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Self-sustained azimuthal aeroacoustic modes.
Part 2. Effect of a swirling mean flow on the
modal dynamics
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The whistling induced by a low-Mach turbulent flow through a deep axisymmetric cavity
in a duct is investigated theoretically and experimentally. The experiments include acoustic
measurements and stereoscopic particle image velocimetry (PIV). The paper focuses on
the effect of a mean swirl on the dynamics of the azimuthal aeroacoustic modes. The mean
swirl in the cavity has two origins: one component is imposed by a controlled tangential air
injection upstream of the cavity, and the other component spontaneously arises under the
action of the self-sustained azimuthal aeroacoustic mode, as explained in the companion
paper, Part 1 (Faure-Beaulieu, Xiong, Pedergnana & Noiray, J. Fluid Mech., vol. 971, 2023,
A21). Experiments show that the dynamics of the aeroacoustic wave is influenced by the
imposed swirl. In particular, the spinning wave propagating against the swirl is promoted.
To explain this, a linear perturbation analysis is performed around an incompressible
mean swirling flow obtained from RANS simulations. It reveals that the dominant shear
layer modes of azimuthal order 1 and −1 involved in the whistling phenomenon are
helical modes winding respectively with and against the swirl, and spinning respectively
in counterswirl and co-swirl directions. The counterswirl hydrodynamic mode is the least
damped of the two, which is in agreement with the experimental observations. Finally, a
low-order model based on the wave equation is derived. With only a few parameters, it fully
reproduces the experimental observations for a wide range of imposed swirl intensity in
the duct flow, and it allows us to disentangle the mechanisms responsible for this complex
aeroacoustic instability.
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1. Introduction

When a cylindrical duct featuring an axisymmetric cavity is subject to a turbulent air
flow, hydrodynamic instabilities appear in the shear layer between the fast flow in the
duct and the air at rest in the cavity. The unsteady vorticity associated with these
instabilities forces the acoustic modes of the cavity, which in turn perturb the shear
layer, thus closing a potentially unstable aeroacoustic feedback loop. Such whistling
phenomena have been studied extensively in the cases of shallow and deep side-branch
cavities (e.g. East 1966; Elder, Farabee & Demetz 1982; Yamouni, Sipp & Jacquin 2013;
Bourquard, Faure-Beaulieu & Noiray 2021; Pedergnana et al. 2021), and also in the case
of axisymmetric cavities (e.g. Aly & Ziada 2010; Nakiboğlu, Manders & Hirschberg 2012;
Oshkai & Barannyk 2013; Abdelmwgoud, Shaaban & Mohany 2020; Wang & Liu 2020).
In the latter situations, and when the cavity is deep, as in the present work, the first
azimuthal acoustic modes are often involved. These azimuthal aeroacoustic instabilities
can be a critical problem in the design of piping systems, valves, turbomachines, boilers or
heat exchangers. Moreover, they exhibit strong similarities to thermoacoustic instabilities
in annular and axisymmetric combustors, where the driving mechanism originates from
the unsteady heat release rate of the flames instead of the unsteady vorticity: in both types
of systems, high-amplitude azimuthal oscillations can develop in the form of spinning,
standing, mixed or beating acoustic waves (see for instance the papers from Aly & Ziada
2011; Abdelmwgoud et al. 2020; Faure-Beaulieu et al. 2021; Indlekofer et al. 2021).

In the present two-part study, an azimuthal aeroacoustic instability in a deep
axisymmetric cavity subject to a turbulent pipe flow is studied experimentally and
theoretically in order to explain the underlying governing mechanisms. While Part 1
focuses on the influence of the aeroacoustic oscillations on the onset of a mean swirling
motion of the flow, we investigate in the present Part 2 the effect of a swirling mean
flow on the dynamics of the aeroacoustic azimuthal modes. These phenomena have not
been considered in the literature so far. More specifically, here, we aim at answering the
following questions:

(i) Do the azimuthal aeroacoustic modes spin with or against the mean swirl?
(ii) Which mechanisms cause a preference for a specific spinning direction?

(iii) Are the existing low-order models for azimuthal thermoacoustic instabilities
sufficient to describe the aeroacoustic modal dynamics of axisymmetric cavity
flows?

Regarding the first question, the cavity is investigated experimentally with acoustic
measurements and stereoscopic particle image velocimetry (PIV). The set-up features
tangential inlets, which allow us to adjust the intensity of a counterclockwise (CCW) swirl
upstream of the cavity. A reconstruction of the spatio-temporal evolution of the acoustic
pressure field around the cavity reveals the existence of a statistical preference for different
spinning directions, depending on the swirl intensity.

Regarding the second question, let us briefly discuss the different physical mechanisms
that can promote one spinning direction over the other. A first mechanism is the
difference of stability between the hydrodynamic modes spinning with and against the
mean swirl direction. As in the studies of Gallaire & Chomaz (2003b) and Oberleithner,
Paschereit & Wygnanski (2014), we will perform a linear stability analysis of the
incompressible swirling mean flow to determine if the least stable hydrodynamic modes
spin with or against the flow. Besides, in recent studies on the analogue problem of
thermoacoustic instabilities in annular combustion chambers, it was shown that the
presence of reflectional and rotational asymmetries in the system influences the spinning
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Self-sustained azimuthal aeroacoustic modes. Part 2.

direction of the modes (e.g. Bauerheim, Cazalens & Poinsot 2015; Faure-Beaulieu et al.
2021). We will show that this second mechanism also plays an important role in the
preferred spinning direction of the present aeroacoustic modes. A third mechanism that
influences the spinning direction of the modes is the feedback phenomenon of emerging
mean swirl due to spinning aeroacoustic waves, explained in Part 1. The respective
contribution of these three mechanisms will be elucidated in the present work.

Regarding the third question, we propose to describe the modal dynamics observed in
the experiments with a low-order time-domain model based on nonlinear amplitude and
phase equations and time scale separation. Models of this type have been developed and
used for a long time to study thermoacoustic instabilities in solid rocket engines (Yang,
Kim & Culick 1976; Awad & Culick 1983; Culick 1987) and more recently to develop
gas turbine combustors for power generation and aviation (e.g. Indlekofer et al. 2022).
They generally include polynomial expansions to model the nonlinear heat release rate
response of the flames to acoustic perturbations, which often lead to stable limit cycles.
Such models are also convenient to describe hydrodynamic instabilities (Zhu, Gupta &
Li 2017; Lee et al. 2019) and aeroacoustic instabilities (Boujo et al. 2020; Bourquard
et al. 2021). However, a specificity of the present configuration is the complex reciprocal
interaction between the azimuthal aeroacoustic modes and the mean swirling flow. Our
starting point will be the equations derived by Faure-Beaulieu & Noiray (2020) to which
new elements will need to be added to account for this interaction.

The structure of this Part 2 paper is as follows: §§ 2 and 3 describe respectively
the experimental set-up and operating conditions, and the dynamics of the aeroacoustic
modes. In § 4, an analysis based on the linearised Navier–Stokes equations (LNSE) reveals
how the eigenvalues of the shear layer eigenmodes spinning in co-swirl and counterswirl
directions split when the swirl intensity is varied. Section 5 is dedicated to the derivation
of the low-order model. Section 6 compares the results of the time-domain simulations
from the model with the experimental observations.

2. Experimental set-up

The experimental set-up is presented in figures 1(a) and 1(b). It consists of a cylindrical
wind channel of diameter D = 40 mm and length 1570 mm, featuring in its centre an
axisymmetric cavity of radius R = 128 mm and width W = 30 mm, with at its up- and
downstream ends anechoic terminations reflecting less than 2 % of incident acoustic
energy above 300 Hz. As shown in figure 1(d), a blower injects air at 20 ◦C in the upstream
anechoic termination. The axial air mass flow ṁ is manually controlled with a valve and
monitored with a mass flow meter. Tangential air injection can be imposed from four 1 cm
diameter pipes (see figure 1a) to induce a swirling flow. The direction of this swirl is CCW
when looking from downstream. The mass flow injected in this swirler is denoted by ṁs
and the total mass flow in the wind channel is ṁt = ṁ + ṁs.

The acoustic pressure is measured with several microphones in the cavity and along
the channel: six are flush-mounted on the downstream wall of the axisymmetric cavity
at r = 90 mm and Θ = 0◦, 28◦, 90◦, 152◦, 208◦, 270◦, 332◦ (see figure 1c), allowing the
reconstruction of the acoustic pressure field of the first azimuthal modes at any instant.
Two additional microphones at Θ = 135◦ are placed at radial positions r = 67.5 mm and
r = 121.5 mm in order to identify the radial distribution of the modes. Microphones that
are flush mounted on the wind channel’s wall up- and downstream of the cavity allow us
to quantify the exponential amplitude decay of the azimuthal acoustic modes, which are
trapped in the cavity and evanescent in the wind channel.
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Figure 1. (a) Sketch of the wind channel equipped with a swirler located upstream of the axisymmetric
cavity. The axial air mass flow is denoted by ṁ, and ṁs is the tangential mass flow injected in the swirler.
(b) Dimensions of the cavity. (c) Position of the microphones measuring the acoustic pressure at the inner wall
the cavity. (d) Sketch of the overall experimental set-up showing the anechoic terminations up- and downstream
of the wind channel. (e) Mean flow velocity profiles in the middle of the cavity, obtained from stereoscopic
PIV for ṁ = 84 g s−1 (Ux = 59 m s−1) and ṁs = 0 g s−1. The dotted line in the panel showing ūx presents the
mirrored profile for y < 0 in order to highlight the presence of small asymmetries of the mean axial velocity.

Figure 1(e) shows the three components of the mean velocity profile in the centre of
the cavity for ṁ = 84 g s−1, which corresponds to a bulk velocity Ux = 59 m s−1, and
without imposed mean swirl (ṁs = 0). These profiles were obtained with stereoscopic PIV
(more details about the experimental set-up are given in Part 1). In the left panel showing
the mean axial velocity profile ūx, the thin dotted line in the upper half is a mirrored
profile of ūx( y) for y < 0, which reveals a small unintended rotational asymmetry of the
configuration. The upstream section of the wind channel is not long enough to obtain a
perfectly axisymmetric fully developed turbulent flow, and this slight asymmetry of the
mean axial velocity in the cavity is attributed to the presence of the upstream tangential
injection holes or to remnant non-uniformities of the velocity profile caused by the U-turn
upstream of the convergent (see figure 1d).

We also observe a non-zero mean flow in the out-of-plane z direction, although no swirl
was imposed upstream of the cavity (ṁs = 0). This azimuthal mean flow in the cavity is
induced, as explained in Part 1, by the strong aeroacoustic instability at Ux = 59 m s−1.
The characteristics of this wave-induced swirl depend on the amplitude, the intermittency
and the spinning component of the aeroacoustic wave. In particular, for low-amplitude
self-sustained azimuthal modes, which exhibit frequent changes of spinning component’s
direction due to the inherent forcing from turbulence, no significant emerging mean swirl
is detected.

3. Experimental observations

3.1. Azimuthal aeroacoustic instability
In the range 60 < ṁ < 100 g s−1, which corresponds to 42 < Ux < 70 m s−1, the system
presents an aeroacoustic instability involving the first azimuthal acoustic mode and a
shear layer mode of azimuthal order 1. It is characterised by the shedding of large
vortices that span across the cavity’s width W (see Part 1). The whistling frequency
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Figure 2. (a) Measured acoustic pressure signals for ṁ = 84 g s−1 (Ux = 59 m s−1) and ṁs = 0.
(b) Instantaneous acoustic pressure field associated with the first pure azimuthal acoustic mode of a cylindrical
cavity, obtained analytically. The eigenfrequency is 786 Hz.

does not vary much over the whole range of bulk velocities: it starts at 773 Hz when
Ux = 42 m s−1 and reaches 809 Hz when Ux = 70 m s−1. Figure 2(b) shows the acoustic
pressure field associated with the first pure azimuthal mode in the analogue geometry of
a cylindrical chamber. In this simplified case, the Helmholtz eigenvalue problem can be
solved analytically and the shapes of the first pair of degenerate azimuthal eigenmodes are
p(r,Θ) = J1(rZ1/R) cos(Θ) (represented in the figure) and p(r,Θ) = J1(rZ1/R) sin(Θ),
where J1 is the Bessel function of the first kind and order 1, and Z1 is the first zero of
J′

1. The corresponding frequency is 786 Hz, which is in agreement with the experimental
results.

Figure 2(a) shows acoustic signals recorded simultaneously by three cavity microphones
at different azimuthal positions and equal distance from the axis: the colours of the
lines correspond to the colours of the microphones in the sketch 1(c). These signals
were recorded for ṁ = 84 g s−1 (Ux = 59 m s−1) and ṁs = 0, a condition at which a
high-amplitude aeroacoustic limit cycle at 790 Hz is present, reaching an acoustic level
of 165 dB. The long time interval displayed in this figure does not allow us to see the
details of the quasi-sinusoidal oscillations at 790 Hz, but it shows the fluctuations of the
acoustic pressure envelope which are largely caused by the forcing from turbulence. On the
yellow time trace (Θ = 332◦), one can see at t ≈ 15 s some quasi-periodic modulation of
the acoustic envelope, corresponding to a beating azimuthal mode, i.e. cyclic alternation
of clockwise (CW) and CCW mixed modes with a period lasting a few hundreds of
acoustic periods. This deterministic phenomenon of self-sustained beating modes was
recently discovered and explained in the case of thermoacoustic instabilities in combustion
chambers by Faure-Beaulieu et al. (2021). The yellow time trace is also characterised by
sporadic high-amplitude bursts which can reach 8000 Pa for a few seconds.

3.2. Modal projection of the acoustic field
Interpreting the raw acoustic signals is not straightforward. It is therefore convenient to
use the quaternion projection proposed by Ghirardo & Bothien (2018) on the basis of the
work of Flamant, Le Bihan & Chainais (2017), in order to unravel the modal dynamics.
This projection can be used to describe the acoustic pressure field associated with an
azimuthal wave of any order and it is particularly suited to providing a straightforward and
unambiguous interpretation of the corresponding thermoacoustic time series (Ghirardo &
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Bothien 2018). It writes as

pa = A cos(m(Θ − θ)) cos(χ) cos(ωt + ϕ)+ A sin(m(Θ − θ)) sin(χ) sin(ωt + ϕ),

(3.1)

where m is the azimuthal order of the mode – in the present study, it is always equal to 1.
In (3.1), Θ is the azimuthal coordinate, t is the time and ω is the angular frequency of the
oscillations. This ansatz is referred to as the ‘quaternion projection’ because it is the real
part of a quaternion analytical signal (Flamant et al. 2017)

pa = Re
(
Aeim(Θ−θ)e−kχej(ωt+ϕ)), (3.2)

where i, j and k are the basic quaternions and A(t), χ(t), θ(t) and ϕ(t) are the four slow
variables which define the instantaneous state of the mode. The positive variable A is the
amplitude of the acoustic pressure. The nature angle χ indicates the type of mode: if χ =
0, the mode is purely standing; if χ = π/4, it is purely CCW spinning; if χ = −π/4, it is
purely CW spinning; if 0 < χ < π/4, it is a CCW mixed mode that can be decomposed
as the superposition of a pure standing mode and a pure CCW spinning mode; if 0 > χ >

−π/4, it is CW mixed mode. The angle θ indicates the orientation of the maximal acoustic
pressure amplitude: for a standing mode, θ is simply the antinodal direction. For a mixed
mode, it is the antinodal direction of the standing component of the mode. For a pure
spinning mode, θ transforms into a temporal phase information. The last variable, ϕ, is a
temporal phase that can be associated with small fluctuations of the acoustic period 2π/ω.
The four variables A, χ , θ and ϕ are useful to represent variations of the instantaneous
mode state, which are slow compared with the acoustic period, i.e. Ȧ/A, χ̇ , θ̇ and ϕ̇ are
much smaller than ω.

To perform the quaternion projection, the prescribed frequency ω must be close to the
frequency of the instability. It is usually not appropriate to define ω as the frequency
of the pure acoustic mode, because it can noticeably differ from the aeroacoustic mode
frequency due to the time delay of the shear layer response and the presence of small flow
asymmetries (Noiray, Bothien & Schuermans 2011; Kim et al. 2022). The most adequate
option is usually to choose ω as the frequency of the dominant peak in the power spectral
density.

Furthermore, the expression (3.1) describes the dependence of the acoustic field along
the spatial coordinateΘ only. This one-dimensional (1-D) description is readily applicable
to the case of thin annular combustors (Faure-Beaulieu & Noiray 2020), and it can
also be used for azimuthal modes exhibiting non-uniform distribution of the acoustic
pressure in the axial and radial direction, i.e. A = A(t, x, r). Indeed, in such situation, the
three-dimensional (3-D) acoustic field can be spatially averaged over constant Θ planes
as explained in Appendix A. All the six microphones used for the quaternion projection
are located at the same radial and axial positions and the full 3-D acoustic field can be
reconstructed from the measured amplitudes and the knowledge of the mode shape.

3.3. Effect of an imposed swirl on the aeroacoustic mode
Acoustic measurements were performed for different levels of swirl by increasing ṁs from
0 to 21 g s−1 by steps of 3 g s−1 while keeping a constant total mass flow ṁt = 84 g s−1

(Reynolds number Re = 1.5 × 105). The corresponding mean azimuthal velocity remains
moderate compared with the axial velocity: PIV measurements in the cavity show a
maximal local value of 15 m s−1 when ṁs = 18 g s−1, while the mean axial bulk velocity is
Ux = 59 m s−1. This gives a swirl number of 0.18, which is relatively small compared with
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Figure 3. Evolution of the slow state variables A, χ , θ and ϕ extracted from the experimental acoustic
measurements, for different swirl numbers imposed on the flow upstream of the axisymmetric cavity. The
four tangential mass flows ṁs considered in columns (a–d) are equal to 0, 3, 6 and 9 g s−1 respectively for a
total mass flow ṁt kept constant and equal to 84 g s−1.

the values usually found in the literature on swirling flows (e.g. Gallaire & Chomaz 2003b;
Qadri, Mistry & Juniper 2013; Oberleithner et al. 2014; Tammisola & Juniper 2016).

The frequency of the aeroacoustic instability is not substantially affected by the imposed
swirl and remains between 790 and 797 Hz. To characterise the influence of the imposed
swirl on the aeroacoustic limit cycle, the state variables A, χ , θ and ϕ are extracted from
the acoustic time series following the procedure described by Ghirardo & Bothien (2018).
Figure 3 presents the evolution of the state variables for ṁs = 0, 3, 6 and 9 g s−1 (from left
to right). The cases ṁs > 9 g s−1, not shown here, behave similarly as for ṁs = 9 g s−1.
Let us now describe the dynamics of the slow state variable at these four conditions.

For ṁs = 0, which is shown in figure 3(a), the evolution of the nature angle χ indicates
intermittent transitions between a CCW mixed mode with χ ≈ π/8 and a beating mode
characterised by quasi-periodic changes of the spinning direction that manifest themselves
by triangular oscillations of χ . These two regimes can last several seconds, which is long
compared with the acoustic period (≈1.25 ms) and the characteristic time of growth of an
aeroacoustic instability. The amplitude A displays large bursts in mixed mode regime, and
stays around 5 kPa in the beating regime. Faure-Beaulieu et al. (2021) showed that beating
can be caused by small non-uniformities in the geometry, the impedance of the cavity walls
or the flow. The small asymmetry of the mean axial velocity profile reported earlier is thus
a possible explanation for the occurrence of beating in the present configuration. In the
mixed mode regime, the preferred orientation θ undergoes small stochastic fluctuations
around a fixed angle defined modulo π, while during the beating regime, it shows periodic
square oscillations.

When ṁs = 3 g s−1, the mixed mode regime and its high-amplitude bursts disappear,
and only the beating mode regime is observed (figure 3b). The fast drift of ϕ is explained
by the mismatch between the frequency ω chosen for the quaternion projection and the
actual dominant aeroacoustic frequency during the considered time interval. For this case,
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χ (rad)
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(χ
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Figure 4. Experimental p.d.f. of the nature angle χ for the same conditions as in figure 3, for increasing
imposed swirler mass flow ṁs = 0, 3, 6 and 9 g s−1 (darker shades correspond to stronger swirl). Each p.d.f. is
obtained from acoustic time traces of 100 s. Values of −π/4, 0 and π/4 correspond respectively to the states
of pure CW spinning wave, pure standing wave and pure CCW spinning wave.

the aeroacoustic dynamics shows no preference for the CW or CCW spinning direction,
which is confirmed by the probability density function (p.d.f.) of χ in figure 4. The
symmetry of the aeroacoustic dynamics is recovered because the small imposed swirl
compensates the effect of the small inherent reflectional asymmetry of the system. The
reflectional symmetry of the aeroacoustic dynamics, which manifests itself here as a robust
beating mode without preference for the CW or the CCW spinning direction, is therefore
recovered by imposing a small mean swirl, i.e. imposing a small reflectional asymmetry
to the system. In summary, inherent imperfections are present in the system, as in the
case of thermoacoustic instabilities investigated by Faure-Beaulieu et al. (2021). They
lead to a dominant CCW mixed mode in absence of mean swirl (ṁs = 0 g s−1), and this
dominance is eliminated by imposing a small swirl on the incoming flow (ṁs = 3 g s−1,
and ṁs/ṁt = 3.5 %).

When the swirler mass flow is further increased to ṁs = 6 g s−1 (figure 3c), the
dynamics of the state variables become similar to the case ṁs = 0, except that the preferred
spinning direction is CW instead of CCW. Indeed, a sporadic alternance of mixed CW
regime and beating regime is observed, indicating that the imposed swirl tends to promote
the CW, i.e. counterswirl direction. Finally, when ṁs = 9 g s−1, the beating regime
disappears, leaving only a CW spinning mode of amplitude of 8 kPa (figure 3d). For higher
values of ṁs, the mode keeps spinning in the same counterswirl direction.

Figure 4 summarises the evolution of the p.d.f. of χ for the four experimental conditions
presented in figure 3. Darker lines indicate higher swirler mass flows ṁs. Without swirl, the
p.d.f. is bimodal and asymmetric, with a higher peak for a positive value of χ and a smaller
peak for a negative χ . At ṁs = 3 g s−1, the p.d.f. has two symmetric peaks indicating that
there is no longer a preference for one spinning direction. The p.d.f. for ṁs = 6 g s−1 is
almost the mirror image of the case without swirl, with a preference for CW mixed modes.
For ṁs = 9 g s−1, the p.d.f. has a single, sharp peak, very close to χ = −π/4 (quasi-pure
CW spinning mode). In order to explain these observations, it is therefore key to separately
investigate the effects of the mean flow on the aeroacoustic wave and the ones of the wave
on the mean flow. The latter mechanism is the topic of Part 1, and the former is treated in
the present Part 2.

4. Hydrodynamic stability of the simulated mean swirling flow

In this section, we investigate how a mean swirl impacts the stability of spinning
hydrodynamic modes in the shear layer, depending on their spinning direction with respect
to the swirl. To that end, we use the framework developed in Part 1, which is based on
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Self-sustained azimuthal aeroacoustic modes. Part 2.

the linearised Navier–Stokes equations (LNSE) for small perturbation analysis around
turbulent incompressible mean flows (e.g. Pujals et al. 2009; Iungo et al. 2013; Beneddine
et al. 2016; Tammisola & Juniper 2016; Boujo, Bauerheim & Noiray 2018).

The shear layer can be considered as incompressible for the following reasons:
(i) the Mach number of the wind channel flow is small (Ma = Ux/c = 59/340 = 0.17,
where c is the speed of sound), (ii) the cavity width (3 cm) and the maximal shear
layer thickness (2 cm) are small compared with the acoustic wavelength (43 cm). This
allows us to proceed with an incompressible LNSE framework in order to describe
the shear layer dynamics when it is subject to the forcing from the acoustic mode.
Furthermore, the excellent agreement between the compressible large eddy simulations
and the incompressible LNSE predictions of the forced response of a shear layer in the 2-D
counterpart of the present axisymmetric configuration performed by Boujo et al. (2018)
validates the rationale of this approach. Still, it is important to stress that it is not possible
to predict the frequency and the linear growth rate of the aeroacoustic modes of the system
with this incompressible analysis, and that the prediction of the stability of these modes
would necessitate a more involved framework based on the compressible LNSE.

Bearing all this in mind, we aim at identifying the dominant incompressible
hydrodynamic modes involved in the aeroacoustic instability and at estimating their decay
rates and pure hydrodynamic frequencies depending on their spinning direction.

For such an axisymmetric configuration, the LNSE in the frequency domain, which
constitutes a linear eigenvalue problem in infinite dimension, can be expanded as a Fourier
series in the azimuthal direction and can be solved with a finite element discretisation.
It allows us to separately investigate the eigenfunctions of any given azimuthal order.
Here, only the dominant hydrodynamic modes of azimuthal order m = −1 (CCW spinning
waves) and m = +1 (CW spinning wave) are considered, because, as shown in Part I, these
are the modes which constructively interact with the first azimuthal acoustic mode. Their
helical structure spins around the shear layer that spans the cavity opening, and the size of
the corresponding vortices is of the order of the cavity width.

As in Part 1, we perform the LNSE analysis with a partial mean flow, which is computed
from the incompressible Reynolds-averaged Navier–Stokes (RANS) equations. We do not
use a mean flow obtained experimentally with stereoscopic PIV for the following reasons:
(i) the experimental field of view is too restrained to perform reliable LNSE, in particular
the boundary conditions of the domain are not properly defined; (ii) for the entire range
of ṁt considered in this work, the experiments show a strong aeroacoustic limit cycle,
which is associated with a substantial thickening of the mean shear layer induced by the
high-amplitude hydrodynamic oscillations, as in the 2-D analogue geometry investigated
by Boujo et al. (2018).

The axisymmetric RANS simulations are performed on the same 2-D domain as in
Part 1. A non-zero azimuthal velocity Ua is imposed over a small rectangular region
(2 cm × 1 cm in longitudinal and radial directions) located in the wind channel 70 cm
upstream of the cavity to mimic the effect of the tangential injectors in the experimental
configuration. A positive value of Ua corresponds, as in the experiments, to a CCW swirl.
The tangential velocity Ua is varied between 0 and 5 m s−1 by steps of 1 m s−1 to obtain
the six axisymmetric mean flows with different amounts of swirl intensities. The inlet’s
axial velocity profile is uniform and fixed to ensure a constant mass flow of 84 g s−1 at the
outlet for each case.

Figure 5(a) shows, in the complex plane, the eigenvalues of the dominant hydrodynamic
eigenmodes of order m = +1 and m = −1 for these six mean flows. The imaginary part
is the mode’s angular frequency and the real part, its linear growth rate. The colour of
the symbols corresponds to the swirl strength, with cyan being the case without swirl
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Figure 5. Dominant eigenvalues of the LNSE problems defined by axisymmetric RANS flows with and
without swirl (Ua = 0 m s−1 and Ua = [1, . . . , 5] m s−1, with Ux = 59 m s−1). Without swirl, there is a
pair of degenerate eigenmodes which have the same eigenvalue and spin in opposite directions. With swirl, this
pair of eigenvalues splits, i.e. the co- and counterswirl hydrodynamic modes do not exhibit the same frequency
and decay rate. (a) The LNSE spectra of modes of azimuthal order −1 (◦, CCW) and +1 (×, CW) when the
azimuthal velocity Ua in the tangential injector is increased from 0 to 5 m s−1. (b,c) Frequencies and growth
rates of the leading shear layer eigenmodes when the azimuthal flow velocity in increased.

(Ua = 0 m s−1), and pink being the case with the strongest swirl (Ua = 5 m s−1). The
circles and crosses respectively correspond to m = −1 and m = +1.

All the eigenvalues have a negative real part, which indicates that the RANS
axisymmetric flow is globally stable. As explained in Part 1, most of the eigenvalues
are clustered along branches in the complex plane which are not shown here. These
are strongly damped modes exhibiting spatial distribution in the axisymmetric cavity
or the channel. However, a pair of eigenvalues typically emerges above these branches,
corresponding to shear layer modes which are significantly less damped than all the other
modes in the same range of frequency. Consequently, if the flow is subject to harmonic
forcing in this range, its response will be governed by these shear layer modes.

When Ua = 0, the shear layer eigenmodes m = 1 and m = −1 are degenerate, i.e. they
share the eigenvalue λ = 6849 i − 1024. When Ua is increased, the shear layer mode
m = −1 drifts to the right and downwards in the complex plane, while the mode m = +1
drifts to the left and upwards. Figures 5(b) and 5(c) show separately the evolution of the
frequency and the growth rate of the two modes as function of Ua. The frequency of the
mode of order −1 increases almost linearly with Ua, while the frequency of the mode
of order 1 decreases linearly. These trends are expected, because the mode of order −1,
spinning in the swirl direction, propagates faster around the cavity, while the mode of order
+1, spinning against the swirl, propagates slower. The splitting of the linear decay rates of
the incompressible shear layer eigenmodes shown in figure 5(c), reveals that the co-swirl
eigenmode becomes more damped with Ua while the counterswirl is less damped.

These results show that adding a mean swirl to the incoming pipe flow promotes the
counterswirl incompressible hydrodynamic eigenmodes by making them less linearly
stable than the co-swirl eigenmodes, which explains the experimental observations of
dominant self-sustained counterswirl aeroacoustic modes.

We now quantify the dependence of the frequency splitting on the swirl, with the
aim to include it in the low-order model of the next section. From the data presented
in figures 5(b) and 5(c), it appears that the frequency split �f = fCCW − fCW and the
growth rate split�σ = σCCW − σCW are both proportional to Ua, with the following linear
relationships �f = 5.2 Ua and �σ = −8.9 Ua. The speeds of the co- and counterswirl
aeroacoustic waves can be written as c + UΘ sl and c − UΘ sl, with UΘ sl an effective
azimuthal convective velocity in the shear layer. Considering that �f scales with the

971 A22-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

34
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.348


Self-sustained azimuthal aeroacoustic modes. Part 2.

m = 1 (CW, counterswirl)

(a) (b)xzy

m = −1 (CCW, co-swirl)

xzy

Figure 6. Radial velocity isosurfaces of the dominant (a) counterswirl and (b) co-swirl eigenmodes obtained
from the incompressible LNSE. The velocity imposed in the tangential injection is Ua = 5 m s−1. The swirl
direction is indicated by the red arrow. Yellow and indigo surfaces respectively correspond to a positive value
and its opposite.

velocity difference of the waves as �f /f0 = 2UΘ sl/c, with f0 the eigenfrequency in
absence of mean swirl, one deduces that �σ = −8.9/5.2 × 2UΘ slf0/c.

Figure 6 shows 3-D isosurfaces of the shear layer modes in presence of a mean swirl,
for m = 1 and m = −1. These modes exhibit a helical structure, respectively winding with
the swirl direction (indicated by a red arrow) and against it, and growing in the axial
direction due to a convective shear layer instability, although the incompressible mean
flow is globally stable.

Let us now briefly put these findings into perspective with some key results from
the literature on hydrodynamic instabilities of incompressible swirling jets. The main
mechanisms causing the emergence of weakly damped or linearly unstable helical modes
in swirling flows are the axial and azimuthal shear between the fast swirling core and
the surrounding air at rest, and the centrifugal instability (Gallaire & Chomaz 2003a).
Interestingly, Gallaire & Chomaz (2003b) show that, for low Reynolds swirling jets of
small or moderate swirl, the convectively unstable mode with the largest temporal growth
rate is, as in the present study, a helical mode of azimuthal order +1 winding with
the flow and spinning against it (note that, in their paper, the sign convention for m is
different). They also find that for the considered base flows, this mode is absolutely stable,
i.e. perturbations at a given position are amplified, but they are advected sufficiently
fast downstream to prevent a local growth of the oscillation amplitude. However, their
incompressible stability analysis of canonical swirling jets differs in three main respects
from the present work:

(i) In contrast to our global stability analysis, their results are obtained from a local one
with the assumption of weakly non-parallel base flows.

(ii) Their swirling jets are not confined in the axial direction, while the finite width W
of the axisymmetric cavity considered in our study imposes a significant constraint
on the structure and dynamics of the hydrodynamic modes.

(iii) In our study, the flow is highly turbulent, with a Reynolds number more than two
orders of magnitude larger than in their study, and we perform a perturbation analysis
around a partial mean flow being a solution of the incompressible RANS equations –
‘partial’ in the sense that it does not feature the effect of coherent motion due to the
aeroacoustic instability – and not around a base flow being a steady solution of the
incompressible Navier–Stokes equations.
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Regarding the first two points, it is important to stress that the assumption of a
weakly non-parallel flow is not valid at the upstream and downstream corners of the
axisymmetric cavity. This fact limits the applicability of local stability analysis to our
partial mean flow. This limitation also applies to the recent work of Douglas, Emerson
& Lieuwen (2021), who elucidated the mode selection process in laminar, incompressible
and unconfined swirling jets, including strongly non-parallel flow cases. Using a global
stability analysis, they unravelled complex bifurcation diagrams, which exhibit several
simultaneous attractors corresponding to modes of different azimuthal numbers, winding
and spinning directions.

Regarding the third point, the intense turbulence of the pipe flow upstream of the cavity
leads to a thickening of the mean shear layer and a turbulent viscosity field featuring
maxima along the shear layer region that are more than two orders of magnitude larger
than the kinematic viscosity (see for instance figure 9 in Part 1 for Ua = 0 m s−1). In
the present configuration, the latter effect does not markedly influence the frequency and
the structure of the eigenmodes, as in the 2-D analogue geometry investigated by Boujo
et al. (2018). However, it significantly enhances their damping, which contributes to the
fact that, as in the turbulent swirling flows investigated by Oberleithner et al. (2014) and
Tammisola & Juniper (2016), there is no linearly unstable global mode.

5. Low-order model of the aeroacoustic dynamics

The objective of this section is to derive a low-order model of the complex 3-D
aeroacoustic dynamics observed in the experiments, based on a 1-D acoustic wave
equation with a source term representing the vortex sound interactions in the shear layer.
As a first step, we make use of the experimental and numerical results to disentangle the
acoustic and hydrodynamic components of the aeroacoustic flow and further set the scene
for the low-order modelling.

5.1. Decomposition of the aeroacoustic field
The coherent velocity fluctuations ũ are decomposed into an irrotational acoustic part ua,
and a hydrodynamic part uh which corresponds to the incompressible vortical motion of
the shear layer: ũ = ua + uh. Similarly, the coherent pressure fluctuations are written as
p̃ = pa + ph where pa is the acoustic pressure and ph is the pseudo-sound associated with
the coherent, incompressible and rotational velocity fluctuations. In the next paragraphs,
we apply this decomposition to the present system and analyse the fields ua and ph.

Phase averaging applied to PIV measurements gives access to ũ in the cavity’s centre
and the shear layer (see Part 1), while the microphones on the cavity walls give access
to p̃ at discrete locations. To estimate the respective contributions of acoustics and
hydrodynamics to p̃ and ũ at different locations, we consider the experimental results,
together with the LNSE results and Helmholtz solver computations.

For Ux = 59 m s−1, ũ can reach 50 m s−1 in the shear layer. The pseudo-noise pressure
ph, which is of the order of ρUxuh, is approximated by ρUxũ. This leads to ph ≈ 3 kPa
in the shear layer, which is not negligible compared with the typical pressure fluctuation
amplitude of 5 kPa measured by the microphones. Figure 7(a) shows the distribution of
ph associated with the first hydrodynamic shear layer mode of azimuthal order m = −1,
scaled to correspond to velocity fluctuations of the order of 50 m s−1. The pseudo-sound
ph indeed reaches values of 3 kPa in the shear layer, but vanishes away from the shear layer
and is negligible at the microphone’s location, indicated with a black rectangle. Figure 7(b)
shows the pa field of the first azimuthal (pure) acoustic mode, obtained from a Helmholtz
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Figure 7. (a) Pseudo-sound field associated with the first shear layer mode, from the incompressible LNSE
analysis around the simulated RANS mean flow without swirl. The grey rectangle indicates the position of the
microphones at r = 90 mm. (b) Acoustic pressure field of the first CCW spinning azimuthal acoustic mode
at a frequency 793 Hz, obtained from a Helmholtz solver. The acoustic amplitude was imposed to match the
measured data at the microphone location. The phase φ = 0 is chosen as the phase reference for which the
acoustic pressure reaches its positive maximum in the upper half of the cavity. At φ = π/2, the slice shown in
the figure coincides with the acoustic mode nodal plane and the acoustic pressure is 0 everywhere. The vertical
dashed line indicates the position of the axial slices shown in figure 8. (c) Out-of-plane component uaz of ua for
the same mode, at the same instant of the oscillation cycle. The acoustic pressure is in phase with the azimuthal
acoustic velocity uaΘ , which is characteristic of a travelling wave. (d,e) Vertical and axial components of ua
for the first CCW spinning azimuthal acoustic mode, with a phase difference π/2 with respect to (b,c). Indeed,
uay and uax are phase shifted by π/2 with respect to pa and uaΘ . Therefore, at φ = 0, they vanish in this slice.

solver simulation. Unlike ph, pa reaches its maximal values at the outer wall of the cavity.
Therefore, it can be assumed that the microphones measure only the acoustic contribution
pa.

The figures 7(c), 7(d) and 7(e) show the three velocity components of the first azimuthal
acoustic mode. They are represented in Cartesian coordinates, rather than in cylindrical
coordinates, to facilitate their interpretation. The out-of-plane and vertical velocity
components uaz and uay are respectively related to the azimuthal and radial velocity
components uaΘ and uar. A propagating 1-D acoustic wave of amplitude pa ∼ 5 kPa has
an acoustic velocity ua = pa/ρc = 13 m s−1, which matches well with the magnitude of
the out-of-plane acoustic velocity fluctuations shown in figure 7(c), although the present
configuration cannot be approximated by a simple 1-D closed waveguide as it can be done
for thin annular combustion chambers (Faure-Beaulieu & Noiray 2020). The 3-D nature
of the acoustic field can also be seen in figure 8, which shows, on the left, the acoustic
pressure and velocity fields of a spinning pure acoustic mode at phases φ = 0 and φ = π/2
of the cycle, and, on the right, these fields when the acoustic mode is standing. The vertical
dashed black line in figure 8 corresponds to the slices shown in figures 7(b) and 7(c). At
phase φ = 0, the velocity field in the vertical plane is orthogonal to this plane, and it is
thus purely azimuthal. At phase π/2, the vertical slice corresponds to the nodal line of
the acoustic pressure, i.e. pa = 0 in this plane, and the velocity vector field corresponds
to a downwards motion towards the bottom half of the cavity (see also figure 7d,e). This
CCW spinning mode can be interpreted as the superposition of two standing modes with
orientations θ = 0 and θ = π/2, which exhibit a phase lag of π/2. It is interesting to stress
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Spinning mode CCW(a) (b)

φ = 0 φ = π/2

Standing mode

φ = 0 φ = π/2
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p a 
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P
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Figure 8. Slices of the acoustic pressure and acoustic velocity fields (respectively colour and arrows) in the
transverse plane of the axisymmetric configuration (see dashed line in figure 7) for a CCW spinning mode and a
standing mode with orientation θ = 0 at two different phase instants: φ = 0 mod 2π and φ = π/2 mod 2π,
with φ = ωt + ϕ the instantaneous acoustic phase. These pure acoustic modes are obtained with a Helmholtz
solver computation.

that for the spinning mode, the acoustic azimuthal velocity and pressure are in phase, while
for the standing mode, they exhibit a phase shift of π/2.

One can also see in figure 7(d) that uax and uay exhibit maxima of about 40 m s−1

around the corners of the cavity openings, which are far above the magnitude of uaz. This
effect, although real, is overestimated due to the inviscid fluid assumption of the present
Helmholtz solver computation which leads to singularities in the potential field at sharp
corners. The resolvent analysis performed by Boujo et al. (2018) on the 2-D counterpart of
the present axisymmetric geometry shows that the optimal volumetric forcing of the shear
layer is located in the vicinity of the upstream corner. Therefore, the fast acoustic motion
around the corner perturbs the shear layer very efficiently, if not optimally. The resulting
hydrodynamic oscillations are then advected and amplified along the shear layer.

5.2. Aeroacoustic wave equation
The starting point of the derivation of a low-order model of the present axisymmetric
aeroacoustic system is the 3-D wave equation with unsteady velocity source terms,
presented in Appendix A of the paper by Faure-Beaulieu & Noiray (2020)

∂2p̃
∂t2

+ 2ū · ∇ ∂ p̃
∂t

− c2∇2p̃ = 2ρc2∇ū : ∇ũ�, (5.1)

where the air density ρ and speed of sound c are assumed uniform in the cavity, and : is the
double dot product between two tensors, with the same convention as in Faure-Beaulieu &
Noiray (2020). The focus of this previous study was on thermoacoustics, and therefore, the
acoustic source term of interest was the one of the coherent heat release fluctuations (γ −
1)∂Q̇/∂t, while the aeroacoustic source term 2ρc2∇ū : ∇ũ� was neglected. Conversely,
in the present study, only this term is considered. The acoustic pressure is described with
the quaternion formalism

pa = Re
(
Aei(θ−Θ)e−kχej(ωt+ϕ)) ≡ Re(Ah)

= 1
2 (Ah + Ah∗)

= 1
2

(
Aei(θ−Θ)e−kχej(ωt+ϕ) + Ae−j(ωt+ϕ)ekχe−i(θ−Θ)), (5.2)

where h∗ is the conjugate of the unitary quaternion h = ei(θ−Θ)e−kχej(ωt+ϕ). This
non-commutative quaternion formalism can be directly used to describe an azimuthal
wave in a 1-D wave guide, in which case A, χ, θ, ϕ are solely functions of time and
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slowly vary with respect to the acoustic period 2π/ω. For the present axisymmetric
geometry, a spatial averaging operation detailed in Appendix A allows us to reduce the
3-D problem with A = A(t, r, z) to a 1-D equation. The spatial averaging is performed
over an elementary volume (r,Θ, x) ∈ [0,R] × [Θ − δΘ/2,Θ + δΘ/2] × [−X∞,X∞],
with X∞ chosen sufficiently large to be out of the zone of influence of the acoustic mode,
which is always possible due to the evanescent character of the mode in the duct. Taking
the limit δΘ → 0, a 1-D azimuthal wave equation is obtained for the acoustic pressure
averaged over a slice [0,R] × [−X∞,X∞], which is denoted by 〈pa〉 and depends solely
on t and Θ

∂2〈pa〉
∂t2

+ α
∂〈pa〉
∂t

+ 2
UΘ eff

R
∂〈pa〉
∂Θ∂t

− ω2
a
∂2〈pa〉
∂Θ2 = S, (5.3)

which has a damping term α∂·/∂t, a convective term 2(UΘ eff /R)∂2·/∂Θ∂t and a source
term S resulting from the spatial averaging of the aeroacoustic source term 2ρc2∇ū :
∇ũ�.

5.3. Model of the aeroacoustic source term
The hydrodynamic component of the velocity uh provides the main contribution to the
source term S: indeed, the ratio between the spatial derivatives of ua and uh has the order
of magnitude of the ratio between the shear layer thickness (∼1 cm) and the acoustic
wavelength (∼0.4 m). Additionally, the zones of strong gradients of u and uh coincide, so
that the product ∇ū : ∇ū�

h is even greater compared with ∇ū : ∇ū�
a . Therefore, only the

contribution of uh is considered from now on. The developed expression of ∇ū : ∇u�
h in

cylindrical coordinates is

∇ū : ∇u�
h = ∂ ūx

∂x
∂uhx

∂x
+ ∂ ūr

∂x
∂uhx

∂r
+ ∂ ūΘ

∂x
∂uhx

r∂Θ

+ ∂ ūx

∂r
∂uhr

∂x
+ ∂ ūr

∂r
∂uhr

∂r
+ ∂ ūr

r∂Θ
∂uhr

r∂Θ

+ ∂ ūx

r∂Θ
∂uhΘ

∂x
− ∂ ūΘ

r∂Θ
∂uhΘ

∂r
− ∂ ūΘ

∂r
∂uhΘ

r∂Θ
. (5.4)

It is obtained by writing the expression of ∇ū : ∇ũ� in Cartesian coordinates in
which ∂/∂y and ∂/∂z were respectively substituted with cos(Θ)∂/∂r − sin(Θ)∂/r∂Θ and
sin(Θ)∂/∂r + cos(Θ)∂/r∂Θ , and uy and uz with cos(Θ)ur − sin(Θ)uΘ and sin(Θ)ur +
cos(Θ)uΘ . When the aeroacoustic source term is averaged over the small volume defined
in § 5.2 and δΘ → 0, one obtains

S = ψ1〈uhx〉 + ψ2〈uhr〉 + ψ3〈uhΘ〉. (5.5)

The constants ψ1,2,3 depend only on 〈u〉. They can have a small dependency ψ1,2,3(Θ) in
the azimuthal coordinate if the mean flow is not perfectly axisymmetric.

The vortices in the shear layer are periodically detached from the upstream corner of the
cavity through the action of the vertical oscillations of the acoustic velocity uar. Therefore,
〈uhx,r,Θ〉 oscillate with some constant phase with respect to uar, which has itself a constant
phase difference π/2 with pa. Therefore, the source term S can be expressed as a linear
combination of pa and ∂〈pa〉/∂t accounting respectively for the in-phase and delayed
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components of the shear layer’s response

S = β
∂〈pa〉
∂t

− μ〈pa〉 +Ξ(Θ, t). (5.6)

The effects ψ1,2,3 are encapsulated in β and μ. In the presence of rotational asymmetries,
β and μ depend onΘ . When these asymmetries are small, the relative spatial variations of
β and the variations of μ with respect to ω2

a are also small. The term Ξ(Θ, t) is a random
additive forcing at the cavity opening, which is due to the broadband noise generated
by the highly turbulent flow in the wind channel and its air supply line, as in the 2-D
counterpart of the present axisymmetric configuration (Bourquard et al. 2021). Unlike the
stochastic forcing of thermoacoustic modes in combustion chambers mainly produced by
turbulence-driven heat release rate fluctuations, the present stochastic forcing originates
from turbulent vorticity fluctuations. The minus sign in front of μ ensures consistency
with the conventions of Faure-Beaulieu et al. (2021), but μ can be of any sign. In presence
of large hydrodynamic oscillations, the mean shear layer thickens (Boujo et al. 2018), so
that the gradients of ū decrease. As a consequence, ψ1,2,3 decrease. This is accounted for
in the model (5.6) by making the coefficient of ∂〈pa〉/∂t amplitude dependent

S = (β(Θ)− g(|uar|))∂〈pa〉
∂t

− μ(Θ)〈pa〉 +Ξ(Θ, t), (5.7)

where g is an increasing function and g(0) = 0. One assumes that g(|uar|) is smooth
when uar oscillates around 0, which allows us to write the Taylor series: g(|uar|) =
(1/2)g′′(0)u2

ar + O(u4
ar), where only even order terms are present because the function

is even. This approximation to a limited order is sufficient to account for the nonlinear
saturation of the shear layer’s response to high-amplitude forcing. Equation (5.7) becomes

S =
(
β(Θ)− κ

ω2

(
∂〈pa〉
∂t

)2)
∂〈pa〉
∂t

− μ(Θ)〈pa〉 +Ξ(Θ, t), (5.8)

where ω2 was included so that the definition of the nonlinear term’s coefficient κ is
consistent with the constant κ used in the literature on low-order modelling of azimuthal
thermoacoustic instabilities, where a slightly different source term is derived (e.g. Noiray
et al. 2011; Noiray & Schuermans 2013; Faure-Beaulieu & Noiray 2020). An amplitude
dependency could also be considered for μ, which would change slightly the aeroacoustic
frequency in limit cycle. For simplicity, this effect is omitted. The aeroacoustic equation
then becomes

∂2〈pa〉
∂t2

+ (α − β)
∂〈pa〉
∂t

+ 2
UΘ eff

R
∂〈pa〉
∂Θ∂t

− (ω2
a + μ)

∂2〈pa〉
∂Θ2 = − κ

ω2

(
∂〈pa〉
∂t

)3

+Ξ,

(5.9)

where the identity 〈pa〉 = −∂2〈pa〉/∂Θ2 was used to group the reactive terms. The
variables defining the linear response of the shear layer, β and μ, are functions of Θ
and therefore periodic. They are written as Fourier series

β(Θ) = β0 +
∑
n≥0

bn cos(Θ −Θβn), μ(Θ) = μ0 + ω2
∑
n≥0

mn cos(Θ −Θμn).

(5.10a,b)

The average aeroacoustic growth rate (β0 − α)/2 determines the stability of the system:
when it is positive, the acoustic response of the shear layer exceeds the acoustic losses

971 A22-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

34
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.348
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modelled in the term α and any perturbation will grow exponentially until the nonlinear
loss term in the right-hand side of (5.9) becomes sufficiently large to lead to amplitude
saturation. The coefficients bn account for the presence of non-uniformities in the shear
layer’s resistive response around the cavity. The average reactive response μ0 causes a
frequency drift from the pure acoustic frequency ωa to a reference aeroacoustic frequency
ω = √

ω2
a + μ0. The terms mn account for the presence of non-uniformities of this

reactive response and can be interpreted as a spatial modulation of the effective speed
of sound around the cavity, which can result from a non-homogeneous temperature field,
geometrical asymmetries, or non-uniformities of the mean flow velocity leading to a
modulation of the convective time delay around the cavity.

5.4. Equations for the state variables
The goal is now to extract the equations for the slowly evolving state variables 〈A〉, χ, θ, ϕ,
following the procedure described in Faure-Beaulieu & Noiray (2020): the wave equation
(5.9) and the slow time scale constraint (A9) are projected onto eiΘ , leading to a
complex oscillator equation and a complex constraint equation. This gives a system of
four equations linear in ˙〈A〉, χ̇ , θ̇, ϕ̇, which is inverted, leading to the following equations:

Amplitude equation

Ȧ = 1
2
(β0 − α)A + b2

4
cos(2(θ −Θβ2)) cos(2χ)A

− 3κ
64
(5 + cos(4χ))A3 + 3Γ

4ω2A
+ ζA. (5.11)

Nature angle equation

χ̇ = 3κ
64

A2 sin(4χ)− b2

4
cos(2(θ −Θβ2)) sin(2χ)

+ m2ω

4
sin(2(θ −Θμ2))− Γ tan(2χ)

2ω2A2 + 1
A
ζχ . (5.12)

Preferential angle equation

θ̇ = UΘ eff

R
− b2

4
sin(2(θ −Θβ2))

cos(2χ)

− m2ω

4
cos(2(θ −Θμ2)) tan(2χ)+ 1

A cos(2χ)
ζθ . (5.13)

Phase equation

ϕ̇ = b2

4
sin(2(θ −Θβ2)) tan(2χ)+ m2ω

4
cos(2(θ −Θμ2))

cos(2χ)
− tan(2χ)

A
ζθ + 1

A
ζϕ. (5.14)

The brackets around 〈A〉 were dropped for convenience: from now on, A refers to the
average amplitude over an azimuthal slice. Some terms need to be defined: Γ is the
intensity of the noiseΞ(Θ, t) projected on eiΘ (Faure-Beaulieu & Noiray 2020). The terms
ζA, ζχ , ζθ and ζϕ are white noises of intensities Γ/2ω2. From the Fourier decompositions
(5.10a,b) of the asymmetries of the shear layer response, only the coefficients b2 and m2 are
still present in the slow equations, consistent with Noiray et al. (2011) and Faure-Beaulieu
et al. (2021).
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5.5. Effect of the mean flow on the aeroacoustic gain
In the slow equations, the effect of the swirl on the time evolution of the aeroacoustic
mode explicitly appears in the term UΘ eff , which is the effective azimuthal velocity
(cf. Appendix A) and also implicitly in the terms β0, α, κ , b2 and m2, which come
from spatial integrals of quantities directly related to the mean flow. To keep the model
as simple as possible, only the effect of the mean flow on the aeroacoustic gain β0 will be
modelled. Section 4 showed that the splitting between the growth rates of the counterswirl
and the co-swirl shear layer modes increases linearly with the swirl velocity. Therefore, it is
reasonable to assume that the difference between the effective linear aeroacoustic growth
rates for χ = π/4 (CCW spinning) and χ = −π/4 (CW spinning) also has this linear
dependency. We propose a simple phenomenological model for the temporal evolution of
the instantaneous aeroacoustic gain

β0 = βref − βsUΘ eff
χ

π/4
, (5.15)

where βref is the gain in absence of mean flow and βs is a positive coefficient to account
for the growth rate splitting: when χ and UΘ eff have the same sign, the gain decreases
(co-swirl mode), and when they have opposite signs, it increases. With this model, the
aeroacoustic growth rate difference between co-swirl and counterswirl waves is �β0 =
−2βsUΘ eff . This difference is assumed to be due only to the split Δσ of the growth rates
of the counterspinning hydrodynamic fluctuations, giving �β0 = �σ . It follows from § 4
that

− βs × 2UΘ eff = −8.9/5.2 × f /c × 2UΘ SL. (5.16)

As explained in Appendix A, UΘ eff is approximately 10 times smaller than UΘ SL, the
typical azimuthal mean velocity in the shear layer. This gives values of βs of the order of
30 m−1.

5.6. Effect of the instability on the mean flow
As shown in Part 1, the coherent motion of the shear layer can lead to the emergence
of a mean swirl. Therefore, the global azimuthal component UΘ eff is decomposed into
two parts: the imposed swirl Ui, constant over a given experiment, and the self-induced
swirl Us, which slowly fluctuates over time depending on the instability’s dynamics. In
Part 1, we showed that the self-induced mean swirl appears only when the hydrodynamic
fluctuations are sufficiently spinning and have large amplitude. Thus, Us is a function of
χ and A. The perturbation analysis of Part 1 gave us an equation for the self-induced
azimuthal velocity ūΘ when a non-swirling base flow ūb was forced by an incompressible
spinning helical shear layer wave ũ

ūbr
∂ ūΘ
∂r

+ ūbx
∂ ūΘ
∂x

+ ūΘ ūbr

r
− (ν + νt)

(
1
r
∂

∂r

(
r
∂ ūΘ
∂r

)
+ ∂2ūΘ

∂x2 − ūΘ
r2

)

= −∂ ũrũΘ
∂r

− ∂ ũxũΘ
∂x

− 2
ũrũΘ

r
, (5.17)

where νt is a turbulent viscosity. All the terms are of comparable order. The convective
terms of the left-hand side (like ūbx∂ ūΘ/∂x) are of the same order as the coherent Reynolds
stresses on the right-hand side, giving the estimate ūΘ ∼ ũ2/Ux. Thus, the amplitude of
the self-induced swirl is a quadratic function of the acoustic amplitude. Additionally, Part 1
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showed that the self-induced swirl spins against the wave direction. For a CCW spinning
mode, the following phenomenological model is adopted for the self-induced swirl

Us = −υA2, (5.18)

with υ a positive constant. For a CW spinning mode, the sign is changed: Us = +υA2.
For a mixed or a standing mode, the wave is decomposed into the sum of counterspinning
waves of amplitudes ACCW and ACW and the ansatz (3.1) is rewritten as

pa = ACCW cos(ωt + ϕ − (Θ − θ))+ ACW cos(ωt + ϕ + (Θ − θ)), (5.19)

where ACCW = (cos(χ)+ sin(χ))A/2 and ACW = (cos(χ)− sin(χ))A/2. For a mixed
mode, the self-induced swirl is assumed to be the sum of the contributions of both spinning
components

Us = −υA2
CCW + υA2

CW , (5.20)

which simplifies to

Us(A, χ) = −υA2 sin(2χ). (5.21)

This corresponds to the induced swirl in steady conditions. However, when the mode state
changes, it is expected that the flow needs a time delay to adapt. From the Navier–Stokes
equations, one can write ∂uΘ/∂t ∼ u · ∇uΘ , which gives a characteristic response time
τd = R/Ux ∼ 2 ms for Ux = 60 m s−1. This is certainly an under-estimation because the
mean velocities in the cavity are smaller, of the order of 10 m s−1 (which gives τd = 6 ms).
An additional time-domain equation is introduced to account for the delayed response of
the swirl

∂UΘ eff

∂t
+ 1
τd
(UΘ eff − (Ui + Us(A, χ))) = 0. (5.22)

A rough estimate of υ can be obtained, starting from ūΘ ∼ ũ2/Ux. Locally, ūΘ is typically
10 times larger than the averaged swirl UΘ eff (see Appendix), and, from the experiments,
one knows that acoustic amplitudes A ∼ 5 kPa are typically associated with hydrodynamic
velocity fluctuations ũ ∼ 50 m s−1. Therefore, UΘ eff ∼ (10−5/Ux)A2, which gives υ ∼
10−9 Pa−2 m s−1.

5.7. Time-domain simulations
The system of four coupled Langevin equations (5.11)–(5.14) and the self-induced swirl
equation (5.22) are numerically solved together with the stochastic Runge–Kutta method
of order 1. The values of the parameters were adjusted to best reproduce the dynamics
of the state variables observed in the experiments. For most parameters, the choice of
the calibrated value is constrained, because beyond a certain range, some key features
of the state variables’ dynamics are lost. All the parameters were calibrated to the case
ṁs = 0, except those related to interactions with the swirl. Certain parameters can be
unambiguously found from the experimental time traces: this is the case of the reactive
asymmetry m2, which is proportional to the beating frequency, easily obtained from
the experiments. This also sets a maximum value for the growth rate (β0 − α)/2, as
Faure-Beaulieu et al. (2021) showed theoretically that the beating is suppressed when
the ratio (β0 − α)/ω is greater than a certain threshold. When no swirl is imposed, the
experimental p.d.f. of χ has a preference for the CCW spinning direction, which can be
explained by a misalignment of the preferential directions of the resistive and reactive
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Figure 9. Evolution of the state variables A, χ , θ , ϕ from simulations, for increasing values of the imposed
swirl: (a) Ui = 0, (b) Ui = 0.03 m s−1, (c) Ui = 0.07 m s−1, (d) Ui = 0.2 m s−1 from left to right.
Other parameters are common to all the simulations: ω = 2π × 793 rad s−1, βref = 320 s−1, α = 280 s−1,
κ = 4 × 10−6 Pa−2 s−1, b2 = 2.8 s−1, Θβ2 = 2π/3 rad, m2 = 0.012, Θμ2 = Θβ2 − π/2 − π/8, Γ = 1 ×
1014 Pa2 s−3, βs = 27.7 m−1, υ = 7.61 × 10−9 Pa−2 m s−1, τd = 0.007 s.

components of the shear layer response to acoustic perturbation, i.e. Θβ2 and Θμ2. These
are calibrated in the model to reproduce the preferential values of θ in the experiments
and the asymmetry of the experimental p.d.f. of χ . The coefficient of resistive asymmetry
b2 has a direct impact on the amplitude of the oscillations of χ : the larger b2, the smaller
the amplitude. When b2 is too large, the p.d.f. of χ becomes unimodal instead of bimodal.
The saturation parameter κ is chosen to match the global amplitude A of the experiments.
The noise amplitude Γ modifies the intermittency of the dynamics: when Γ = 0, the
system only shows regular asymmetric beating with a statistical preference for the CCW
side. A sufficiently high noise is necessary to reproduce the random transitions between
regimes of beating and mixed mode. The values for the additional parameters βs, υ and
τd, which control the interactions with the swirl, will be discussed later.

Figure 9 shows the simulated time traces. Each column is associated with a different
imposed swirl Ui, with increasing values of from left to right: Ui = 0, 0.03, 0.07 and
0.2 m s−1. These values seem small, but it has to be kept in mind that Ui is an effective
velocity corresponding to an averaging over a section of the cavity (see Appendix A). We
also stress the fact that the values chosen for Ui are not equispaced, unlike the values of ṁs
in the experiments, increased by constant steps of 3 g s−1. This non-constant stepping in
the simulations was necessary to have a good match with the experiments. It is attributed to
the fact that the penetration of the tangential jets of the swirler and the swirl intensity that
is imparted to the cavity flow do not linearly depend on ṁs. Figure 10 shows a comparison
between the p.d.f.s of the experimental state variables (row 1) and the ones from the
simulations (row 2).The different shades of colour used in figure 9 are the same as in
figure 10: darker colours corresponds to higher Ui.
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Figure 10. The p.d.f.s of the state variables from experiments (row 1) and numerical simulations (row 2).

6. Discussion

We now comment on the simulation results and provide explanations for the experimental
observations. Figure 9(a) reproduces the beating and the intermittent bursts of a
high-amplitude CCW mixed mode. The p.d.f. of A in figure 10 has a single peak with a fat
tail to the right, due to the presence of the bursts. As in the experiments, the p.d.f. of χ is
bimodal with a preference for the CCW side, because of small reflectional asymmetries in
the model. The experiments presented in Part 1 showed that, during the beating regime,
the rapid changes of spinning direction prevent the emergence of a self-induced swirl.
However, because of the inherent random forcing from turbulence, the aeroacoustic wave
can sporadically spin sufficiently long in the CCW direction for letting a self-induced
CW swirl appear. It causes an increase of the CCW mode’s growth rate, explaining the
larger amplitude. The mixed mode regime can also intermittently fade and the system
returns to the beating regime. The phenomenon mainly happens for CCW modes because
the asymmetries of the system initially favour the CCW spinning direction. However, in
the absence of noise, the intermittent bursts do not happen. The simulated p.d.f. of θ
is bimodal, while the experimental p.d.f. has four peaks, which in fact corresponds to
two only two preferential directions as θ and θ + π correspond to the same state. The
experimental time traces show small oscillations between two close values, and some rare
intermittent jumps of ±π corresponding to a phase inversion, while the simulations do
not show these jumps. The simulation reproduces the beating of θ but underestimates its
amplitude.

It is now interesting to discuss the effect of the three parameters βs, υ and τd, which
control the reciprocal interactions between the azimuthal flow and the aeroacoustic wave.

The parameter βs, which defines the growth rate splitting in presence of mean swirl,
has a strong influence on the magnitude of the amplitude bursts, because it is directly
linked to the increase of the aeroacoustic gain when the mode spins against the swirl. We
calibrate a value of βs = 27.7 m−1 to match the simulations with the experiments, which
is in agreement with the estimate provided in § 5.5.

The parameter υ governs the strength of the wave-induced swirl. When υ is too
small, the intermittent transitions between beating and mixed modes do not occur, or
their duration and the magnitude of the amplitude bursts are underestimated. Indeed, the
self-induced swirl is not sufficiently strong to maintain the mixed mode state. On the other
hand, when υ is too large, the mixed mode never returns to the beating regime, because the
swirl is sufficiently strong to maintain the mixed mode despite the random perturbations
from turbulence. The calibrated value is υ = 7.61 × 10−9 Pa−2 m s−1, which is in good
agreement with the order of magnitude estimated in § 5.6.
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The last parameter τd is the characteristic time of emergence of the self-induced mean
swirl. It has an important impact on the statistical distribution of A, χ and θ . In particular,
too large values of τd tend to merge together the two peaks in the p.d.f.s of χ and θ , and too
small values tend to shorten the duration and the size of the amplitude bursts. The value
in the simulations is 7 ms, which is also consistent with the previous estimate from § 5.6.

In figure 9(b), it is shown that imposing a weak CCW swirl is sufficient to counteract
the natural preference of the aeroacoustic wave spinning in CCW direction and to make
the p.d.f. of χ symmetric. Compared with figure 9(a), the high-amplitude bursts are
smaller and shorter, which can also be seen in the p.d.f. of A, whose right tail is less
pronounced. Because the system has a symmetric behaviour, there are fewer possibilities
for the self-induced mean swirl to develop in one specific direction. In figure 9(c), the
imposed CCW swirl is higher and favours the CW mode, producing a mirror behaviour
compared with the case shown in figure 9(a). The bursts of A are again present, thickening
the right tail of the distribution P(A) (figure 10). In figure 9(d), the swirl is sufficiently large
to keep the mode in a CW spinning state. Instead of displaying irregular high-amplitude
bursts, A stays constantly at high values. Since A and χ are constant, the self-induced swirl
is also constant.

We emphasise the fact that the same parameters have been used in all the simulations,
the only parameter whose value has been changed is the imposed swirl Ui. Of course, this
is a simplification, because βref , α, κ , μ depend also on the axial and radial mean velocity
fields, which are affected by the swirl. However, for a moderate swirl, these dependencies
are assumed to be small and the main changes in the modal dynamics are attributed only
to the direct destabilising effects of the swirl.

7. Conclusion

In this paper, we studied the effect of a swirling mean flow on an unstable aeroacoustic
mode of azimuthal order 1 in a turbulent low-Mach flow through an axisymmetric cavity.
Part 1 showed that a spinning aeroacoustic wave can induce a whirling motion in an
initially reflectionally symmetric base flow. In this Part 2, we tackled the question of
the effect of a swirling mean flow on the dynamics of the aeroacoustic instability. In the
absence of imposed swirl, experiments showed a statistical preference of the aeroacoustic
mode in the cavity for a CCW mixed state. When CCW swirl was imposed upstream of the
cavity, this preference shifted towards a CW mixed state, i.e. propagating against the swirl.
At low swirl, the mixed modes were intermittently alternating with beating modes, while
at high swirl, only counter-swirl mixed modes subsisted. The key mechanisms responsible
of this observed dynamics have been identified:

(i) In the absence of imposed swirl, the preference for the CCW direction and the
beating are caused by the small geometrical imperfections of the set-up and the
incoming flow.

(ii) The effect of swirl on the stability of the hydrodynamic modes of the shear layer was
investigated with a LNSE-based stability analysis on a incompressible RANS flow.
It revealed that the two dominant modes of azimuthal order 1 are helical structures
respectively co-winding counter-spinning and counter-winding co-spinning with
respect to the swirl. The former hydrodynamic mode has the largest growth rate,
which explains why the aeroacoustic mode spinning in the counter-swirl direction is
promoted.
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(iii) The self-induced swirl, which emerges in presence of spinning waves and whirls in
the opposite direction, strengthens the spinning waves in the form of a constructive
feedback.

To describe the temporal dynamics of the aeroacoustic modes in the cavity, these
mechanisms were included in a low-order model inspired by previous analogue works
on thermoacoustic instabilities in axisymmetric systems. However, these works did not
consider the influence of swirl and the retroaction of the instability on the mean flow
that are specific to aeroacoustic instabilities. The growth rate split between co-swirl
and counterswirl aeroacoustic waves was modelled with a linear dependency on the
azimuthal flow velocity. The effect of the aeroacoustic wave on the swirl was taken
into account by using a temporal equation for the induced swirl, which depends on the
amplitude and the spinning direction of the wave. The handful of model parameters
were then calibrated, resulting in a excellent qualitative agreement between experimental
observations and temporal simulations: the low-order model reproduced the shift towards
counter-swirl modes when the imposed swirl increased, as well as the intermittent
transitions between mixed mode and beating mode regimes due to the stochastic excitation
from the turbulence.
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Appendix A. Spatial averaging of the 3-D aeroacoustic wave equation

A.1. Slow time scale assumption
Before starting with the spatial averaging, let us introduce some preliminary clarification
on quaternion representation and the slow time scale assumption. A quaternion h can
be uniquely written as h = a + ib + jc + kd, where a, b, c, d ∈ R and i, j, k are the three
basic quaternions. The properties of i, j, k are: i2 = j2 = k2 = −1 and ij = k, jk = i, ki =
j; a is the real part of h and is denoted by Re(h); b is the i-imaginary part, noted
Imi(h), and the j- and k-imaginary parts are similarly defined. The quaternion conjugate is
h∗ = a − ib − jc − kd.

The acoustic pressure pa is represented with the formalism (5.2), shortly written as
pa = A(h + h∗)/2 = A Re(h). In this formalism, the time derivative of pa is

∂pa

∂t
= 1

2

(
Ȧ(h + h∗)+ Aθ̇ (ih − h∗i)+ Aχ̇ (−qk + kq∗)+ A(ω + ϕ̇)(hj − jh∗)

)
= Ȧ Re(h)− Aθ̇ Imi(h)+ Aχ̇ Imk(q)− A(ω + ϕ̇) Imj(h), (A1)

where q = ei(Θ−θ)e−kχe−j(ωt+ϕ) was introduced. In the case of quasi-harmonic
oscillations whose phase, amplitude, nature angle and orientation are slowly modulated
with respect to the acoustic pulsation, we introduced a quaternion equivalent of the
Krylov–Bogoliubov slow-flow constraint in a previous publication (Faure-Beaulieu &
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Noiray 2020)
∂pa

∂t
= 1

2
Aω(hj − jh∗) = −Aω Imj(h). (A2)

The combination of the two last equations (A1) and (A2) gives the constraint

Ȧ Re(h)− Aθ̇ Imi(h)+ Aχ̇ Imk(q)− Aϕ̇ Imj(h) = 0. (A3)

The second derivative is obtained from (A2)

∂2pa

∂t2
= −Ȧ Imj(h)+ Aθ̇ Imk(h)− Aχ̇ Imi(q)− Aω(ω + ϕ̇)Re(h). (A4)

A.2. Spatial averaging
Starting from the 3-D wave equation (5.1), we focus on the integration of the left hand
side. The modelling of the right-hand side (the aeroacoustic source term) is discussed in
§ 5.3. A volume averaging operator is defined

〈·〉V = 1
SRδΘ

∫
V
(·) dx r dΘ dr, (A5)

where V is the intersection of the volume [0,R] × [Θ − δΘ/2,Θ + δΘ/2] × [−X∞,X∞]
with the cavity and the pipe, and S is the surface of an azimuthal slice Θ = const. One
also defines a surface average 〈·〉 over one slice, which can be regarded as the limit of 〈·〉V
when δΘ → 0:

〈·〉 = 1
SR

∫
S
(·)r dx dr. (A6)

The averaging 〈·〉V is applied to the wave equation before taking the limit Θ → 0. The
coherent pressure fluctuations p̃ include both acoustic pressure pa and the pseudo-noise
ph, whose maximum amplitudes are of comparable magnitude, as discussed in § 5.2.
However, unlike pa, the pseudo-noise ph vanishes away from the shear layer and exhibits
several changes of sign along the opening, which significantly reduce its contribution to
the integral. Therefore, only the acoustic pressure pa is kept in the averaging, as written in
(5.2). Keeping in mind that A = A(t, r, z) and that h and q are continuous functions of Θ ,
one applies spatial averaging to pa

〈p〉V = 〈A Re(h)〉V −−−−→
δΘ→0

〈A〉 Re(h) = 〈A Re(h)〉 = 〈pa〉. (A7)

The time derivatives of 〈pa〉 are easily obtained because the operators ∂/∂t and 〈·〉
commute

〈
∂pa

∂t

〉
V

−−−−→
δΘ→0

−〈A〉ω Imj(h) = 〈−Aω Imj(h)〉 =
〈
∂pa

∂t

〉
= ∂〈pa〉

∂t
. (A8)

With the spatially averaged version of the slow time scale constraint (A3), we obtain

∂〈A〉
∂t

Re(h)− 〈A〉θ̇ Imi(h)+ 〈A〉χ̇ Imk(q)− 〈A〉ϕ̇ Imj(h) = 0, (A9)
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and the average of the second derivative of pa is
〈
∂2pa

∂t2

〉
V

−−−−→
δΘ→0

−∂〈A〉
∂t

Imj(h)+ 〈A〉θ̇ Imk(h)− 〈A〉χ̇ Imi(q)− 〈A〉ω(ω + ϕ̇)Re(h)

=
〈
−∂A
∂t

Imj(h)+ Aθ̇ Imk(h)− Aχ̇ Imi(q)− Aω(ω + ϕ̇)Re(h)
〉

=
〈
∂2pa

∂t2

〉
= ∂2〈pa〉

∂t2
. (A10)

The next term to treat in (5.1) is the convective term, coming from the presence of a
non-zero mean flow

〈
2ū · ∇ ∂pa

∂t

〉
V

=
〈
2ūr

∂2pa

∂r∂t
+ 2ūx

∂2pa

∂x∂t
+ 2ūΘ

∂2pa

r∂Θ∂t

〉
V

=
〈
−2

(
ūr
∂A
∂r

+ ūx
∂A
∂x

)
ω Imj(h)− 2

ūΘA
r
ω Imk(h)

〉
V

−−−−→
δΘ→0

−2
〈
ūr
∂A
∂r

+ ūx
∂A
∂x

〉
ω Imj(h)− 2

〈
ūΘA

r

〉
ω Imk(h), (A11)

where the term Imk(h) comes from the derivative of Imj(h) with respect to Θ . The term
〈ūr∂A/∂r + ūx∂A/∂x〉 is proportional to 〈A〉 because the acoustic mode shape does not
depend on the acoustic amplitude. Therefore, for a given mean flow ū, there is a constant
factor C1(ū) so that

2〈ūr∂A/∂r + ūx∂A/∂x〉 = C1〈A〉. (A12)

A similar reasoning can be applied to the last term of (A11): An effective mean azimuthal
velocity UΘ eff is defined so that 〈ūΘA/r〉 = UΘ eff /R〈A〉. Therefore,〈

ū · ∇ ∂pa

∂t

〉
V

−−−−→
δΘ→0

−C1〈A〉ω Imj(h)− 2
UΘ eff

R
〈A〉ω Imk(h)

= C1
∂〈pa〉
∂t

+ 2
UΘ eff

R
∂〈pa〉
∂Θ∂t

. (A13)

For this first azimuthal eigenmode, the cavity diameter roughly corresponds to half of an
acoustic wavelength. The acoustic pressure amplitude A reaches its maximum on the outer
cavity wall and vanishes in its centre, while ūΘ has its antinode at the centre axis and
vanishes on the outer cavity wall. Therefore, the product AūΘ is significant only in the
small region of the cavity opening, and the effective average value UΘ eff is much smaller
than the local maxima of the azimuthal mean flow. With the RANS mean flow used in this
study, UΘ eff is typically 10 times smaller than the swirl velocity ūΘ in the shear layer. The
last term to consider in the averaging process is the Laplacian of pa. With the divergence
theorem, one can write

〈c2∇2pa〉V = c2

SRδΘ

∫
∂V

∇pa · n dS, (A14)

where ∂V is the external surface of the volume V and n is the local outwards normal of the
surface element dS. The boundary is decomposed as ∂V = B ∪ S(Θ − δΘ/2) ∪ S(Θ +
δΘ/2), where S(Θ − δΘ/2) and S(Θ + δΘ/2) are the slices delimiting the volume V
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in the azimuthal direction, and B contains all the other boundaries: the hard walls of the
cavity, and the far-field condition in the pipe at x = ±X∞ (where the acoustic field is
anyways negligible because the mode is evanescent in the pipe). The boundary condition
on B is modelled with a complex acoustic impedance Z, which is written as ∇p̂a · n =
−iω/(Zc)p̂a in the frequency domain. In time domain, it is equivalent to

∇pa · n = Xpa + Y
∂pa

∂t
, (A15)

where X = −ω Im(Z)/|Z|2c and Y = Re(Z)/|Z|2c. For a perfectly rotationally symmetric
geometry, X = X(r, z) and Y = Y(r, z). Following (A14), one obtains

〈c2∇2pa〉V = c2

SRδΘ

(∫
B

(
Xpa + Y

∂pa

∂t

)
ds +

∫
S

(
∂pa

r∂Θ

∣∣∣∣
Θ+δΘ/2

− ∂pa

r∂Θ

∣∣∣∣
Θ−δΘ/2

)
dr dz

)

−−−−→
δΘ→0

c2

SR

∫
∂B

(
Xpa + Y

∂pa

∂t

)
dl + c2

〈
A
r2

〉
∂2 Re(h)
∂Θ2

= c2

SR

∫
∂B
(XA Re(h)− ωYA Imj(h))dl + c2

〈
A
r2

〉
∂2 Re(h)
∂Θ2 , (A16)

where ∂B is the contour of the slice S obtained when δΘ → 0. The integral on ∂B is a
linear function of 〈A〉 because the normalised mode shape A(r, z)/〈A〉 is independent of
the amplitude. For the same reason, 〈A/r2〉 is proportional to 〈A〉/R2. Therefore, there are
three constants C2, C3 and C4 so that

〈c2∇2pa〉V −−−−→
δΘ→0

C2〈A〉 Re(h)− C3ω〈A〉 Imj(h)(h)+ c2C4

R2
∂2〈A〉 Re(h)

∂Θ2

= C2〈pa〉 + C3
∂〈pa〉
∂t

+ c2C4

R2
∂2〈pa〉
∂Θ2 . (A17)

For the first azimuthal mode, pa = −∂2pa/∂Θ
2, so that the first and the last term can be

grouped

〈c2∇2pa〉V −−−−→
δΘ→0

C3
∂〈pa〉
∂t

+ ω2
a
∂2〈pa〉
∂Θ2 , (A18)

where ωa =
√

c2C4/R2 − C2 is the acoustic frequency. In summary, the 1-D version of
the equation (5.1) is

∂2〈pa〉
∂t2

+ α
∂〈pa〉
∂t

+ 2
UΘ eff

R
∂〈pa〉
∂Θ∂t

− ω2
a
∂2〈pa〉
∂Θ2 = S, (A19)

where α = C1 + C2 is an acoustic damping term, and S comes from the averaging of the
aeroacoustic source term 2ρc2∇ū : ∇ũ�, whose modelling is discussed in the § 5.
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