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This paper investigates the linear and nonlinear evolution of radiating modes under the
influence of the spontaneously emitted Mach waves in a simple set-up of the supersonic
boundary layers that develop in the entry region of a channel formed by two parallel
semi-infinite flat plates. Two scenarios are considered. The first occurs in the boundary
layers having identical wall conditions, where the Mach wave emitted by a radiating mode
in one boundary layer influences the instability in the other. The second scenario takes
place when the wall temperatures are different, in which case the spontaneously radiated
Mach wave is reflected by the other boundary layer back to act on the radiating mode.
Appropriate amplitude equations with the acoustic feedback effect being accounted for
are derived. In each case, the effect of the spontaneously emitted sound contributes a
linear term of delay type to the respective amplitude equation. For the first scenario,
analytical and numerical studies of the amplitude equations show that due to the back
action of the spontaneously radiated Mach wave, the amplitude exhibits rapid oscillations,
and in the case of enhanced feedback effects, its envelope experiences near extinction
followed by resurrection. The study of the coupled equations shows that the two modes
with different initial amplitudes either undergo oscillations before attenuating, or terminate
a finite-distance singularity at different locations. For the second scenario, the acoustic
feedback produces similar effects in a broad range of wall temperature. The effects become
pronounced, and the dependence on the wall temperature becomes more sensitive when
the latter approaches the value corresponding to the resonance. Estimates suggest that such
acoustic feedback is likely to be present in typical wind tunnel experiments and models for
scramjet combustors.
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1. Introduction

As discussed in Part 1 (Qin & Wu 2024), acoustic waves impinging on a supersonic
boundary layer play an important role in laminar—turbulent transition. On the one hand, as
one of the elementary forms of free-stream fluctuations, acoustic waves may excite, and
furthermore interact with, the intrinsic instability modes. On the other hand, instability
modes may radiate sound waves, which may affect the original source so that an acoustic
feedback loop forms; this scenario will be examined in the present study.

Acoustic feedback can take place in many situations, and may be categorised broadly
into two types. The first involves coupling between the regions in the streamwise direction.
One typical case is associated with a shear layer encountering abrupt changes. An
important example is the laminar flow past an aerofoil, where the instability modes
developing in the boundary layer over the aerofoil surface are scattered by the strong
local inhomogeneity near the trailing edge to radiate sound waves, which propagate
upstream and regenerate the instability mode, thereby forming a self-sustained feedback
loop. As a result, tonal noise is produced, whose spectrum features strong peaks at
discrete frequencies. It has been observed experimentally (Paterson et al. 1973; Arbey
& Bataille 1983) that the dominant frequency of the feedback tone undergoes sudden
switches when the relevant parameters are gradually varied, a phenomenon referred to as a
‘ladder-structure’. The global feedback loop with discrete tonal frequencies has also been
confirmed by high-fidelity numerical simulations (Desquesnes, Terracol & Sagaut 2007;
Jones, Sandberg & Sandham 2010; Jones & Sandberg 2011). Back action of sound and
the flow—acoustic coupling of this type were reviewed by Rockwell & Naudasher (1979)
and Golubev (2021). A complete mathematical model or description for tonal noise does
not exist. In order to mimic the essential physics, the acoustic feedback was considered in
a simpler setting (Wu 2011), a subsonic boundary-layer flow over a nominally flat plate,
on which two well-separated localised roughness elements are present. In this case, the
global acoustic feedback loop is established by an instability wave amplifying and being
scattered by the downstream roughness to radiate sound waves, which in turn propagate
upstream and interact with the upstream roughness to regenerate the instability wave. The
closed-loop interaction leads to a global absolute instability, which features self-sustained
oscillations as well as pronounced noise emission at discrete frequencies (Wu 2011, 2014).
The main theoretical predictions were supported by experiments (Abo, Inasawa & Asai
2021).

In addition to the acoustic feedback loop developing in the streamwise direction,
transverse acoustic coupling may occur if the flow is confined in a finite domain.
For example, transverse acoustic coupling may take place in conventional wind tunnel
experiments, where the test model is exposed to a significant amount of noise either
generated or reflected by the turbulent boundary layer on the nozzle wall (Laufer 1961;
Schneider 2001; Graziosi & Brown 2002). The effects are particularly significant and
problematic in the supersonic regime as a supersonic turbulent boundary layer emits
strong noise (mostly in the form of Mach waves). Another relevant setting is the duct or
combustion chamber of a scramjet, which may be modelled simply as a channel between
two well-separated semi-infinite parallel flat plates (e.g. Curran, Heiser & Pratt 1996;
Seleznev, Surzhikov & Shang 2019). In the entry region, a developing boundary layer
is formed along each plate. Due to the presence of shock waves, a multitude of instabilities
may exist in both boundary layers developing on the plates. Transverse acoustic feedback
may be established through two-way coupling between radiated sound and instability
waves. As a first step to model such coupling, Wu (2014) investigated the instability of the
supersonic ‘twin boundary layers’ developing in the entry region along two semi-infinite
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parallel plates. He focused on the instability modes whose characteristic wavelength
and frequency comply with the unsteady triple-deck structure. Accordingly, the distance
separating the two plates is assumed to be such that the instability modes in the upper
and lower boundary layers share a common upper deck. Owing to transverse acoustic
feedback, there arises a new spectrum of unstable planar modes, which is absent without
the transverse coupling (cf. Smith 1989). The instability of such an entry flow in the
incompressible regime had been considered in an earlier study (Smith & Bodonyi 1980),
which showed that the presence of a boundary layer modified the Tollmien—Schlichting
(T-S) instability.

Effective transverse acoustic coupling may take place between two planar or circular
jets, i.e. twin jet configuration (Alkislar ef al. 2005; Raman, Panickar & Chelliah 2012), or
between a jet and a boundary layer developing on a flat plate. The latter scenario can be
viewed as modelling the so-called installation effects on the jet noise of an aero-engine
installed on the wing (Bushell 1975; Way & Turner 1980). The sound waves emitted
from the engine exhaust may be reflected back by the boundary layer developing on a
wing surface to impinge on the jet, thereby forming a closed loop. Depending on its
distance to the jet, the boundary layer either interacts with the jet aerodynamically or
acts merely as a pure reflector. As a consequence, the presence of the boundary layer can
substantially affect the radiation property with or without altering the acoustic source.
Various prediction models for installation effects have been proposed to study the altered
jet noise characteristics (Bhat & Blackner 1998; Moore 2004), which was attributed
primarily to scattering of the instability wavepackets in the subsonic regime (Cavalieri
et al. 2014; Lyu, Dowling & Naqavi 2017; Lyu & Dowling 2018), but in the supersonic
regime, acoustic feedback may be established to cause potentially more profound changes
to the radiation property. A similar acoustic coupling could be responsible for aeroacoustic
and aerodynamic features of twin jets separated by fairly large distances (Bozak &
Henderson 2011; Kuo, Cluts & Samimy 2017).

The present paper considers coupling of double supersonic boundary layers through
spontaneously radiated Mach waves. Our concern is with the supersonic modes whose
characteristic wavelength is comparable to the boundary-layer thickness. As was shown in
Wu (2005), these modes radiate highly directional Mach waves, while they are also highly
sensitive to incident sound waves with the same frequency and streamwise wavenumber,
as was demonstrated in Part 1 of this study. When the two plates are in the same thermal
condition, the Mach wave emitted from one of the boundary layers can affect the instability
mode of the other, leading to a closed-loop interaction. When the two plates are in similar
but not identical conditions, the Mach wave radiated from one boundary layer may be
reflected back by the other to influence the development of the radiating mode. These
scenarios will be investigated analytically.

The rest of the paper is organised as follows. In § 2, the problem is formulated. We
specify the distance between the two plates such that the sound radiation can be described
using the near-field formula derived in Part 1. By examining existing experimental data,
we show that our formulation is of possibly practical relevance to typical wind tunnel
experiments and models for the combustion chamber of a scramjet. Two important
cases are presented subsequently. The first is associated with the ‘twin boundary layers’
developing along two parallel plates in the same thermal state. This is investigated in § 3.
As the two identical radiating modes propagating in the upper and lower boundary layers
acquire the maximum amplitude, they emit Mach waves spontaneously, and the sound
radiated by the upper/lower boundary layer impinges upon the lower/upper boundary layer,
forming a coupled system. The amplitude equations accounting for the acoustic coupling
are derived, and effects of the distance between the two plates on the modal evolution are
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evaluated. In § 4, we consider the second case, which is dubbed ‘cousin boundary layers’.
These boundary layers develop on the plates at different temperatures. The upper boundary
layer acts as a reflector when there is a radiating mode only in the lower boundary layer.
Effects of the wall temperature on the evolution of the instability waves are studied. Finally,
the results are summarised and discussed in § 5.

2. Formulation

We consider a supersonic flow in the entry region of a channel between two parallel
semi-infinite flat plates separated by a distance #*. The plates are assumed to be well
separated so that there is a uniform core in the bulk while a boundary layer develops along
each plate. Such entry flows are of interest in the incompressible, transonic and supersonic
regimes; see Smith & Bodonyi (1980), Kluwick & Kornfeld (2014) and references therein
for discussions. The flow in the core has mean velocity Uy, density ps, and shear viscosity
Moo- For non-dimensionalisation, Uy and a local boundary-layer thickness §* are used
as the characteristic velocity and length scale, respectively. The dimensionless distance
between the two plates is thus z = 4*/§* > 1. The normalised coordinates (x, y) and time
t, as well as the flow quantities (p, u, v, p, 8), are the same as those introduced in Part 1.
The Reynolds number R and Mach number M remain as

R = pocUcoc8™/ltoo, M = Uso/aoo, (2.1a,b)

where a., denotes the sound speed. We focus on two important configurations, namely the
‘twin boundary layers’ and ‘cousin boundary layers’, which arise respectively when the
plates are at the same or different temperatures.

We are interested in the case where the non-dimensional distance /4 is of O(R/?) so that
the sound radiation can be described using the near-field formula given by (6.9) in Part 1,
hence we introduce the rescaled distance 4 by writing

h = R'?p. (2.2)

Note that the separation of the two plates is much greater than those in the set-ups
considered by Wu (2014), Smith & Bodonyi (1980) and Kluwick & Kornfeld (2014). The
flow over the lower wall is described by the Cartesian coordinate system (x, y~), where
x is along the plate, and y~ = y is normal to the plate. Furthermore, we introduce y~ =
y = R~/2y to describe the Mach wave field, hence the upper plate position corresponds
to = = h. Similarly, the flow beneath the upper plate is described using (x, y*) with
yT = h —y~, and the lower plate is at y© = h — y~ = h. A sketch of the double boundary
layers is shown in figure 1. Hereafter, the signs ‘4-/—’ refer to the upper/lower wall,
respectively, and the notations introduced in Part 1 will be retained.

2.1. Practical relevance of the model

Before specifying the problem, let us first show the practical relevance of our model that
uses the near-field formula of the sound radiation. The displacement thickness &7 is related

to the boundary-layer thickness §* by
o _ o _ _
878" = / (1—-RU)dy = / (T —U)dn, (2.3)
0 0

where R, U and T are the base-flow density, velocity and temperature respectively, given
by (2.6) and (2.8) in Part 1. As was shown in Part 1, a radiating mode exists in a
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Figure 1. A sketch of the double boundary layers.

M = 6 boundary layer with a T,, = 3 isothermal surface. Using this base-flow condition,
the displacement thickness is found to be

55 = 8.0475%. (2.4)

Typical unit Reynolds numbers R,;; are in the range 17.5 x 109-80 x 10 m~! (e.g. Risius
et al. 2018). We may choose R = 8 X 107 m~1. If we take the displacement thickness
to be §); = 1 mm, then (2.4) indicates that

§* ~ 0.125 mm, (2.5)
which leads us to take R = 10* as a typical Reynolds number. It follows from (2.2) that
h = 100h. (2.6)

The double-boundary-layer model may be viewed as the simplest model of the
combustion chamber of a scramjet engine. Similar geometric configurations of various
size were employed in a number of experiments to model scramjet engines. For example,
Suraweera, Mee & Stalker (2005) used a chamber test section with height 60 mm to study
thrust performance of a hydrogen-fuelled combustion with different inlet designs, while
Lin et al. (2010) carried out experiments in a rectangular channel with height 131 mm
to investigate supersonic mixing. Seleznev et al. (2019) summarised experimental data on
modelling scramjets, and it was found that the height of these models varies from 30 mm to
130 mm. On noting (2.5), the corresponding non-dimensionalised distance 4 is estimated
as

h = h*/5* € (240, 1040), 2.7)

and using this in (2.6), we obtain the range of h as h € (2.4, 10.4), which is O(1).
Therefore, the present analysis is pertinent to practical realisation.

3. Twin boundary layers

As is shown in Part 1, a supersonic mode propagating in a boundary layer radiates a
highly directional sound wave in the form of a Mach wave beam. Naturally, the same
mathematical framework will be used here to study the coupling of the two boundary layers
via the spontaneously radiated Mach waves. Formally, in the non-parallel equilibrium
critical-layer regime, the near field of the radiated sound is described by the scaled
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variables
x=R"%x y=R"%. (3.1a,b)
Suppose that free radiating modes with amplitude A*(x) are present in the boundary
layers over the upper and lower plates. In the near field, the Mach wave radiated by the

instability mode in the lower boundary layer is given by (6.9) in Part 1, and can be written
as

P~ = €C AT (X — xy ) exp(—iagy ) E, (3.2)
where € = O(R™'/12), and €5 and ¢ = vVM2(1 — ¢)® — 1 are given by (4.4) in Part 1;
here, E = exp(ia(x — ct)), with « and ¢ remaining as the streamwise wavenumber and
phase velocity, respectively, and we have put x = [M?*(1 —¢) — 11/q. As ¥y~ — h, the
radiated sound acts as an impinging wave on the upper boundary layer, and has the form

P —> € A (X — Xi_z) exp(—iagh) exp(iaqy+) E= eR_l/Zp;r exp(iaqy+) E. (3.3

Similarly, the Mach wave radiated by the upper boundary layer is
p* = €CLAT @ — x5 exp(—iagy ) E, (3.4)
and as y* — h,

1/2

p+ — e%joAﬂ)_c — Xi_z) exp(—iagh) exp(iagy” ) E = eR™ /“p; exp(iagy” ) E. (3.5)

The magnitude of the equivalent incident waves upon the upper/lower boundary layer is
py = RV2ETAT (X — xh) exp(—iagh), (3.6)
use of which in (4.61) of Part 1 leads to two coupled amplitude equations for A*:
AT ) = oxAT + IAT|IAT )2 + RV?CrA™ (X — xh),
A7) = oxA” + IATIAT > + RV?GrAT (x — xh), G-D

where
Cr = 202qCLE exp(—iagh)/[c(1 — ¢)*G). (3.8)

A notable feature is that the acoustic feedback contributes a linear term with delay to each
equation, thereby coupling the dynamics of the instability modes in the two boundary
layers.

If non-equilibrium effects are taken into account, then the amplitude equations are
constructed by the composite theory as given by (5.10) in Part 1, and the resulting coupled
system can be written as

AT (%) = oxAT + TR*? /«00/00 KE, 75 AT (X — c&) AT (X — & — cn)
0 0

x AT*(x — 2cE — ZZ) doridé + R'2€pA™ (x — xh), 49)

A7 (X)) =oXA” + TR2/3f / K(E,m:5)A™ (X — cE) A~ (X — ¢ — cn)
0 0

x A7*(x — 2c€ — cn) dndg + RV?ErAT (X — xh).

Here, we restrict ourselves to the case where the upper and lower boundary layers have
identical neutral radiating modes, that is, the wavenumber « and phase speed ¢ of the
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Figure 2. The coefficient €F versus r. for fixed Mach numbers.

two modes are the same, hence 0t = 0~ = 0 and ¢}, = € = €oo. The twin boundary
layers are effectively coupled. However, if the two radiating modes have different « and c,
then the coupling would be through a somewhat different process.

The coefficient 47 measures the importance of the feedback effect, thus we evaluate
its dependence on the base-flow condition. Figure 2 shows the variation of the coefficient
%F with the cooling ratio r,, defined as the ratio of the wall temperature to the adiabatic
wall temperature, for fixed Mach numbers M = 5, 6 and 7. In each case, the cooling ratio
is varied in the full range where a radiating mode exists, and the magnitude of %F is
approximately O(1073). Since typical Reynolds numbers are of O(10%), the effect of the
feedback term is not negligible if / is not too large.

As X — —o0, the instability modes take the linear form

AE®) = af exp(oX*/2) + -, (3.10)

where a(jf is an arbitrary constant representing the initial amplitude. In order to achieve the
right balance of the terms in the amplitude equation (3.9), we need that

R \€r| |AT(x — xh)| = O(Jo|) forx = O(1), (3.11)

which is possible when h>> 1. Since |x — xh| > 1, we may use (3.10) to estimate the
feedback term as

RY2|GF| |ag | exp(o, (¥ — xh)?/2) = RV? |Gr| |ag | exp(o,[x 1 + X(X — 2 1)1/2)
= 0(lo)), (3.12)

which implies

h=0 (X_l\/Zln(R—‘/z || |o|)/a,) > 1. (3.13)

Note that the feedback term is of O(1) only when X(x — 2xh) = O(1), i.e. |x| = O(1/h);
outside this region, the feedback is smaller for x < 0, while the feedback is much greater
for x > 0.

985 Al14-7
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In the limit of 4 being larger than assumed by (3.13), that is,

B> he =202 G| o)) for, (3.14)

pIi — 0 for ¥ < xh—+2In(R-12|€r|""|o|)/o,, that is, the feedback effect
diminishes. The feedback effect kicks in when X > xi — /2In(R=1/2|6¢|~!|o|)/o,, and
specifically, when x — xh = O(1), the feedback term is a factor of R'/? |€¥| greater than
other terms in the amplitude equation (3.9) no matter how large 4 is. However, for the
near-field solution of the sound radiation to be applicable, we require 4 < R'/2. When
h = O(R'/?), the far-field solution must be used, in which case the local growth rate A’
depends on A at downstream positions (Wu 2005).

On noting that |6F| = 0(1073) and |o| = O(10™") for the present M = 6 boundary
layer with a T,, = 3 isothermal surface, and that a typical Reynolds number is taken as R =
10, we have |¢%| > R~!/? |o|, and the coefficient of the feedback term, R'/? |€¥|, is found
to be O(10~"), suggesting that the feedback effect is likely to be significant. For other flows
that involve coupling via feedback mechanisms, the magnitude of the coefficient €7 may
be greater; these scenarios are evaluated in § 3.3.

With the nonlinear terms ignored but the feedback terms accounted for, the initial
condition for the coupled equations (3.9) is derived as

+ = + -2 R'Gp = 72
AT (X) = ay exp(ox”/2) — g~ a(T exp(o(x — xh)“/2), (3.15)

where use has been made of (3.10). It follows that even if the two base-flow boundary
layers are identical, the amplitudes of the modes can be different in general since they
are dependent on the initial amplitude a(j)t. We may have two symmetric solutions with
AT =A" =Aand a;{ = a, = ao, in which case the two amplitude equations (3.9) reduce
to a single one,

A'(X) = oxA + TR?? fooofooo K&, 7:5) AR — &) A(x — c€ — cn)

x A*(X — 2¢c& — cn) dndg + RV2€r AGx — xh), (3.16)
with the initial condition (3.15) becoming
1/2

A = ap |:exp(a)_62/2) - ROX? exp(o (x — X/E)Z/z)] as ¥ — —oo. (3.17)

Likewise, we may also have two antisymmetric solutions with AT = —A~ = A and
aar = —a, = ap. Then the governing equations (3.9) become

A'(X) = oXA + TR*3 /OO/OO KE, 0 5) AR — c€) AX — c€ — cn)
0 0

x A*(X — 2c& — cn) dndé — RV*€r AGx — xh), (3.18)

with the initial condition
i} > R2%r -y _
A(X) = ag | exp(ocx“/2) + z exp(o(x — xh)“/2) as x — —oo. 3.19)
oX

More generally, we can introduce the gauge transformation A~ = AT e, where ¢ is a
parameter. It can be shown that the two amplitude equations (3.9) reduce to two equations
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that are consistent only if ¢ = ¢™%_ i.e. ¢! = 1, implying that the above two cases are
the only possibilities for reducing the two equations into one.

3.1. Symmetric and antisymmetric cases

The amplitude equations pertinent to the symmetric and antisymmetric cases are now
studied in some detail. Nonlinearity may not be important in the amplitude equation if
the initial amplitude ag is sufficiently small (e.g. ap = 1), in which case we can study the
linearised versions of (3.16) and (3.18). Take (3.16) as an example. Neglecting the nonlinear
term leads to the linear feedback equation

A'(X) = oXA + R'?Gr A(x — xh). (3.20)

Equation (3.20) subject to the initial condition (3.17) can be solved analytically. Taking the
Fourier transform of (3.20), we obtain

kA = i A’ + R'?>%r exp(—ikxh) A, (3.21)
where A is the transformed function of the variable k. Equation (3.21) is solved to give

2 12
"2 Rk exp(— 1th))} (3.22)

Ak) = Aoexp{ (

where Ag is a constant to be fixed by the initial condition (3.17). On applying the Fourier
inverse formula, the solution for A(x) is found as

Ay [ 1 (K R'Cr L
Ax) = — expy— exp(— 1kxh) + ikx ¢ dk. (3.23)
2n xh

—oo o\ 2

To determine Ay, let us first consider the case of no feedback, i.e. equation A’(X) = oxA
subject to the initial condition A(X) = ag exp(o*)_cz/Z) as x — —oo. The solution is a
Gaussian, A(x) = ag exp(o*)_c2 /2). On the other hand, by a formula similar to (3.23), we
have

AGR) — Ayg [ 2 o= N lo| . ")
x) = = exp(k”/(2o) + ikx) dk = Ag p exp(i(w — ¥)/2) exp(ox”/2),
(3.24)

where v is the phase of 1/2¢ defined in [n/2, 37t/2]. By equating the above solution to
A(X) = ag exp(<75c2 /2), the constant Ag is found as

Ao = /27/|o|exp(—i(t — ¥)/2) ag. (3.25)
Thus the solution to (3.20) subject to the initial condition (3.17) can be written as

exp( 1(7[—1//)/2)/ ! (k2 R'2%x
Xh

A) = V27 o]

exp(— 1kxh)> + ik)_c} dk.
(3.26)

The ensuing calculations will be carried out for the same base-flow condition as

given in Part 1, a M = 6 boundary layer with a T,, = 3 isothermal surface (re =
0.427). As a first step, we compare the analytical solution (3.26) with the numerical
solution to the linear feedback equation (3.20). The numerical approach is the sixth-order
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(a) (b)
Lsr Analytical Lsr
Numerical 0.24
- — — - Gaussian
1.0} 1.0 0.17
=
=~
05F 0.5
0 L 1 0 L L i L 1
-50 0 50 -50 0 50 100 150
X X

Figure 3. Comparison between the analytical solution (3.26) and the numerical solution to (3.20) with
(a) ag = 1 for h = 2, and (b) h = 15 with an enlarged feedback coefficient F = 3 x 1072.

(@) (b)

157 0.6
& 0.4
=

=50 0 50
X X

Figure 4. (a) Effects of I on the solution to the linear feedback equation (3.20) with ap = 1. (b) Zoom-in to
the range 40 < x < 50 in (a).

Adams—Moulton method. Figure 3 depicts the two solutions in a wide range of x, showing
that the two solutions overlap each other. Different from the Gaussian distribution when the
feedback is absent, the solution in the presence of the feedback exhibits highly oscillatory
behaviour, which is due to the double exponential in the Fourier integral as is given
by (3.26). Moreover, in the case of the enlarged feedback coefficient 6F, the solution
undergoes near extinction followed by resurrection (figure 3b).

Figure 4 shows the effect of /4, which measures the distance between the two plates,
on the linear evolution of the mode. For moderate values of 4 (1 and 2), the oscillations
are significant in both the upstream and downstream regions. As 4 increases, the feedback
effect is not obvious in the upstream region, but kicks in later in the downstream region.
It is expected that the linear modal evolution with feedback reduces to the case of no
reflection (represented by a Gaussian distribution) as 2 — oo. This is confirmed by the
comparison in figure 5, which indicates that the solutions with z = 50 and 20 overlap
with the Gaussian in a fairly large range. However, the feedback effect will still appear
eventually in the region further downstream due to the finite value of 4, but that region is
not relevant to the present theory. Figure 5(b) shows that the solution with 2 = 10 oscillates
about the Gaussian in the downstream region, indicating that the feedback effect remains
in action, albeit being much reduced.
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Figure 5. (a) The solution to the linear feedback equation (3.20) with a9 = 1 and comparison with that for
large values of & as well as the case of no reflection. (b) Zoom-in to the range 40 < x < 50 in (a).
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Figure 6. Resolution check on the solution to the nonlinear feedback equation (3.16) with ag = 3 and i = 2.
The step size of ‘Grid2’ is half of that of ‘Grid1’.

The nonlinear feedback equation (3.16) is solved numerically for a moderate value of

h, and the results are shown in figure 6, where two grid sizes are employed to ensure
satisfactory accuracy. B

To see how nonlinearity affects the solutions with feedback, we fix 4 = 2 and vary the
initial amplitude ag when solving the linear and nonlinear feedback equations (3.20) and
(3.16). These results are displayed in figure 7. As expected, there is little difference between
the linear and nonlinear solutions for ay = 1 (figure 7a). As the magnitude of ag increases,
nonlinear effects are no longer negligible. For ap = 3, the nonlinear and linear solutions
are qualitatively similar but there is appreciable quantitative difference, with the amplitude
acquiring a larger value under the influence of nonlinearity (figure 7b). For ag = 3.65, a
qualitative difference is observed: the nonlinear solution develops a singularity at a finite
distance, x; say, while the linear counterpart attenuates, and so does the nonlinear one
without feedback (figure 7¢). Dictated by the nonlinear term, the singularity is of the form
(Leib 1991),

A = aso(X — X)) a5 - %, (3.27)
where ¢s and ax, are constants. Increasing further the initial amplitude to ag = 5, the
nonlinear solutions with and without feedback both blow up, with the former exhibiting

oscillations, whereas the linear solution still undergoes highly oscillatory attenuation
(figure 7d).
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Figure 7. Effects of the initial amplitude ag on the solution to the nonlinear feedback equation (3.16) with
h =2, for (a) ag = 1, (b) agp = 3, (c) ap = 3.65, (d) ap = 5. Thick solid lines indicate solution to (3.16); thin
solid lines indicate solution to (3.20); dashed lines indicate nonlinear solution without feedback.

Next, we evaluate the effects of & on the nonlinear solution with feedback. Figure 8(a)
shows that when ag = 3, the solutions for all five non-zero 4 are bounded. The feedback
causes rapid oscillations. For large values of & (e.g. 5), the feedback effect is not obvious
in the upstream region, but becomes significant later in the downstream region. As £ is
reduced, the feedback effect becomes significant in both the upstream and downstream
regions, causing oscillations about the solution without reflection (figure 8b). Increasing
further the magnitude of ag, the solutions for various values of £ all terminate at a
finite-distance singularity but in an oscillatory manner, as is shown in figures 8(c,d).

For the antisymmetric case with small initial amplitude, the solution to the linear
feedback equation

A'(X) = oxA — R\?€p A(x — xh), (3.28)

together with the initial condition (3.19), can be obtained numerically, or evaluated using
the analytical solution, which corresponds to (3.26) with the sign in the second term in the
exponent being changed to positive. The effects of £ on the linear and nonlinear solutions
turn out to be, by and large, similar to those of the symmetric case, hence they are not
presented.

3.2. The coupled equations

We now consider the system of the coupled equations (3.9), taking the case of 4 = 2 for
illustration. For each fixed total amplitude

do = /(@) + (ay)?, (3.29)
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Figure 8. Effects of I on the solution to the nonlinear feedback equation (3.16) for (a) ap = 3 and (¢) ap = 5.
(b,d) Zoom-in plots for the ranges 60 < X < 80 and —15 < x < 0 in (a,c), respectively.

we vary the amplitude ratio aar /ay . Figure 9 shows the evolution of the coupled
modes with different initial amplitude ratios for dg = 1, which is sufficiently small that
nonlinearity is unimportant in the entire course of the development. Figure 9(a) depicts
the evolution of the two modes for a(“)L /ay = 0. In this case, mode AT, initially unseeded,
is excited by mode A~ through the Mach wave radiated by the latter. Mode A™ starts to
grow downstream even though in the upstream region its amplitude is rather small. Due to
the nature of coupling, mode A™ also reaches a peak at a downstream position, and in turn
affects the evolution of mode A™, resulting in small oscillations of its amplitude in the
downstream region. The development of the coupled modes for the case aar /a, =0.3
is shown in figure 9(b). The amplitudes of both modes, A1 and A—, attenuate in the
downstream region after attaining their respective maxima. Mode A~ grows first and is
followed by decay with minor oscillations, while mode A™ exhibits strong oscillations
due to the impact of the stronger mode A™. When aar /ay = 0.7, both modes AT and A
experience notable oscillations as they evolve downstream (figure 9c¢). Figure 10 shows
the evolution of the coupled modes in the case ayp = 3.6, for which nonlinearity becomes
important but does not cause blow-up yet. The trend of the evolution is similar to the case
ap = 1, that is, the feedback effect, manifested as oscillations, becomes more appreciable
as the amplitude ratio increases. Another feature is that the envelope of the mode is
strongly distorted due to nonlinearity (figures 10a,b). In all three cases, the solutions
indicate that the nonlinear interaction and coupling cause vigorous energy exchange
between the two modes. The development of the coupled modes with different initial
amplitude ratios for dy = 5 is shown in figure 11. When aar /ay =0 (figure 11a), mode
A~ rapidly develops a singularity at a finite distance while also exciting mode A", which

985 Al4-13


https://doi.org/10.1017/jfm.2024.277

https://doi.org/10.1017/jfm.2024.277 Published online by Cambridge University Press

F. Qin and X. Wu

(a) (b)
1.1 1.1

Lol

[A4*(®)|

-50 25 0 25 50 75
X X
(c)
0.9
06
=
H
hl
03
0
50 25 0 25 50 75
X

Figure 9. Effects of the amplitude ratio on the solution to the coupled equations (3.9) with & = 2 and

V@) + (ag)? = 1, for (a) ag Jay =0, (b) af Jag = 0.3, (c) ag /ay = 0.7.

blows up subsequently. It is interesting to note that the singularities of two modes are of the
same form as (3.27) but do not appear simultaneously. Moreover, oscillations are hardly
appreciable, indicating that in this case, nonlinearity becomes dominant; mode A~ already
terminates at a singularity before mode A™ acquires an amplitude large enough to act back
on A™. As the amplitude ratio increases, oscillations develop on the amplitudes of both
modes and become stronger before a finite-distance singularity occurs (figures 115,c).

3.3. Evolution with large values of €F

The amplitude equation (3.9) describing the coupling of the radiating modes in two
supersonic boundary layers through acoustic feedback is in fact generic, and may arise in
other types of flows. For example, the effective coupling may take place in two supersonic
planar or circular jets, since each also radiates highly directional Mach waves (Tam 1995;
Wu 2005). While the magnitude of the coefficient 67 measuring the effect of coupling in
the present twin boundary layer is O(10~3) and rather moderate, it could be much larger in
other flows, e.g. twin jets, since the radiation turned out to be stronger (Wu 2005). In view
of this, we study the the amplitude equation with feedback for artificially increased €F.
By fixing 7 =3 x 1072 and keeping other parameters unchanged, we perform a
numerical study of (3.16). With typical Reynolds number remaining as R = 10, the

magnitude of the coefficient of the feedback term, R'2|€F|, is found to be O(1).
Figure 12 shows the solution to (3.16) for different 4. For ag = 3, the feedback effect is
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Figure 10. Effects of the amplitude ratio on the solution to the coupled equations (3.9) with 4 = 2 and

J@hH? + (ay)? = 3.6, for (a) af /ay =0, (b) af /a; = 0.3, (c) af /ay = 0.7.

significant even for / as large as 15, causing the amplitude to undergo strong and rapid
oscillations (figures 12a,b). A notably different feature is that with a larger A, e.g. h = 15,
the envelope of the amplitude attenuates to an almost diminished level and then resurrects.
This resurgence is due to the enlarged feedback effect, by which the emitted sound wave
re-excites the mode, at a later time due to substantial delay. For ap = 5 (figures 12¢,d),

the solutions for different / all blow up, with oscillations resembling those in the case of
moderate |6F| (cf. figures 8¢,d).

4. Cousin boundary layers

We now consider the case where the upper plate has a different surface temperature.
A band of radiating modes may still exist on each boundary layer, but the nearly neutral
modes do not have the same frequency and wavelength. In this case, for a radiating
mode on the lower boundary layer, the upper boundary layer acts as a pure reflector
with a finite reflection. We refer to these two boundary layers as ‘cousin boundary
layers’, a configuration that is more general than the twin boundary layers, and more
representative of practical applications. The distance between the two plates is still chosen
as h = O(R'/?) so that the upper and lower boundary layers share a common acoustic near
field in the core. The reflection process is again described by the Cartesian coordinates
(x, y)/(x, y™) for the upper/lower plate, as shown in figure 1.
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Figure 11. Effects of the amplitude ratio on the solution to the coupled equations (3.9) with z = 2 and

V@) + (ag)? =5, for (@) ag /ag = 0, (b) af Jay = 0.3, (c) af Jay = 0.7.
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Figure 12. Effects of h on the solution to the nonlinear feedback equation (3.16) for (a) ap = 3 and (¢) ap = 5,
with € = 3 x 1072. (b,d) Zoom-in plots for the ranges 80 < X < 100 and —10 < X < 0 in (a.c), respectively.
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The near-field Mach wave radiated from the lower boundary layer is given by (6.9) in
Part 1, and can be written as (3.2), and setting y~ = & in this gives the incident sound wave
upon the upper boundary layer:

P = €GooAlx — xh) exp(—iagh) exp(iozqy+) E= eR_]/Zp;L exp(iaqy+) E, @1

where we have put
Py (@) = R'?C AX — xh) exp(—iagh). (4.2)

The radiated Mach wave is reflected back to the lower boundary layer to act as an
incident wave. The reflection process is similar to that considered in Part 1, and is
described briefly here. In the main upper boundary layer, the disturbance has the expansion

(pT ut vt pt 0T = eR7V2(pF, i, of L b, O G, yDE
+ RV, A, 0 T 0 Fee . (43)

Substitution of the above expansion into (2.2) in Part 1 followed by linearisation and
elimination of A, itg, 0y and 6 yields at leading order the Rayleigh equation for the

pressure, .2, [93' = 0, where the operator . is defined by (2.29) in Part 1. As y*© — o0,

Py ~ pf @) [expliegy™) + Z exp(—iagy™h)], (4.4)

where the reflection coefficient % is determined by performing a linear critical-layer
analysis together with numerical integration as described in Part 1. At the next order,

a routine calculation shows that the pressure IA’T satisfies an inhomogeneous Rayleigh
equation

. 2ic[ U %Py o?[MPUWU - M -t
Pl =—1—= _ — _ -1 = —XAT, 4.5)
a |[(U=0¢)? dxdyt ¢ T dx
where
A+—{_2U' (_Ul _ﬂ)+i(ﬁ_ﬁ)}%
U—c\U—-c¢c U T\T T oyt
) - -
+O[M — — i . 46
T U—c 1)00 (4-0)
Asyt — oo,

B~ pr®) lexpliagy™) + %(%) exp(—iagy™)]
+q7 M (1 = o) = 1p[' @) y" (expliogy™) — Zexp(—iagy™). (4.7
Evidently, the main-layer expansion breaks down when y* = O(R!/?), thus we

introduce y* = R™1/2y* corresponding to the common acoustic region. The perturbation
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now expands as
Tt ot pT o) = R (o ug vy gL 67)

+eR (o, ulf vl ploo) + - (4.8)

(0",

At leading order, the pressure par satisfies the wave equation .,?Wpar = 0, with the operator
Z,, being given by (6.1) in Part 1. The solution takes the form

Py =Pr(%, ") explia(x — ct + qy") + pr(X, ) explia(x — ct — gy")) + c.c., (4.9)

where p7 and p are to be determined by considering the second-order term pf, which is
governed by the equation

82p+ 82p+ 9 9 8p+
ZLopf =2 =2 O _Mm*(—+—) =221, 4.10
P [ax ox T 957 oyt ot Tax) ox (4.10)

To remove the secular terms in the expansion, we must require that the term proportional
to pg on the right-hand side of the above equation be zero. Moreover, matching with the
main-layer solution leads to

op ap
M2 — ) — 112Z — g 2PL _
0x oyt 4.11)
pr(x, Y =pf @ atyt =0,
and
ap op
[M2(1 — ¢) — 1]ﬂ+ PR _ ),
Ayt (4.12)

PRGN = Zpf () atyT =0.

The solution to (4.11) is pr(x, y") = p;“ (x 4+ xy1), which is the radiated wave from the
lower boundary layer since

2 pr(x, 5T) explia (x — et + gy™h))
=G A+ xy — xh) exp(—iagh) expicgy™) E
= €60 A(X — xy ) exp(—iagy ) E = epy, (4.13)

which is exactly (3.2). The solution to (4.12) is pr (X, y7) = % p; (X — x¥™). This solution
represents the outgoing wave for the upper boundary layer, and serves as the incident wave
for the lower boundary layer. We can write

Pl = eR™'2pr(%,3) explia(x — ct — gy™))
= eRCoo AKX — xy" — xh) exp(—iagh) exp(—iagy™) E
= eRCo AX — xy+ — xh) exp(—2iagh) exp(icgy”) E. (4.14)
As T — h, the reflected wave by the upper boundary layer has the form

P — €Rn0 A(X — 2 1) exp(—2iagh) exp(iagy™) E = eR™'/? p; (%) exp(iagy ) E,
(4.15)
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where we have put
Py (X) = R'2BC o0 A(X — 2xh) exp(—2iagh). (4.16)

Substitution of the above expression into the amplitude equation (4.61) and use of the
composite amplitude equation (5.10) in Part 1 leads to

A'(X) = oXA + YR /OO/OO K&, m:5)AG — c&) AR — & — cn)
0 0

x A*(X — 2¢cE — cen) dndé + RV26rZ A — 2xh), (4.17)

where
Gr = 2a%qE2 exp(—2iagh)/[c(1 — ¢)*Gl, (4.18)

comparison of which with (3.8) shows that |6g| = |6F|. Similar to the twin boundary
layers, the acoustic feedback contributes a linear term with delay (which is twice as long).
The initial condition is found as

R1/2

R7er% exp(o (x — 2Xiz)2/2)] asx¥ — —oo.  (4.19)

AX) = ag [exp(o‘fcz/Z) " e

Since the coefficient % in the amplitude equation (4.17) measures the importance of
the reflection-facilitated feedback effect, we first evaluate its dependence on the base-flow
parameters. Figures 13(a,c,e) show the variation of 6% with the upper wall temperature
T} for several values of fixed lower wall temperature T, at different Mach numbers.
In each case, the coefficient % remains more or less constant and small (being of
0(1073)), but increases rapidly when approaching the resonant temperature (T} =Ty),
at which point % becomes infinite. Figures 13(b,d, f) show the variation of 63 with
the lower wall cooling ratio r. for fixed upper wall temperature 7, at Mach numbers
M =5, 6 and 7. In each case, r_ is varied in the full range where a radiating mode exists.
There is no significant difference of ¥z for various T,/ except for T; that is in the
range of the existence of the radiating mode, e.g. T:Vr =25,3and3.5forM = 5,6 and 7,
respectively. For such values of T;}', €% raises quickly in a narrow range of r, which
contains 7,7 = T, at which resonance takes place and correspondingly 6zx% becomes
unbounded.

4.1. Effects of upper wall temperature

We first calculate the reflection coefficient & for different upper wall temperatures
T;} with a given Mach number M = 6 and fixed lower wall temperature 7, = 3. The
magnitude of the reflection coefficient turns out to be almost unity for most upper wall
temperatures, except that it increases rapidly when the wall temperature corresponding
to the resonant case (T, = T,, = 3) is approached. Using these results, we perform a
numerical study of the amplitude equation (4.17) for different T} with M = 6 and T, = 3.
Three representative initial amplitudes are considered: ap = 3, for which nonlinearity
just becomes appreciable, ap = 3.6, for which nonlinearity becomes significant but the
solution remains bounded (and finally attenuates), and ag = 5, in which case the solution
blows up. Figures 14(a,b) show that for the two moderate values of ag (3 and 3.6), the
acoustic feedback induces oscillations to the amplitude of the supersonic mode, similar
to the case of a twin boundary layer even though the feedback is now facilitated through
the reflected Mach wave emitted by the same boundary layer. The amplitude evolution

985 Al14-19


https://doi.org/10.1017/jfm.2024.277

https://doi.org/10.1017/jfm.2024.277 Published online by Cambridge University Press

F. Qin and X. Wu
(a) (b)
0.010 0.03 1
0.02 |
3 0.005
§ B
0.01
0 0 . !
0.5 0.45 0.50 0.55 0.60
(©) d)
0.010 0.03 1
0.02
3 0.005
§ B
0.01
0 ([ : !
0.5 0.40 0.45 0.50
(e) ()
0.010 0.03 1
0.02 |
3 0.005
§ B
0.01
0 . . ! 0 > !
0.5 3 5.5 8 0.35 0.40 0.45
Ty e

Figure 13. The coefficient 3% versus (a,c.e) the upper wall temperature ij' and (b,d,f) the lower wall
cooling ratio ., for Mach numbers (a,b) M =5, (¢,d) M = 6 and (e,f) M = 7. The ranges of the existence of
the radiating mode are r. € [0.457, 0.582] (T,, € [2.37,3.02]), r. € [0.403,0.494] (T, < [2.83,3.47]) and
r. €[0.36,0.427] (T,, € [3.3,3.92]) for M =5, 6 and 7, respectively.

appears much the same for various T}, with small differences being just visible in the
enlarged views. With initial amplitude ag = 5 (figure 14¢), the solutions all blow up, with
the feedback effect manifested as barely appreciable oscillations, and the effect of 7;F on
the evolution is also negligible.

Figure 15 shows the nonlinear evolution of the radiating mode in the lower boundary
layer when the upper and lower wall temperatures are close (75 ~ T, = 3). Figure 15(a)
compares the modal evolution for different 7% with ap = 3, where nonlinearity is
moderate. It is seen that the mode amplitude for different T’} oscillates about the solution
without reflection. As T approaches 7T}, (i.e. nearly satisfies the resonant condition), the
oscillations become more intense due to the rapid increase of the reflection coefficient.
This is also true for ag = 3.6, for which the nonlinear effect becomes enhanced but
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Figure 14. Effects of the upper wall temperature 7,5 on the solution to the amplitude equation (4.17) with
h =2, for (a) ap = 3, (b) ap = 3.6, (¢) ap = 5. Here, T,j = 7.02 corresponds to the adiabatic wall condition.
The lower wall temperature is 7,, = 3, and the Mach number is M = 6.

without causing a finite-distance singularity (figure 15b). When ag = 5 (figure 15¢), all the
solutions blow up in an oscillatory manner, with oscillations becoming more pronounced
closer to the resonant condition. The present theory ceases to be applicable when the
temperatures of the two walls are extremely close, and instead needs to be reformulated as
a ‘detuned’ twin-boundary-layer model.

While much attention has been paid to linear radiating modes, whose radiating
characteristics have been fairly well understood, back effects of the radiated sound on
their linear and nonlinear evolution have not been studied previously. There exist no
experimental or computational data with which our theoretical predictions could be
compared. Nevertheless, we noted, upon completion of the present work, that recently
Chen, Wang & Fu (2021) employed the method of linear parabolised stability equations
to trace the development of radiating modes in a hypersonic boundary layer over a wedge.
They found that the amplitude underwent considerable oscillations (see e.g. figure 15(c)
in the paper), despite the facts that no rigid reflecting surface was present and that a
monotonic amplification or decay was predicted by linear stability theory. This puzzling
outcome was attributed to the beating effect of multiple coexisting modes, which may be
amplifying or damped. An alternative but more plausible explanation, based on the main
finding of the present work, could be that the shock, which is present in their problem, acts
to reflect the spontaneously radiated sound, thereby establishing an acoustic back action
akin to what was studied here. Our assertion is also based upon the realisation that an
amplitude equation of the same form as (4.17) can be derived in the case of reflection by
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Figure 15. Strong oscillations of the solution to the amplitude equation (4.17) with 7 = 2 when the upper wall
temperature T; approaches the lower wall temperature T, = 3, for (a) ap = 3, (b) ap = 3.6, (c) ap = 5. The
Mach number is M = 6.

a shock. It is worth noting that an imperfect non-reflecting far-field boundary condition
in numerical calculations could also cause similar behaviour, which would of course be
an artefact. This implies that for numerical methods to capture faithfully and accurately
the radiating mode and its evolution, it is important to specify an appropriate far-field
condition. Numerical simulations to validate the theoretical findings would be a major
undertaking and are deemed beyond the scope of the present study. We hope that our
theoretical work would prompt computational and experimental studies.

4.2. Evolution with large values of 6r

Again, the magnitude of the coefficient ¢% representing the effect of coupling may be
larger in certain types of flows, e.g. a supersonic jet adjacent to a reflecting surface,
which mimics a jet engine installed on a wing (Cavalieri et al. 2014; Lyu et al. 2017).
An amplitude equation similar to (4.17) can be derived, but stronger Mach wave radiation
could lead to a greater 6. With this perspective in mind, we now solve the amplitude
equation (4.17) for an artificially increased %, i.e. g = 3 X 10~2. We now take a

somewhat large 1 = 7, for which the feedback effect may be significant, as will be seen,
and keep other parameters unchanged. Figure 16 shows the effects of 7}/ on the nonlinear
evolution of the radiating mode in the lower boundary layer. For ap = 3 and 3.6, the
results are displayed in figures 16(a.b). In addition to the usual rapid oscillations of the
amplitude, the envelope of the amplitude features a second peak in the downstream region.
The resurrection after the mode is nearly extinct is again due to the enlarged feedback term
in (4.17), which re-excites the radiating mode after a fairly long delay. The zoomed views
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Figure 16. Effects of the upper wall temperature T3 on the solution to the amplitude equation (4.17) with 1 = 7
and € = 3 x 1072, for (a)ag = 3, (b)agp = 3.6, (c) ap = 5. Here, T;r = 7.02 corresponds to the adiabatic wall
condition. The lower wall temperature is 7,, = 3, and the Mach number is M = 6.

in figures 16(a,b) indicate that strong cooling (e.g. T;F = 0.5, 2) or the adiabatic condition
(T; = 7.02) results in a smaller second peak compared with the cases T, = 4 and 5, but
the overall difference is barely appreciable. For the case agp = 5, the amplitude rapidly
blows up within a finite distance due to the nonlinear effect, which is dominant over the
acoustic feedback such that the latter plays hardly any role (figure 16¢), and in this case
the solution is little influenced by T} .

5. Summary and conclusions

In this paper, we investigated linear and nonlinear evolution of supersonic instability
modes under the back action of the Mach waves radiated spontaneously by the modes
themselves. This scenario of acoustic feedback was considered in the simplest setting of
two supersonic boundary layers developing along two semi-infinite parallel plates. The
distance separating the two plates is assumed to be comparable with the transverse extent
of the near field of the Mach waves, a configuration representative of the combustion
chamber of a scramjet. Using the formula for the Mach wave radiation in the near field,
the amplitude equations are derived for two cases of relevance: the twin boundary layers
and cousin boundary layers.

For the so-called twin boundary layers, where the wall conditions are identical, the
Mach wave radiated from the instability mode in one boundary layer impacts that in the
other. This process is described by a system of coupled amplitude equations, in which
the contribution of the back effects enters in the form of a linear term of delay type.
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In the special cases where the modes in the two boundary layers are in symmetric and
antisymmetric phases, the system reduces to a single-amplitude equation. The system of
the coupled amplitude equations, including its reduced forms, was studied analytically and
numerically. The evolution characteristics were found to depend on the distance between
the plates, measured by the rescaled distance &, as well as on the initial amplitudes of
the supersonic modes and their ratio. For moderate values of A, the primary effect of the
acoustic feedback is to induce rapid oscillations of the modal amplitudes, which remain
bounded for small or moderate initial amplitudes, but blow up (i.e. develop a singularity
at finite distances) when the initial amplitudes are large enough. The feedback plays a
destabilising role in general, enhancing the modal amplitude, causing singularity which is
otherwise absent, and in the extreme case of a supersonic mode being seeded in only
one boundary layer exciting the supersonic mode in the other. The ratio of the initial
amplitudes changes the evolution significantly, and specifically renders the blow-up to
occur at different downstream locations. In the limit of the rescaled plate separation
h — o0, the evolution reduces, as expected, to the case of no acoustic back effect.

In the more general case of the so-called cousin boundary layers, where the wall
temperatures are different, the spontaneously emitted Mach wave by the supersonic mode
in one of the boundary layers is reflected back by the other to affect the original radiating
mode. The amplitude equation was derived, which consists of a linear term of delay type
representing the acoustic feedback. Since the amplitude equation is rather similar to those
in the case of twin boundary layers, the acoustic feedback plays a similar role, namely,
causes the amplitude to oscillate rapidly. It is found that if the wall temperature is not
too close to the resonant condition, then the reflection coefficient is almost a constant and
hence the development of the instability mode appears the same. However, if the wall
temperature is close to the resonant condition, then the reflected wave becomes stronger
than the Mach wave originally emitted, resulting in greater feedback effects on the modal
evolution, which manifest as strong oscillations of the modal amplitude.

The amplitude equations pertinent to twin and cousin boundary layers could arise in
other situations, such as twin jets or a jet adjacent to a rigid surface, where the feedback
effect may be stronger. In view of such broad applications, we also solved the amplitude
equations with the coefficients of the feedback terms being increased by one order of
magnitude. The acoustic feedback effect turns out to be still significant for fairly large 5.
With longer delays of the feedback action, the amplitude of the instability mode not only
exhibits rapid oscillations, but also experiences near extinction followed by resurrection,
which occurs due to the sound wave emitted earlier re-exciting the supersonic mode at a
later time.

The present theoretical investigation provides physical insights into how the
spontaneously radiated Mach waves and the instability modes could be effectively coupled
in double supersonic boundary layers. The results are deemed useful for assessing the
impact of the noise emitted from the tunnel walls on the supersonic mode evolving in
the boundary layer over the test model. They are probably relevant also for instability and
transition in scramjet combustion chambers as well as for twin-jet engines or jet engines
installed in the vicinity of a surface (wing or fuselage).
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