a proper, complex subvariety Y © X'* which contains all of the critical values
of I1*. Now YR" is a proper subvariety of X'; otherwise X'=Y nR" and
X*=(YNR™")*c Y. But Y is a proper subvariety of X'*. To complete the proof
we will show that if x € X is a critical point for IT*, it is also a critical point for II.
Now it is easy to see that a point x of X is smooth if and only if it is also smooth
when viewed as a point of X*. Similarly for x’€ X' Also, the rank of dw(x) is the
same as the rank over C of d7*(x) since both of these linear maps are obtained
from the same real m X n matrix by restricting to a subspace, T.X cR™ or T,X*< C",
and these subspaces are given by the same set of rank, (X ) =rank,(X™*) real linear
equations. Therefore the critical points of 7 and #* in X coincide. O

PropoSITION. The set of critical values of ¢ : R - M is contained in a proper, algebraic
subset of M. In particular, the set of regular values is open and dense and has full
measure in M.
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Proof. The critical values of ¢ and ¢ T are the same because T: T '(R)~> R is a
covering map and so a local diffeomorphism. The graph I' of ¢ T is contained in
the projective correspondence Z. Since I is a manifold its points all have the same
rank. It follows that by replacing Z by some subvariety we may assume that I’
consists of smooth points. Now m,: Z > RP(3) is a map of real, projective varieties
so by lemma 5, the set of its critical values is contained in some proper algebraic
subset of RP(3). Since I' and RP(3) consist of smooth points the critical values of
7,:T' > RP(3) viewed as a map of manifolds lie in this set. Since the critical values
of a mapping are the same as the critical values of the projection of its graph, the
proof is complete. O

Since ¢ factors through & : % — A, theorem 6 also applies to ¢. Since % and # are

both 3-dimensional manifolds, a regular point is a point where ¢ is a local
diffeomorphism. Since ¢ is a proper mapping, the pre-image of a regular value is
a finite set. Moreover, some neighbourhood of each pre-image maps diffeomorphi-
cally into .

We now define the bifurcation set, B, of the relative equilibrium problem for 4
bodies. B is the complement in # of the set of masses, m, with the following
property: in some neighbourhood % of m, each mass admits the same finite number,
k, of relative equilibrium configurations; the equilibria corresponding to masses in
% fallinto k components in the space of configurations, each of which is continuously
parametrized by . Recall that each point of R is associated to a unique relative
equilibrium configuration. Namely, each point of % is represented by pairs (o, A)
in R which differ only by the C\ 0 action. The affine equivalence class of position
vectors z with z* A1* = ¢ is then uniquely (and analytically) determined by the
original point. ’

THEOREM 7. The bifurcation set, B, of the relative equilibrium problem for 4 bodies
is contained in a proper algebraic subset of the normalized mass space, M. There is a
positive integer K such that each mass in the complement of B admits no more than
K affine equivalence classes of relative equilibria.

For the sake of concreteness we note that if the degrees of the various polynomials
are used in the theorem of Thom and Milnor mentioned above, the inequality
K =39-77" can be proved.

This research was supported by NSF Grant MCS 82-00765.
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