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Abstract In this work, we are interested in studying the following class of problems:


−∆u = fλ(x, u, v) in Ω

−∆v = gµ(x, u, v) in Ω

0 6≡ u ≥ 0, 0 6≡ v ≥ 0 in Ω

u = v = 0 on ∂Ω

(Pλµ)

where Ω is a bounded domain in RN , λ> 0, µ> 0, t 7→ fλ(x, t, t) and t 7→ gµ(x, t, t) have concave-convex
type nonlinearities. We present results related to the existence and non-existence of solutions for problem
(Pλµ).
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1. Introduction

To contextualize our work, we will begin by discussing the scalar case (a single equation),
which serves as motivation for the system addressed in our research. Let us consider the
following problem:

{
−∆u = λa(x)uq + b(x)up in Ω

u = 0 on ∂Ω.
(Pλ)

Here, Ω ⊂ RN is a bounded domain, a, b ∈ L∞(Ω), λ> 0 and 0 < q < 1 < p. When
a ≡ b ≡ 1, Ambrosetti, Brézis and Cerami in [4] studied this problem. The authors
showed that there exists Λ > 0 such that (Pλ) has a positive solution when 0 < λ ≤ Λ,
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2 J.P. Pinheiro Da Silva

and there is no positive solution when λ > Λ. Moreover, if p+1 ≤ 2∗ := 2N/(N−2), then
the solutions of (Pλ) correspond to critical points of the functional Iλ ∈ C1(H1

0 (Ω),R)
defined by

Iλ(u) =

∫
Ω

|∇u|2 − λ

q + 1

∫
Ω

|u|q+1 − 1

p+ 1

∫
Ω

|u|p+1.

Using variational methods and techniques introduced by Brézis and Nirenberg in [12],
they showed the existence of a second positive solution for 0 < λ < Λ (it is necessary to
demand some regularity for the domain in order to guarantee the existence of the unit
exterior normal vector to ∂Ω. See, for example, [4, Lemma 4.1]). From a purely math-
ematical perspective, problems with concave-convex type nonlinearities have received
great interest since the seminal work [4]. The list of references is extensive, among which
we highlight [6–8, 10, 28–30, 34, 39, 44, 45, 47]. Recently, there has been considerable
interest in problems with indefinite weights, that is, problems where the weight func-
tions a(·) or b(·) may change sign. De Figueiredo, Gossez and Ubilla in the work [25,
Corollary 2.2 and Corollary 2.7] showed existence and non-existence results for (Pλ)
when a(·) and b(·) satisfy certain conditions, including the possibility of a(·) and b(·)
changing sign. More specifically, they showed that there exists λ0 > 0 and c > 0 such
that (Pλ) admits two solutions when p ≤ 2∗ − 1 and 0 < λ < λ0 and admits no solution
if p ≤ 2∗ − 1 and λ > c. In a later work [26, Theorem 4.1 and Theorem 4.2], assuming
certain conditions, including: a, b ∈ L∞(Ω), 0 6≡ a(x) ≥ 0 in Ω, and infB1

a(x) > 0 for
some ball B1 ⊂ Ω, the same authors recovered the results obtained by Ambrosetti et al.
[4], that is, they showed that there exists 0 < Λ ≤ ∞ such that: If 0 ≤ q < 1 < p, the
problem (Pλ) has at least one solution when 0 < λ ≤ Λ and admits no solution when
λ > Λ 6= +∞. If 0 ≤ q < 1 < p ≤ 2∗ − 1, the problem (Pλ) admits at least two solutions
when 0 < λ < Λ.
The results provided by the works [4, 26] include nonlinearities with supercritical

growth. In the context of the Laplacian operator, when Ω is bounded, the problem
−∆u = f(x, u) in Ω and u =0 on ∂Ω, is said to have supercritical growth when there is no

C > 0 such that |f(x, t)| ≤ C(1 + |t|2∗−1), a.e. x ∈ Ω and t ∈ R, where 2∗ = 2N/(N − 2)
is the critical exponent of the Sobolev Embedding and N ≥ 3. In this sense, the problem
(Pλ) has supercritical growth when p > 2∗ − 1 and N ≥ 3.
The literature concerning problems with concave-convex type nonlinearities, as can be

seen in the works we mentioned earlier, is rich in problems whose nonlinearity can have
supercritical growth. For problems with supercritical growth and nonlinearities that are
not concave-convex type, see for example [3, 5, 15, 16, 21]. To the best of our knowledge,
very few existence results have been determined for elliptic systems with supercritical
growth (see [17, 22]).
Consider the following system:

−∆u = fλ(x, u, v) and −∆v = gµ(x, u, v) in Ω, u = v = 0 on ∂Ω. (1.1)

Although there is a substantial literature related to scalar problems involving concave-
convex type nonlinearities, to this day the results of Ambrosetti et al. [4] have not been
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fully recovered for systems of type (1.1) in which:{
fλ(x, t, t) = λa(x)tq1 + c(x)tp1 and gµ(x, t, t) = µb(x)tq2 + d(x)tp2

a, b, c, d ∈ L∞(Ω), 0 ≤ qi < 1 < pi.
(1.2)

To date, issues such as non-existence of solution, as well as the existence of solutions for
systems with nonlinearities exhibiting supercritical growth (i.e. pi > 2∗ − 1 in Equation
(1.2)), have not been addressed in the current literature. In general, research involv-
ing Equations (1.1)–(1.2) as well as its generalizations is almost entirely restricted to
gradient-type systems, a concept we will explain next. Consider the following system:

{
−Liu = φi(x, u1, u2) in Ω ⊂ RN , i = 1, 2

ui = 0 on ∂Ω,
(1.3)

it will be called a gradient-type system if there exists G(x, ·, ·) ∈ C1(R2) a.e. in Ω, such
that φi(x, t1, t2) = Gti

(x, t1, t2). The importance of this type of system lies in the fact
that it is possible to associate to them an Euler–Lagrange functional.
As far as we know, Wu in [46] was the first author to consider a system with nonlin-

earities of type (1.2) and Dirichlet boundary condition. The author studied the following
gradient-type system: Equation (1.3) with Li = ∆ and φi(x, u1, u2) = Gui

(x, u1, v2)
where

G(x, u1, u2) =
λa(x)

q + 1
|u1|q+1 +

µb(x)

q + 1
|u2|q+1 +

c(x)

α+ β
|u1|α|u2|β .

When 0 < q < 1, 2 < α+β < 2∗, a+(x) := max{a(x), 0} 6≡ 0, b+(x) := max{b(x), 0} 6≡ 0,
and c ∈ C0(Ω) with 0 6≡ c(x) ≥ 0 in Ω, using variational methods and assuming cer-
tain conditions on the weight functions, the author provided results on existence and
multiplicity of non-negative solutions, provided that λ> 0 and µ> 0 are sufficiently
small.
There are many works dealing with the existence or multiplicity of non-negative solu-

tions for systems with concave-convex nonlinearities of type (1.2), or even for systems
involving the p-Laplacian operator and nonlinearities that generalize Equation (1.2).
However, the approach we encounter in these works, in general, is the same as that used
to address the problem (Pλ) from a variational perspective, so they are restricted to
cases where the system is of gradient type and the nonlinearities exhibit subcritical or
critical growth, i.e. pi ≤ 2∗ in Equation (1.2). Furthermore, the results are limited to
local cases, in the sense that the existence of a solution is guaranteed only if the parame-
ters λ> 0 and µ> 0 in Equation (1.1) are sufficiently small. The same applies to systems
that generalize Equation (1.1) to more general operators. Regarding gradient-type sys-
tems (1.2)–(1.1), as well as their generalizations involving the operators: p-Laplacian (in
this case 0 ≤ qi < p − 1 < pi), fractional Laplacian and p&q-Laplacian, we refer to the
following works and the references contained therein [2, 3.2, 9, 18, 19, 32, 38, 42, 48] (see
also [14, 41] for nonlinearities on ∂Ω).
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As mentioned earlier, the current literature involving Equations (1.1)–(1.2) and their
generalizations is almost entirely restricted to gradient-type systems. This implies that
the exponent pi appearing in Equation (1.2) is bounded by a power associated with the
space in which the Euler–Lagrange functional is well-defined.
Some works involving systems require additional comments. In [22], the author of the

present work studied the system (1.1)–(1.2) with:

{
fλ(x, u, v) = λa(x)uq1 − τc(x)uα−1vβ

gµ(x, u, v) = µb(x)vq2 − δd(x)uαvβ−1,
(1.4)

where λ, µ, δ, τ > 0, 0 < qi < 1, a+(·) 6≡ 0, b+(·) 6≡ 0 in Ω and c(x) ≡ d(x) ≥ 0 in
Ω. In said work, we showed the existence of a solution (u, v) such that 0 6≡ u ≥ 0 and
0 6≡ v ≥ 0 in Ω, provided that α, β ≥ 1 and α+β > 2 (in this case pi = α+β−1 < +∞).
This system, although only of gradient type for specific values of τ > 0 and δ > 0, can be
converted into a gradient-type system for all τ, δ > 0 (see [22, Proof of Theorem 1.1 ]).
However, the approach of this work cannot be applied to systems that do not have the
specific form (1.4) or for cases where c(·) or d(·) in Equation (1.2) may change sign, or
for cases where c(·) 6≡ d(·) in Ω.
The only work we are aware of that deals with a class of systems that are not of

gradient type is [20]; in this work, Chhetri et al. showed the existence of a solution (u, v)
for Equation (1.1) such that u and v are positive in Ω, without necessarily requiring the
system to be of gradient type. However, fλ and gµ, by assumption, must have subcritical
growth (see [20, Theorem 2.8 and Condition (H1)]). The conditions on fλ and gµ are
more restrictive than those addressed in the present paper; for instance, it is required
that there exists R0 > 0 such that fλ(x, t, s) > λ1(Ω)s+1 for every t ≥ 0 and s > R0, and
gµ(x, t, s) > λ1(Ω)t + 1 for every s ≥ 0 and t > R0 (see [20, p. 43]), where λ1(Ω) is the
first eigenvalue of (−∆,H1

0 (Ω)). In the present work, fλ and gµ do not necessarily need
to satisfy the latter condition nor Condition (H1) from [20]; the class of nonlinearities
addressed in this paper is more general and allows for nonlinearities with supercritical
growth.
Candela and Sportelli in [17] considered the following system:


−div(a(x, u,∇u)) +At(x, u,∇u) = Gu(x, u, v) in Ω,

−div(b(x, v,∇v)) +Bt(x, v,∇v) = Gv(x, u, v) in Ω,

u = v = 0 on ∂Ω,

(1.5)

where a(x, t, ξ) = (∂ξ1A, . . . , ∂ξNA) and b(x, t, ξ) = (∂ξ1B, . . . , ∂ξNB), and the
Euler–Lagrange functional associated with this system is defined on the Banach space

X := (W
1,p1
0 (Ω) ∩ L∞(Ω)) × (W

1,p2
0 (Ω) ∩ L∞(Ω)) (see [17, (1.6)]). Assuming certain

conditions (see [17, (h0) − (h7) and (g0) − (g4)]), among which A(x, t, ξ) and B(x, t, ξ)
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grow at least as fast as (1 + |t|s1p1)|ξ|p1 and (1 + |t|s2p2)|ξ|p2 respectively, where pi > 1,
si ≥ 0, the authors showed that if

lim sup
(u,v)→(0,0)

G(x, u, v)

|u|p1 + |v|p2
< α2 min{λ1,1, λ2,1} uniformly a.e. in Ω, (1.6)

where λi,1 is the first eigenvalue of (−∆pi
,W

1,pi
0 ) and α2 > 0 is a constant related to

the growth of A and B (see [17, Theorem 4.1]), then Equation (1.5) admits a non-trivial
solution (see [17, Theorems 1.1 and 4.1]), assuming additional conditions they showed
the existence of infinitely many solutions for Equation (1.5). The notable characteristic
of the work of these authors is that they provided an existence result for the system
(1.5) with the possibility of G(x, u, v) having a supercritical growth, in the sense of, the
exponents q1 and q2 that appear in the growth of Gu and Gv respectively (see [17, (g1)]),
satisfy:

1 ≤ qi < p∗i (si + 1) := Npi(si + 1)/(N − pi). (1.7)

In this case, depending on the choice of si, it is possible to have p∗i < qi < p∗i (si + 1)

where p∗i is the critical Sobolev exponent associated with W
1,pi
0 (Ω); the multiplicity

result provided by these authors also allows for supercritical growth for G. However,
no information about the sign of the solutions was given. When A = (1/p1)|ξ|p1 and
B = (1/p2)|ξ|p2 , the system (1.5) becomes

−∆p1
u = Gu(x, u, v) and −∆p2

v = Gv(x, u, v) in Ω, u = v = 0 on ∂Ω.

Thus s1 = s2 = 0 and the nonlinearities Gu and Gv only have subcritical growth (see
[17, Remark 3.1]). Although the techniques we employ in this work are not only directed
at gradient-type systems, our results include nonlinearities that do not satisfy Equation
(1.6). For example, if γ1, γ2 > 0 and γ1 + γ2 < pi (or γi < pi), condition (1.6) prevents
G, near the origin, from having nonlinearities that grow like |u|γ1 |v|γ2 (or |u|γ1 + |v|γ2),
which is a common type of nonlinearity in systems that generalize the results of [4].
The work of Adriouch and El Hamidi [1] arose before [46]. In their work, the authors

consider Equation (1.3) as a gradient-type system with subcritical growth, where L1 =
−∆p and L2 = −∆q. However, the nonlinearity the authors considered is concave-convex
only in one of the equations. For example, when p = q = 2, system (1.3) takes the form
(1.1), the exponents of the nonlinearities in Equation (1.2) satisfy 0 < q1 < 1 < p1 =
p2 < 2∗ and 0 < q2 = 1 < p1 = p2 < 2∗. That is, the second equation has a linear term
instead of a concave one.
Another fact worth mentioning is that, as in Equation (1.1), in general, the non-

linearity φi(x, u, v) of Equation (1.3) also depends on a parameter. Typically, we have
φ1(x, u, v) = φ1,λ(x, u, v) and φ2(x, u, v) = φ2,µ(x, u, v). In all the works we are aware of,
the authors ensure the existence of a solution only if the parameters λ> 0 and µ> 0 are
sufficiently small. In other words, regarding the parameters, there are only local existence
results. This raises an important question, for example: when φ1 = φ1,λ and φ2 = φ2,µ

are nonlinearities that generalize Equation (1.2), is the set O := {(λ, µ) ∈ R2
+| (1.3)

has a solution (u, v) with u, v > 0 inΩ } bounded or unbounded? We will show in this
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work that, surprisingly, this set can be unbounded. In relation to the non-existence of
a positive solutions for Equations (1.1)–(1.2) (as well as for Equation (1.3) equipped
with a condition that generalizes Equation (1.2)), while there is ample literature for the
scalar case, there are no studies involving the non-existence issue for systems. None of
the previously mentioned works addresses the non-existence of solutions for systems.
Although our work is inspired by that of Ambrosetti–Brézis–Cerami, our present con-

tribution addresses interesting cases which, to the best of our knowledge, have not been
considered before, such as non-gradient type systems. We will also consider nonlinear-
ities with supercritical growth and present novel existence results even for critical and
subcritical cases, as well as providing both existence and non-existence results.
In this work, we are dealing with the following systems:

(P1)


−∆u = λa(x)uq + c(x)uαvβ in Ω

−∆v = µb(x)up + d(x)uθvγ in Ω

0 6≡ u ≥ 0, 0 6≡ v ≥ 0 in Ω

u = v = 0 on ∂Ω

or

(P2)


−∆u = a(x)uq + λc(x)uαvβ in Ω

−∆v = b(x)vp + µd(x)uθvγ in Ω

0 6≡ u ≥ 0, 0 6≡ v ≥ 0 in Ω

u = v = 0 on ∂Ω

where p, q ∈ (0, 1), concerning the exponents, throughout this work, we will always
assume that max{α, β} > 1 and max{θ, γ} > 1. More specifically, we have the following
hypotheses:

(PW1) α, γ ≥ 1 and β, θ > 0;
(PW2) 0 < α < 1 < β and 0 < γ < 1 < θ;
(PW3) α ≥ 1, β > 0 and 0 < γ < 1 < θ.

We will comment on the differences between (P1) and (P2) by comparing them with

their scalar versions. Observe that u is a solution of (Pλ) if and only if u = λ
−1
1−q u is a

solution to (Pλ) where λ = λ
p−1
1−q , and{

−∆u = a(x)uq + λb(x)up in Ω

u = v = 0 on ∂Ω.
(Pλ)

When a(x) ≥ 0, the global results provided by [26] imply global results for (Pλ). Here,
global means that it is possible to establish for which parameters λ> 0 the problem has
a solution and for which it does not, which contrasts with the local case where existence
can only be established for small parameters. However, when b(x) ≥ 0 and a(x ) change
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sign, we cannot derive global results for (Pλ) from the results of [26]. Global results for
(Pλ) were obtained by De Paiva in [27] when b(x) ≥ 0 and 1 < p ≤ 2∗ − 1.
Now, suppose that (α − 1)(γ − 1) 6= θβ. Then, for all λ > 0 and µ > 0, the following

system has a solution {
(α− 1)x+ βy = lnλ

θx+ (γ − 1)y = lnµ.
(1.8)

Then, λ := ex(1−q) > 0 and µ := ey(1−p) > 0 satisfy λ = λ
α−1
1−q µ

β
1−p and µ = λ

θ
1−q µ

γ−1
1−p .

Setting t = λ
−1
1−q and s = µ

−1
1−p , we see that u and v are solutions for (P1) with λ, µ > 0

if and only if u = tu and v = sv are solutions for (P2) with λ, µ > 0. Therefore, the global
results for (P1) with certain hypotheses on the weights yield global results for (P2) with
the same hypotheses.
But when the system (1.8) has no solution, this approach does not work. Therefore,

even in the case that all weights are non-negative, we cannot obtain a solution (u2, v2) to
(P2) with u2 = tu1 and v2 = sv1 for some t, s > 0 and (u1, v1) solution to (P1). This does
not happen in the scalar case, since when the weights are non-negative, global results for
(Pλ) guarantee global results for (Pλ).
We will see that the conditions (PW1)–(PW3) affect the set of values λ, µ > 0 for

which the system has a solution (u, v). Before formalizing the concept of the solution
we will employ, it is pertinent to note that since the weight functions lie in L∞(Ω),
our optimal expectation is that solutions belong to C1(Ω). Thus, we shall consider the
following definition:

Definition 1.1. We will say that (u, v) is a solution to (Pi) if, for all s> 1,
u, v ∈ W 2,s(Ω) ∩W 1,s

0 (Ω) ∩ C1(Ω) and u, v satisfy (Pi).

Concerning the existence of solutions, throughout this work, we will assume
that Ω ⊂ RN is a bounded domain such that ∂Ω ∈ C1,1. Except for the solution
of item (v) of Theorem 1.4, this regularity is sufficient to obtain solutions in
W 2,s(Ω) ∩W 1,s

0 (Ω) ∩ C1(Ω) for all s > 1. To this end, we will invoke the following classi-
cal results from elliptic regularity theory: Theorems 7.26 and 9.15 of [31], which require
that Ω ⊂ RN be a domain such that ∂Ω ∈ C0,1 and ∂Ω ∈ C1,1, respectively. Regarding
the non-existence of solutions, we require the existence of Ω0 ⊂ Ω such that ∂Ω0 ∈ C1,1,
so that we can use Green’s identities (which require ∂Ω0 ∈ C1) and the results of [31,
Theorems 9.15 and Lemma 9.17] in Proposition 2.7 (which require ∂Ω0 ∈ C1,1).
Let Ω0 ⊂ Ω be open and connected. We say that a function h : Ω → R satisfies the

condition (PΩ0
) if h(x) ≥ 0 for all x ∈ Ω0, and the set {x ∈ Ω0 | h(x) > 0} has positive

Lebesgue measure. The conditions on the weights are stated below.

(P1) a, b, c, d ∈ L∞(Ω) \ {0};
(P2) a(x) ≥ 0 and b(x) ≥ 0 in Ω;

Regarding condition (P1), we do not know if the results of the present work are valid
for the case where the weight functions are in an appropriate Lp space. We have not
delved into this issue.
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Certain constants will appear in the form of powers associated with the questions of
existence and non-existence. To better organize the presentation of our first theorem, we
present these constants in the table below.

τ11 = α−1
1−q σ11 = β

1−p τ11 = θ
1−q σ11 = γ−1

1−p

τ21 = 1 σ21 = 0 τ21 = 0 σ21 = 1

τ12 = 1 σ12 = 0 τ12 = 0 σ12 = 1

τ22 = 1− γ σ22 = β τ22 = θ σ22 = 1− α

τ13 = 1 σ13 = 0 τ13 = α−1
1−q σ13 = β

1−p

τ23 = 1 σ23 = 0 τ23 = 1− γ σ23 = β

In our first result, we show that there exist τ, σ, τ , σ ≥ 0 satisfying τ+σ > 0, τ+σ > 0,
and Λ∗

1,Λ
∗
2 > 0 such that problem (P1) has no solution if λτµσ > Λ∗

1 or λτµσ > Λ∗
2. The

same occurs with (P2). Specifically, we prove the following:

Theorem 1.2 (Non-existence) Consider the system (Pi), where Ω ⊂ RN is a
bounded domain, and suppose that the weights a(·), b(·), c(·), d(·) satisfy the (PΩ0

) con-
dition for some C1,1 domain Ω0 ⊂ Ω, and that (PWj) holds. Then, there are positive
numbers Λ∗

1ij > 0 and Λ∗
2ij > 0, possibly depending on a(·), b(·), c(·), d(·), α, β, γ, θ,

Ω0, Ω, such that there are no solutions (u, v) for (Pi) in the sense of Definition 1.1, with
u> 0 and v> 0 in Ω0 when λτijµσij > Λ∗

1ij or λτijµσij > Λ∗
2ij.

In [4], the non-existence of positive solutions to (Pλ) is a consequence of the simple
inequality: Given c> 0, there exists λ = λc > 0 such that λtq + tp > ct, ∀ t > 0 (see
[4, (3.1) with c = λ1(Ω)]). However, even for the case fλ = λtq + tαsβ and gµ =
µsp + tθsγ , for all λ, µ > 0, there is no c> 0 satisfying fλ(x, t, s) > ct and gµ(x, t, s) > cs
simultaneously for all t, s > 0. Hence, the approach for the non-existence of solutions is
different in the context of systems. Lemma 2.1 plays a key role in our proof. It is a slight
adaptation of [4, Lemma 3.3]. (Observe that in the work [4], this lemma is not relevant
to show the result of non-existence.) Our proof is based on technical arguments, and in
some cases, we use the Krein–Rutman theorem [37].
The problem (P2) is related to (Pλ). In [27, Theorem 1], the author showed a global

non-existence result when 0 < q < 1 < p ≤ 2∗−1, b(x) ≥ 0 in Ω, and {x ∈ Ω | a(x) > 0}∩
{x ∈ Ω | a(x) < 0} = ∅ with other conditions. Therefore, concerning the non-existence
question, Theorem 1.2 complements this result since the hypotheses considered are weaker
than [27, Theorem 1] and we are considering supercritical powers, that is, α+β > 2∗− 1
or θ + γ > 2∗ − 1 in (P2).

Definition 1.3. We say that (u, v) satisfying (Pi), in the sense of Definition 1.1, is a
minimal positive solution when u> 0 and v> 0 in Ω. Moreover, if u∗ > 0 and v∗ > 0 in
Ω, and (u∗, v∗) is another solution for (Pi), then u ≤ u∗ and v ≤ v∗ in Ω.
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In order to present our next theorem, we define the following hypothesis:

(H1)c(x) ≥ 0 in Ω; (H4)d(x) ≥ 0 in Ω;

(H2)α ≥ 1; (H5)γ ≥ 1;

(H3)q < α < 1 and inf
Ω

a(x) > 0; (H6)p < γ < 1 and inf
Ω

b(x) > 0.

In our second result, in the main item, we show that there exist τ, σ, τ , σ ≥ 0 satisfying
τ + σ > 0, τ + σ > 0, and Λ1,Λ2 > 0 such that problem (P1) has at least one solution
if λτµσ ≤ Λ1 and λτµσ ≤ Λ2. The same occurs with (P2). Specifically, we prove the
following:

Theorem 1.4 (Positive Solution) Consider the system (Pi) with Ω ⊂ RN being a
C1,1 bounded domain. Suppose that (PWj) and (P1)–(P2) hold. In regard to the existence
of solutions for (Pi) in the sense of Definition 1.1, there are positive numbers Λ1ij > 0
and Λ2ij > 0, possibly depending on a(·), b(·), c(·), d(·), p, q, α, β, γ, θ,Ω, such that:

(i) Suppose that (Hl) and (Hk) hold with 1 ≤ l ≤ 3 and 4 ≤ k ≤ 6. Then (Pi) has a
positive solution when λτijµσij ≤ Λ1ij and λτijµσij ≤ Λ2ij;

(ii) If c(x) ≥ 0 and d(x) ≥ 0 in Ω, there exists 0 < L∗
ij ≤ +∞ such that for all

λ ∈ (0, L∗
ij), there is 0 < Λλ < +∞ such that for all µ ∈ (0,Λλ), problem (Pi) has

a minimal positive solution. If µ ∈ (Λλ,+∞), then there is no positive solution for
(Pi). Moreover, L∗

11 = L∗
22 = +∞, and L∗

ij < +∞ for the other cases;
(iii) If c(x) ≥ 0 and d(x) ≥ 0 in Ω, there exists 0 < M∗

ij ≤ +∞ such that for all
µ ∈ (0,M∗

ij), there is Λµ such that for all λ ∈ (0,Λµ), problem (Pi) has a minimal
positive solution. If λ ∈ (Λµ,+∞), then there is no positive solution for (Pi).
Moreover, M∗

11 = M∗
22 = M∗

13 = M∗
23 = +∞, and M∗

ij < +∞ for the other cases;
(iv) If c(x) ≥ 0 and d(x) ≥ 0 in Ω, and (uλµ, vλµ) is a minimal positive solution for

(Pi) with the parameters λ, µ > 0, then for all 0 < λ1 ≤ λ and 0 < µ1 ≤ µ, problem
(Pi) has a minimal positive solution (uλ1µ1

, vλ1µ1) with the parameters λ1, µ1 > 0.
Moreover, uλ1µ1

≤ uλµ and vλ1µ1 ≤ vλµ in Ω.
(v) Suppose that c(x) ≥ 0 and d(x) ≥ 0 in Ω. Then, if α> 1 and γ > 1, we have a

positive weak solution for (Pi) when λ ∈ (0, L∗
ij) and µ = Λλ. Similarly, we have a

positive weak solution for (Pi) when µ ∈ (0, L∗
ij) and λ = Λµ.

With the purpose of exemplifying the previous theorem, let us consider the following
system: 

−∆u = λuq + uαvβ in Ω

−∆v = µup + uθvγ in Ω

u > 0, v > 0 in Ω

u = v = 0 on ∂Ω.

(1.9)

Supposing that p, q ∈ (0, 1) and λ, µ > 0. Regarding existence, Theorem 1.4-(i) ensures
the existence of Λi > 0 such that:
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(E1) Assuming that α ≥ 1, γ ≥ 1, β > 0, θ > 0, then Equation (1.9) has a solution if:

λ
α−1
1−q µ

β
1−p ≤ Λ1 and λ

θ
1−q µ

γ−1
1−p ≤ Λ2

(E2) Assuming that 0 < α < 1 < β and 0 < γ < 1 < θ, then Equation (1.9) has a
solution if:

λ ≤ Λ1 and µ ≤ Λ2

(E3) Assuming that α ≥ 1, β > 0, and 0 < γ < 1 < θ, then Equation (1.9) has a
solution if:

λ ≤ Λ1 and λ
α−1
1−q µ

β
1−p ≤ Λ2.

Note that if α> 1 or γ > 1, then the result of (E1) ensures that the set E :=
{(λ, µ) ∈ R2

+| (1.9) has a solution } is unbounded. Furthermore, if α> 1, then the result of
(E3) also implies that E is unbounded. These results contrast with the scalar case, since
{λ ∈ R+ | (Pλ) has a solution } = (0,Λ] and Λ < +∞ for the case where the weight
functions of (Pλ) are constants.
To prove Theorem 1.4, we use the sub-super solution method. The way we define the

concept of sub-super solution for systems is somewhat different than in the scalar case.
For example, a solution of (Pi) may not be a sub-solution or a super-solution for (Pi)
(see Remarks 3.1 and 3.5).
The super-solutions are obtained by solving the systems Equation (3.1) and (3.2). The

greatest difficulty lies in obtaining solutions when one of the parameters λ> 0 or µ> 0 can
be arbitrarily large. The sub-solutions come in two types of functions. To obtain the first,
we use the theory of principal eigenfunction for operators with indefinite weight functions.
For that, we choose an appropriate weight function (see, for instance, Equation (3.4)).
To obtain the second sub-solution, we solve an auxiliary problem employing variational
techniques (see Proposition 3.6).
The novelty of this theorem lies in the fact that we solve the problem of the existence

of a solution for a more general class of systems (not just gradient systems and not
just with critical or subcritical growth powers), and we prove that the set of solutions
Oi :=

{
(λ, µ) ∈ R2

+ | (Pi) has solution
}
is unbounded in some cases. To prove (v), we

use the same approach as in [4, p. 528]. However, the same idea does not work when α ≤ 1
or γ ≤ 1, although we believe that this statement holds for other cases. Unfortunately,
we cannot prove it. Despite this, in [23], we have a complete proof for when the system
is of the gradient type.
Originally, this work contained a study involving the multiplicity of solutions for

gradient-type systems, as well as analyzing cases where all weights change sign and the
nonlinearities have supercritical growth terms. However, we decided to address this in
another paper [23]. The issue of local minimization for functionals with two variables was
also addressed in another paper [24]. However, the question of multiplicity for a system
that is not of the gradient type remains open. A major difficulty is that if the system
cannot be studied via variational methods, we do not know how to approach the issue of
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multiplicity. Unfortunately, we were unable to answer some other questions. For example,
can we have the maps µ 7→ Λµ and λ 7→ Λλ continuous? Is it possible that Λ1ij = Λ∗

1ij

and Λ2ij = Λ∗
2ij? If 0 < λ = L∗

ij < +∞, can we have Λλ > 0? If 0 < µ = M∗
ij < +∞, can

we have Λµ > 0?
After the introduction, this work is divided into three other sections. The second section

is dedicated to the question of non-existence of solutions for (Pi). In the third section,
we present the method of sub-super solution, and finally, in the fourth and last section,
we present the proof of Theorem 1.4.

2. Non-existence results

This section is dedicated to non-existence issues for the problems (P1) and (P2). The
proof of the following lemma is an adaptation of [4, Lemma 3.3].

Lemma 2.1. Let Ω0 ⊂ RN be a C1 bounded domain, m ∈ L∞(Ω0) which satisfies
0 ≤ m(x) 6≡ 0 in Ω0, assume that f(t) is a function such that t−1f(t) is decreasing for
t> 0. Suppose that φ, ϕ ∈ W 2,s(Ω0) ∩ C1(Ω0) and Q > −λ1(Ω0) satisfies

{
−∆ϕ+Qϕ ≥ m(x)f(ϕ), x ∈ Ω0

ϕ > 0, x ∈ Ω0

and


−∆φ+Qφ ≤ m(x)f(φ), x ∈ Ω0

φ > 0, x ∈ Ω0

φ = 0, x ∈ ∂Ω0

then ϕ ≥ φ in Ω0.

Proof. Let Θ ∈ C1(R) be a nondecreasing function such that Θ(t) = 0 for t ≤ 0 and
Θ(x) = 1 for t ≥ 1. Setting Θε(t) = Θ( tε ), as Ω0 is a C1 bounded domain, we can then
invoke the Green’s formula and proceed as in [4, Lemma 3.3] to get

∫
Ω0

m(x)φϕ

[
f(ϕ)

ϕ
− f(φ)

φ

]
Θε(φ− ϕ) ≤ −

∫
Ω0

Θ̂ε(φ− ϕ)∆φ,

where Θ̂ε(t) :=
∫ t

0
sΘ′

ε(s)ds. Since 0 ≤ Θ̂ε(t) ≤ ε, then

0 ≤
∫
Ω0

m(x)φϕ

[
f(ϕ)

ϕ
− f(φ)

φ

]
Θε(φ− ϕ)dx ≤ ε

(
−
∫
Ω0

∆φ

)
.

Since t−1f(t) is decreasing for t > 0, taking ε → 0+ in the above expression, we obtain
that ∫

Ω1

m(x)φϕ

[
f(ϕ)

ϕ
− f(φ)

φ

]
dx = 0

where Ω1 := {x ∈ Ω0 | φ(x) > ϕ(x)} ⊂⊂ Ω0, which is an open set. Since t−1f(t) is
decreasing for t > 0, if Ω1 6= ∅, we have thatm(x) = 0 ∀x ∈ Ω1, so −∆(ϕ−φ)+Q(ϕ−φ) ≥
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0 in Ω1 and ϕ − φ = 0 on ∂Ω1. Thus, ϕ ≥ φ in Ω1, which is a contradiction. Therefore,
Ω1 = ∅, and the lemma is proved. �

Remark 2.2. Let Ω be a C1,1 bounded domain and m ∈ L∞(Ω) with m+(x) 6≡ 0 in
Ω. From [33], we can define λ1m(Ω) and ϕ1mΩ respectively as the principal eigenvalue
and first eigenfunction to the problem{

−∆ϕ = λm(x)ϕ , x ∈ Ω

ϕ = 0 , x ∈ ∂Ω.

Moreover,

0 <
1

λ1m(Ω)
= sup

w∈H1
0(Ω)

∫
Ω
m(x)w2 dx∫

Ω
|∇w|2 dx

and ϕ1mΩ > 0 in Ω. Observe that by the standard regularity theory, we have ϕ1mΩ ∈
W 2,s(Ω) ∩W 1,s

0 (Ω) ∩ C1(Ω) for s > 1.

In what follows, for the set Ω0 ⊂ Ω and m ∈ L∞(Ω0) with m+(x) 6≡ 0 in Ω0, we will
write λ1m and ϕ1m instead of λ1mΩ0

and ϕ1mΩ0
. We will also consider throughout this

work that ‖ϕ1m‖∞ = 1.

Corollary 2.3. Suppose that for some C1 bounded domain Ω0 ⊂ Ω, we have −∆w ≥
tm(x)wr in Ω0, where w ∈ W 2,s(Ω) ∩ C1(Ω), t> 0, 0 < r < 1, 0 ≤ m(x) 6≡ 0, x ∈ Ω0,
and w> 0 in Ω0. Then we have

w(x) ≥
(

t

λ1m

) 1
1−r

ϕ1m(x), ∀x ∈ Ω0.

Proof. It is easy to verify that ϕ1m(x) =

(
t

λ1m

) 1
1−r

ϕ1m(x) satisfies −∆ϕ1m ≤

tg(x)ϕr
1m, so the corollary is a direct consequence of Lemma 2.1. �

The following two propositions will provide sufficient conditions for systems (P1) and
(P2) to have no solution, in the sense of Definition 1.1. In this section, Ω ⊂ RN is a
bounded domain, and Ω0 ⊂ Ω is a domain whose boundary will have regularity C1 or
C1,1.
The only requirement we will impose on the signs of the weight functions is that they

must satisfy condition (PΩ0
), where Ω0 ⊂ Ω. That is, these functions must be non-

negative and non-zero in Ω0. Outside of Ω0, we are not imposing any specific behavior
regarding the sign; in other words, the functions may or may not have an indefinite sign
in Ω.

Proposition 2.4. Suppose that for some C1 domain Ω0 ⊂ Ω, the weights a(·), b(·),
c(·), d(·) satisfy the condition (PΩ0

), and α ≥ 1, β, γ, θ > 0. Then there is a number
Λ∗
1 := Λ1(a(·), b(·), c(·), d(·), p, q, α, β) > 0 such that:

https://doi.org/10.1017/S0013091524000476 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000476


Existence and non-existence results for a class of systems 13

(i) There are no solutions for (P1) with λ
α−1
1−q µ

β
1−p > Λ∗

1;
(ii) There are no solutions for (P2) with λ > Λ∗

1.

Proof. In what follows we will consider x ∈ Ω0.
Case (i): Since −∆u ≥ λa(x)uq and −∆v ≥ µb(x)vp by Corollary 2.3, we have

u ≥
(

λ

λ1a

) 1
1−q

ϕ1a and v ≥
(

µ

λ1b

) 1
1−p

ϕ1b. (2.1)

Since −∆u ≥ c(x)uαvβ by Equation (2.1), we get −∆u ≥ λ
α−1
1−q µ

β
1−p c(x)u, where c(x) :=

λ
1−α
1−q
1a λ

−β
1−p
1b ϕα−1

1a (x)ϕβ
1b(x)c(x) so −ϕ1c∆u ≥ λ

α−1
1−q µ

β
1−p c(x)ϕ1cu, a simple computation

provides λ
α−1
1−q µ

β
1−p ≤ λ1c.

Case (ii): In this case, we have u ≥ λ
−1
1−q
1a ϕ1a and v ≥ λ

−1
1−p
1b ϕ1b, since −∆u ≥ λc(x)uαvβ

then −∆u ≥ λc(x)u, as in the last case we have λ ≤ λ1c. �

Remark 2.5. Suppose that (PW1) holds, and a(·), b(·), c(·) and d(·) satisfy the (PΩ0
)

condition,for some C 1 domain Ω0 ⊂ Ω. From Proposition 2.4, there are numbers Λ∗
i > 0,

i = 1, 2, such that:

(i) There is no solution (u, v) for (P1) with λ
α−1
1−q µ

β
1−p > Λ∗

1 or µ
γ−1
1−p λ

θ
1−q > Λ∗

2;
(ii) There is no solution (u, v) for (P2) with λ > Λ∗

1 or µ > Λ∗
2.

Before we present the next non-existence theorem, we will present a version of the
Krein–Rutman theorem [37]. The proof of this result can be found in [40] or [11, Problem
41, p. 499]. This theorem plays a crucial role in the proof of our non-existence theorem.

Theorem 2.6 (Krein–Rutman) Let E be a Banach space and let P be a convex
cone with vertex at 0, i.e. λu+ µv ∈ P, ∀λ, µ ≥ 0, ∀u, v ∈ P . Assume that P is closed,
IntP 6= ∅ and P 6=E. Let T : E → E be a compact operator such that T (P \ {0}) ⊂ IntP .
Then there exists some u0 ∈ intP and some λ0 > 0 such that Tu0 = λ0u0.

Proposition 2.7. Suppose that (PW2) holds, and for some C1,1 bounded domain
Ω0 ⊂ Ω, the weights a(·), b(·), c(·), d(·) satisfy the (PΩ0

) condition. Then there are positive
numbers Λ∗

i := Λ∗
i (a(·), b(·), c(·), d(·), p, q, α, β, θ, γ) such that:

(i) There is no solution (u, v) for (P1), in the sense of Definition 1.1, with u(x), v(x) >
0, ∀x ∈ Ω0, and λ > Λ∗

1 or µ > Λ∗
2;

(ii) There is no solution (u, v) for (P2), in the sense of Definition 1.1, with u(x), v(x) >
0, ∀x ∈ Ω0, and λ1−γµβ > Λ∗

3 or λθµ1−α > Λ∗
4.

Proof. In what follows, we will consider x ∈ Ω0.
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Case (i): Suppose that (u, v) is a solution for (P1) with u(x), v(x) > 0, ∀x ∈ Ω0. From
Corollary 2.3, we have

u ≥
(

λ

λ1a

) 1
1−q

ϕ1a. (2.2)

Since −∆v ≥ d(x)uθvγ by Equation (2.2), we get

−∆v ≥ λ
θ

1−q σ(x)vγ

where σ(x) := λ
−θ
1−q
1a d(x)ϕθ

1a(x). Since 0 < γ < 1, from Corollary 2.3, we obtain

v(x) ≥ λ
θ

(1−q)(1−γ)λ
−1
1−γ
1σ ϕ1σ(x). (2.3)

Since −∆u ≥ c(x)uαvβ , Equations (2.2) and (2.3) provide

−∆u ≥ λτ1σ1(x)v (2.4)

where σ1(x) = λ
−α
1−q
1a λ

−(β−1)
1−γ

1σ c(x)ϕα
1a(x)ϕ

β−1
1σ (x) and τ1 = α

1−q + θ(β−1)
(1−q)(1−γ) . Once again

using −∆v ≥ d(x)uθvγ with Equations (2.2) and (2.3), we get

−∆v ≥ λτ2σ2(x)u (2.5)

where σ2(x) = λ
1−θ
q−1
1a λ

−γ
1−γ
1σ d(x)ϕγ

1σ(x)ϕ
θ−1
1a (x) and τ2 = θ−1

1−q + θγ
(1−q)(1−γ) .

Claim: There is a principal eigenvalue λ12 > 0 and principal eigenfunctions φ1, φ2 >
0, ∀x ∈ Ω0 belonging to W 2,s(Ω) ∩W 1,s

0 (Ω0) ∩ C1(Ω0), ∀s > 1 for the problem:{
−∆φ1 = λ12σ1(x)φ2, Ω0

−∆φ2 = λ12σ2(x)φ1, Ω0.
(LP)

From Equation (2.4), we get

λ12

∫
Ω0

σ2(x)uφ1 dx =

∫
Ω0

−u∆φ2 dx ≥ −
∫
Ω0

φ2∆udx ≥ λτ1

∫
Ω0

σ1(x)vφ2 dx.

Therefore,

λ12

∫
Ω0

σ2(x)uφ1 dx ≥ λτ1

∫
Ω0

σ1(x)vφ2 dx. (2.6)

Similarly, we get

λ12

∫
Ω0

σ1(x)vφ2 dx ≥ λτ2

∫
Ω0

σ2(x)uφ1 dx. (2.7)
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Follows from Equations (2.6) and (2.7) that λτ1+τ2 ≤ λ2
12, so it is enough to consider

Λ∗
1 = λ

2
τ1+τ2
12 . Now we will prove the Claim. Let E = C1(Ω0) ∩ H1

0 (Ω0) and P = {u ∈
E | u(x) ≥ 0, x ∈ Ω0}. It is known that

int P =

{
u ∈ E | u(x) > 0, x ∈ Ω0,

∂u

∂ν
< 0, x ∈ ∂Ω0

}
.

For i = 1, 2, we set the operators Ti : E → E by Ti(u) = v, where v ∈ W 2,s(Ω0) ∩
W 1,s

0 (Ω0) ∩ C1(Ω0) is the unique solution of the problem

−∆v = σi(x)u in Ω0, v(x) = 0 on ∂Ω0,

from [31, Theorems 7.26, 9.15 and Lemma 9.17], we have that Ti is well-defined and
T := T2 ◦ T1 is a compact operator. Moreover, utilizing the maximum principles [31,
Theorems 8.1 and 8.19] along with Hopf’s lemma [35] (see also [31, Lemma 3.4] and
Remark 2.8), we have T (P \ {0}) ⊂ int P ; therefore, Theorem 2.6 provides u0 ∈ int P

and λ0 > 0 such that Tu0 = λ0u0, hence λ12 = λ
−1/2
0 , φ1 = λ

−1/2
0 T1u0 and φ2 = u0 are

solutions for (LP). In a similar way, we prove that for some Λ∗
2, there are no solutions

for µ > Λ∗
2.

Case (ii): In what follows, we consider x ∈ Ω0. Suppose that (u, v) is a solution for (P2).
Since −∆u ≥ a(x)uq and −∆v ≥ b(x)vp, we have

u ≥ λ
−1
1−q
1a ϕ1a and v ≥ λ

−1
1−p
1b ϕ1b. (2.8)

Since −∆u ≥ λc(x)uαvβ and −∆v ≥ µd(x)uθvγ , we have

−∆u ≥ λσ(x)uα and −∆v ≥ µσ(x)vγ , (2.9)

where σ(x) = λ
−β
1−p
1b c(x)ϕβ

1b(x) and σ(x) = λ
−θ
1−q
1a d(x)ϕθ

1a(x). By Equation (2.9), we get

u ≥
(

λ

λ1σ

) 1
1−α

ϕ1σ and v ≥
(

µ

λ1σ

) 1
1−γ

ϕ1σ. (2.10)

From Equations (2.8) and (2.10), −∆u ≥ λc(x)uαvβ and −∆v ≥ µd(x)uθvγ , we obtain{
−∆u ≥ λ

1
1−α c(x)v

−∆v ≥ λ
θ−1
1−αµd(x)u

(2.11)

where c(x) = λ
−α
1−α
1σ λ

1−β
1−p
1b ϕα

1σ(x)ϕ
β−1
1b (x)c(x) and d(x) = λ

1−θ
1−α
1σ λ

−γ
1−p
1b σθ−1

1σ (x)ϕγ
1b(x)d(x).

From Equation (2.11), we can proceed as in the proof of Case (i) to obtain Λ∗
3 such that

(Λ∗
3)

1
1−α ≥ λ

1
1−αλ

θ−1
1−αµ = λ

θ
1−αµ =⇒ Λ∗

3 ≥ λθµ1−α.

In a similar way, we get Λ∗
4 > 0 such that Λ∗

4 ≥ λ1−γµβ . �
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Remark 2.8. Traditionally, the Hopf Lemma [35] is presented for functions of class
C 2. However, this result can be easily extended to functions in W 2,s(Ω) ∩ C1(Ω) with
∂Ω ∈ C1,1. Indeed, although the proof given in [31, Lemma 3.4] is for functions in
C2(Ω), it essentially employs comparison principles for functions in C2(Ω)∩C0(Ω). Since
∂Ω ∈ C1,1, Ω satisfies the interior sphere condition, ensuring that the proof of this result
remains unchanged if we use the comparison principles for functions in W 1,2(Ω) (see
[31, Theorems 8.1 and 8.19], and also [31, Sections 9.7–9.9] for maximum principles for
functions in W 2,N (Ω)).

Following the same idea of Proposition 2.4, part (i), and Proposition 2.7, part (ii), we
have

Corollary 2.9. Suppose that a(·), b(·), c(·), d(·) satisfy the (PΩ0
) condition for some

C1,1 domain Ω0 ⊂ Ω, and (PW3) holds. Then there are Λ∗
i > 0, i = 1, 2, 3, 4, satisfying:

(i) There is no solution (u, v) for (P1) with λ > Λ∗
1 or λ

α−1
1−q µ

β
1−p > Λ∗

2;
(ii) There is no solution (u, v) for (P2) with λ > Λ∗

3 or λ1−γµβ > Λ∗
4.

Proof of Theorem 1.2: The proof of this theorem is a direct consequence of
Proposition 2.4, Proposition 2.7 and Corollary 2.9. �

3. The sub-supersolution method

In this section, we write φ±(x) := max{0,±φ(x)} and ‖φ‖∞ := |φ|L∞(Ω). We always

assume that Ω ⊂ RN is a bounded domain with ∂Ω ∈ C1,1. The following notation is of
fundamental importance for the definition of sub and super-solutions: If φ ∈ L∞(Ω), we
set

[0, φ] := {w ∈ L∞(Ω) | 0 ≤ w(x) ≤ φ(x)} .

We define (u, v) as a supersolution for (Pi) if, for all s > 1, u, v ∈ W 2,s(Ω)∩
W 1,s

0 (Ω) ∩ C1(Ω), and u, v satisfy:
−∆u ≥ fλ(x, z, w) in Ω, ∀z ∈ [0, u], ∀w ∈ [0, v]

−∆v ≥ gµ(x, z, w) in Ω, ∀z ∈ [0, u], ∀w ∈ [0, v]

u, v > 0 in Ω

u = v = 0 on ∂Ω

(S̄λµ)

where fλ(x, z, w) = λa(x)zq + c(x)zαwβ and gµ(x, z, w) = µb(x)wp + d(x)zθwγ for
(P1), and fλ(x, z, w) = a(x)zq + λc(x)zαwβ and gµ(x, z, w) = b(x)wp + µd(x)zθwγ

for (P2).

Remark 3.1. When all weight functions a, b, c, d ∈ L∞(Ω) are non-negative, then a
solution (u, v) to (Pi) with λ, µ > 0 is also a super-solution satisfying (Sλµ). However,
if at least one of the weight functions changes sign in Ω or is negative on a set of positive
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measure, then a solution (u, v) to (Pi) may not be a super-solution satisfying (Sλµ). This
is a very relevant difference for the concept of super-solutions for systems, since in the
scalar case, a solution is always a super-solution.

In the scalar case (Pλ) with a ≡ b ≡ 1, the authors of [4] obtained the first solution via
the method of sub-super solutions. The super-solution for (Pλ) provided by these authors
takes the form Me, where e ∈ C2(Ω)∩C(Ω) satisfies −∆e = 1 in Ω and e =0 on ∂Ω. For
this super-solution to exist, it is sufficient that the inequality M ≥ λMq‖e‖q∞+Mp‖e‖p∞
admits a solution M = M(λ) > 0 (see [4, Lemma 3.1]). In our approach, the super-
solutions take the form u = Xe and v = Y e, whereX = X(λ, µ) > 0 and Y = Y (λ, µ) > 0
are real numbers, which depending on (P1) or (P2), satisfy one of the following systems:

X ≥ λAXq + CXαY β

Y ≥ µBY p +DXθY γ

X > 0, Y > 0

(3.1)


X ≥ AXq + λCXαY β

Y ≥ BY p + µDXθY γ

X > 0, Y > 0,

(3.2)

where A,B,C,D ∈ R, p, q ∈ (0, 1), α, β, γ, θ > 0, max{α, β} > 1 and max{γ, θ} > 1. For
which values of λ> 0 and µ> 0 do the systems (3.1) and (3.2) have a solution (X,Y )?
In Lemma 3.3, we will delve into this question; however, it should be noted that systems
(3.1) and (3.2) always have a solution when λ> 0 and µ> 0 are sufficiently small. We
will register this fact in a brief remark.

Remark 3.2. If we look for solutions of type X = Y > 0, since p, q ∈ (0, 1),
max{α, β} > 1, and max{θ, γ} > 1, it is easy to see that

X = Y = max{(2Aλ)
1

1−q , (2Bµ)
1

1−p }

with max{(2Aλ)
1

1−q , (2Bµ)
1

1−p } ≤ min{(2C)
−1

α+β−1 , (2D)
−1

θ+γ−1 } satisfies Equation
(3.1) and

X = Y = min{(2λC)
−1

α+β−1 , (2µD)
−1

θ+γ−1 }

with max{(2A)
1

1−q , (2B)
1

1−p } ≤ min{(2λC)
−1

α+β−1 , (2µD)
−1

θ+γ−1 } satisfies Equation
(3.2). Then, there is Λ > 0 such that Equations (3.1) and (3.2) always have solutions
for all λ, µ ∈ (0,Λ], so we are interested in analyzing cases where λ> 0 or µ> 0 can be
arbitrarily large.

Lemma 3.3. Suppose that A, B, C, D > 0, then there are Λkij = Λkij(A,B,C,D,
α, β, γ, θ) > 0 such that
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(i) If (PW1) holds, then the system (3.1) has a solution (X,Y) if

λ
α−1
1−q µ

β
1−p ≤ Λ111 and λ

θ
1−q µ

γ−1
1−p ≤ Λ211;

(ii) If (PW1) holds, then the system (3.2) has a solution if λ ≤ Λ121 and µ ≤ Λ221;
(iii) If (PW2) holds, then the system (3.1) has a solution if λ ≤ Λ112 and µ ≤ Λ212;
(iv) If (PW2) holds, then the system (3.2) has a solution if λ1−γµβ ≤ Λ122 and

λθµ1−α ≤ Λ222;

(v) If (PW3) holds, then the system (3.1) has a solution if λ ≤ Λ113 and λ
α−1
1−q µ

β
1−p ≤

Λ213;
(vi) If (PW3) holds, then the system (3.2) has a solution if λ ≤ Λ123 and λ1−γµβ ≤

Λ223.

Proof. The Case (ii) and Case (iii) follow from Remark 3.2.

Case (i): It is enough to take X = (2Aλ)
1

1−q and Y = (2Bµ)
1

1−p . Thus, we have

(X/2) = λAXq and (Y/2) = µBY p. On the other hand, if λ
α−1
1−q µ

β
1−p ≤ Λ111 :=

(2A)
−(α−1)
1−q (2B)

−β
1−p (2C)−1 and

λ
θ

1−q µ
γ−1
1−p ≤ Λ211 := (2A)

−θ
1−q (2B)

−(γ−1)
1−p (2D)−1,

then (X/2) ≥ CXαY β and (Y/2) ≥ DXθY γ , and therefore X and Y satisfy Equation
(3.1).
Case (iv): If

X := ((2D)β(2C)1−γλ1−γµβ)
−1

βθ−(1−α)(1−γ)

and

Y := ((2D)1−α(2C)θλθµ1−α)
−1

βθ−(1−α)(1−γ) ,

then we see that X/2 = λCXαY β and Y/2 = µDXθY γ . Since βθ − (1− α)(1− γ) > 0,
we can choose Λ122 > 0 and Λ222 > 0 such that λ1−γµβ ≤ Λ122 and λθµ1−α ≤ Λ222

imply X/2 ≥ AXq and Y/2 ≥ BY p. Therefore, X and Y satisfy Equation (3.2). Case

(v): If we take X = (2Aλ)
1

1−q and Y = max{(2Bµ)
1

1−p , (2D(2Aλ)
θ

1−q )
1

1−γ }, then we
have X/2 = λAXq and Y ≥ µBY p +DXθY γ . Now we choose Λ113 > 0 and Λ213 > 0,

in such a way that for λ ≤ Λ15 and λ
α−1
1−q µ

β
1−p ≤ Λ25 we have X/2 ≥ CXαY β , and

therefore X and Y satisfy Equation (3.1).
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Case (vi): First of all, take B = B(B, γ, p) such that Y ≥ BY γ ⇒ Y ≥ 2BY p. Then,
the solutions of the system 

X ≥ AXq + λCXαY β

Y ≥ BY γ + 2µDXθY γ

X > 0, Y > 0,

(3.3)

are solutions of Equation (3.2). Since α ≥ 1, there are Λ123 > 0 and Λ223 > 0 such that,

for all λ ≤ Λ123 and λµ
β

1−γ ≤ Λ
1

1−γ
223 (λ1−γµβ ≤ Λ223), there is X > 0 satisfying

X ≥ AXq + λ2
β

1−γB
β

1−γCXα + λµ
β

1−γ 2
β

1−γ (2D)
β

1−γCX
α+

βθ
1−γ .

So

X −AXq

λCXα
≥ 2

β
1−γ

(
B

β
1−γ + (2Dµ)

β
1−γX

βθ
1−γ

)
≥
(
B + 2µDXθ

) β
1−γ .

Hence, if we take Y > 0 in such a way

X −AXq

λCXα
≥ Y β ≥

(
B + 2µDXθ

) β
1−γ ,

then X > 0 and Y > 0 satisfy Equation (3.3). �

Corollary 3.4. (Existence of super-solution) Let e ∈ W 2,s(Ω) ∩W 1,s
0 (Ω) ∩ C1(Ω)

be the unique positive solution of the problem −∆e = 1 in Ω, where e=0 on ∂Ω (see [31,
Theorems 7.26 and 9.15]). Define A := ‖a‖∞‖e‖q∞, B := ‖b‖∞‖e‖p∞, C = ‖c‖∞‖e‖α+β

∞
and D := ‖d‖∞‖e‖θ+γ

∞ . For Λkij found in Lemma 3.3, in each of the cases (i) − (vi),

where λ, µ > 0 satisfy these conditions, there are u, v ∈ W 2,s(Ω) ∩ W 1,s
0 (Ω) ∩ C1(Ω)

satisfying (Sλµ).

Proof. If X > 0 and Y > 0 are solutions for Equation (3.1) or (3.2), then we see that
u = Xe and v = Y e satisfy (Sλµ). �

In a manner akin to the definition of a super-solution, we define (u, v) as a sub-solution
for (Pi) subordinate to u, v ∈ L∞(Ω) \ {0} when u, v ∈ W 2,s(Ω) ∩W 1,s

0 (Ω) ∩ C1(Ω) for
all s > 1 and u, v satisfy:

−∆u ≤ fλ(x, u, w) in Ω, ∀w ∈ [0, v]

−∆v ≤ gµ(x, z, v) in Ω, ∀z ∈ [0, u]

v, v ≥ 0 in Ω

u = v = 0 on ∂Ω

u 6≡ 0, v 6≡ 0 in Ω.

(Sλµ)

Remark 3.5. A similar observation to that in Remark 3.1 holds for sub-solutions.
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The sets A := {x ∈ Ω | a(x) > a1 := ‖a‖∞/2} and B := {x ∈ Ω | b(x) > b1 :=
‖b‖∞/2} have positive Lebesgue measure. Furthermore, Ω \ A and Ω \ B can have zero
Lebesgue measure, despite that we can set h, r ∈ L∞(Ω) by

h(x) =

{
a1 , x ∈ A
−1 , x ∈ Ω \ A

r(x) =

{
b1 , x ∈ B
−1 , x ∈ Ω \ B.

(3.4)

We will see that in some cases, for a small ε> 0, we have sub-solutions of the type
u = εϕ1hΩ and v = εϕ1rΩ. However, this approach does not work when c−(x) 6≡ 0,
d−(x) 6≡ 0, q < α < 1, or p < γ < 1. In order to overcome this obstacle, we will obtain
another type of sub-solution. For that, we will use the variational method.

Proposition 3.6. Let m ∈ L∞(Ω) \ {0} with m(x) ≥ 0 in Ω. For all 0 < r1 < r2 ≤ 1,
K ≥ 0, and ε> 0, the auxiliary problem (Pε):

−∆u = εm(x)ur1 −Kur2 in Ω

0 6≡ u ≥ 0 in Ω

u = 0 on ∂Ω,

(Pε)

has a solution u ∈ W 2,s(Ω) ∩ W 1,s
0 (Ω) ∩ C1(Ω), for all s> 1. Moreover, we have u ≤

ε
1

1−r1 Me in Ω, where e ∈ W 2,s(Ω) ∩W 1,s
0 (Ω) ∩ C1(Ω) is the unique solution of −∆e = 1

in Ω, and M = M(r1, ‖m‖∞, ‖e‖∞).

Proof. Let Iε : H
1
0 (Ω) → R, Iε ∈ C1 given by

Iε(u) :=
1

2

∫
Ω

(
|∇u|2 + 2K

r2 + 1
|u|r2+1

)
dx− λ

r1 + 1

∫
Ω

m(x)|u|r1+1 dx.

Since H1
0 (Ω) ↪→ Lr1+1(Ω), then for some R> 0, we have

Iε(u) ≥ 0, for all ‖u‖ := ‖u‖H1
0(Ω) =

(∫
Ω

|∇u|2dx
) 1

2

= R. (3.5)

Choosing ϕ ∈ H1
0 (Ω) with

∫
Ω
m(x)ϕdx > 0, we see that limt→0+ t−(r1+1)Iε(tϕ) < 0,

then we get

c0 := inf
{
Iε(u) |u ∈ H1

0 (Ω) and ‖u‖ ≤ R
}
< 0.

A standard compactness argument provides u0 ∈ H1
0 (Ω) with ‖u0‖ ≤ R such that

Iε(u0) = c0 < 0, so u0 6≡ 0. Since Iε(u0) = Iε(|u0|), we will suppose u0 ≥ 0.
From Equation (3.5), we get ‖u0‖ < R. Then I ′ε(u0) = 0, hence u0 is a weak solu-
tion for (Pε). From [43, Lemma B3, p. 270], we obtain u0 ∈ Ls(Ω) for all s > 1 (since
r2 ≤ 1, this can also be derived using a bootstrap argument). By [31, Theorems 7.26
and 9.15], it follows that u0 ∈ W 2,s(Ω) ∩W 1,s

0 (Ω) ∩ C1(Ω) for all s > 1. Now observe
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that for t = ε
1

1−r1 (‖m‖∞‖e‖r1∞)
1

1−r1 , we have −∆(te) ≥ εm(x)(te)r1 in Ω. Since
−∆u0 ≤ εm(x)u

r1
0 in Ω, we can invoke Lemma 2.1 to obtain u0 ≤ te. �

Remark 3.7. Although we do not know if the solution u0 is positive, observe that
the set Ω0 :=

{
x ∈ Ω |u0(x) = 0

}
has empty interior. Otherwise, if there is Br ⊂ Ω0,

then we can take ϕ ∈ C∞
c (Ω) with suppϕ ⊂ Br. Therefore, for a small t > 0, we obtain

Iε(u0 + tϕ) = Iε(u0) + Iε(tϕ) < Iε(u0), which is a contradiction.

Remark 3.8. If m0 := infΩ m(x) > 0, since r2 > r1, then we get for M > 0 large
−∆u = εm(x)ur1 − Kur2 ≥ εm0u

r1 − Kur2 ≥ −Mu in Ω, so the strong maximum
principle provides u > 0 in Ω (see [31, Theorem 8.19]).

Lemma 3.9. (Existence of sub-solutions) Let (u, v) = (uλµ, vλµ) be the super-
solution obtained in Corollary 3.4 under the conditions (i)–(vi) of Lemma 3.3. Suppose
that (P1)–(P2) hold. Consider the following hypotheses:

(H1)c(x) ≥ 0 in Ω; (H3)d(x) ≥ 0 in Ω;

(H2)α > q; (H4)γ > p.

If (H1) or (H2) holds and if (H3) or (H4) holds, then there are u and v satisfying
(Sλµ).

Proof. Without loss of generality, we will only obtain sub-solutions to (P1). To illus-
trate the other cases, let us initially consider that α> 1 and γ > 1. Let h and r be defined
in Equation (3.4). We set ϕ1h := ϕ1hΩ and ϕ1r := ϕ1rΩ. We can choose ε> 0 small in
such a way:

ελ1hϕ1h ≤ λa1(εϕ1h)
q − ‖c‖∞(εϕ1h)

α‖v‖β∞ x ∈ A
−ελ1hϕ1h ≤ −‖c‖∞(εϕ1h)

α‖v‖β∞ x ∈ Ω \ A
ελ1rϕ1r ≤ µb1(εϕ1r)

p − ‖d‖∞‖u‖θ∞(εϕ1r)
γ x ∈ B

−ελ1rϕ1r ≤ −‖d‖∞‖u‖θ∞(εϕ1r)
γ x ∈ Ω \ B.

(3.6)

Taking u = εϕ1h and v = εϕ1r in view of Equation (3.6), we have that u and v satisfy
(Sλµ).

If q < α ≤ 1 for ε> 0, we set uε as the solution of the problem (Pε) withK = ‖c‖∞‖v‖β∞
(see Proposition 3.6), r1 = q, and r2 = α. Then for ε> 0 sufficiently small, we have

−∆uε = εa(x)uq
ε −Kuα

ε ≤ λa(x)uq
ε + c(x)uα

εw
β , ∀w ∈ [0, v].

Since uε ≤ ε
1

1−qMe in Ω, then for ε> 0 sufficiently small, we have uε ≤ u, so we set
u = uε. If p < γ ≤ 1, in the same way we set 0 ≤ vε ∈ W 2,s(Ω) ∩W 1,s

0 (Ω) ∩ C1(Ω) as

the non-trivial solution of the problem −∆vε = εb(x)vpε − K̂vγε with K̂ = ‖d‖∞‖u‖θ∞. So,
we set v = vε for a sufficiently small ε> 0. If c(x) ≥ 0 in Ω, then it is easy to check that
εϕ1aΩ satisfies the first inequality of (Sλµ) for ε> 0 sufficiently small. If d(x) ≥ 0 in Ω,
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then εϕ1bΩ satisfies the second inequality of (Sλµ). In short, we have that u assumes one
of the following forms: εϕ1aΩ, εϕ1h, uε, and v assumes one of the following forms: εϕ1bΩ,
εϕ1r, vε. �

Remark 3.10. Let u and v be obtained in Corollary 3.4, and u and v be obtained in
Lemma 3.9. By the maximum principle, we can take ε> 0 sufficiently small in such way
u ≤ u and v ≤ v.

4. Existence of positive solution: global and local results

This section is devoted to the proof of Theorem 1.4.

Proof of Theorem 1.4-(i): Suppose that (PWj) holds and take Λ1ij , Λ2ij > 0
given by Lemma 3.3 with A = ‖a‖∞ + 1, B = ‖b‖∞ + 1, C = ‖c‖∞ and D = ‖d‖∞.
Under conditions (Hl) and (Hs), we will get positive solutions for the problem (Pi)
when λτ1jµσ1j ≤ Λ1ij and λτ2jµσ2j ≤ Λ2ij . We will obtain the solutions by an iteration
argument. In order to do this, for Q > 0 we define

Fλ(x, u, v) := Qu+ fλ(x, u, v)

Gµ(x, u, v) := Qv + gµ(x, u, v),

where fλ and gµ were defined in § 3. The main difficulty here is that if x ∈ Ω satis-
fies a(x) = 0, q < α < 1, c(x) < 0 and v(x) > 0, then for all Q > 0 the function
t 7→ Fλ(x, t, v(x)) is strictly decreasing for t > 0 close to zero, while if a(x) > 0 and
v(x) > 0, for all t0 > 0 there is Q > 0 large such that the function t 7→ Fλ(x, t, v(x))
is non-decreasing for t > 0 in [0, t0]. The same phenomenon occurs with the function
t 7→ Gµ(x, u(x), t). In this situation, we cannot guarantee that the functions are non-
decreasing uniformly in x ∈ Ω. Therefore, the iteration argument does not work. In order
to get around this problem, we defined ak(x) := a(x) + 1/k and bk(x) := b(x) + 1/k.
The functions fk

λ (x, u, v) and gkµ(x, u, v) are the functions fλ(x, u, v) and gµ(x, u, v)
with ak(x) and bk(x) instead of a(x ) and b(x ). In view of our choice of A,B,C,D,

Corollary 3.4 provides u, v ∈ W 2,s(Ω) ∩W 1,s
0 (Ω) ∩ C1(Ω) for all s > 1, satisfying (Sk

λµ)
where

for all k ∈ N


−∆u ≥ fk

λ (x, z, w) in Ω, ∀z ∈ [0, u], w ∈ [0, v]

−∆v ≥ gkµ(x, z, w) in Ω, ∀z ∈ [0, u], w ∈ [0, v]

u, v > 0 in Ω

u = v = 0 on ∂Ω.

(S̄k
λµ)

�

Since (Hl) and (Hs) hold, then (H l1
) and (H l2

) hold for some l1 ∈ {1, 2} and l2 ∈
{3, 4}. Then we are under the hypotheses of Lemma 3.9. Therefore, there are u ≤ u
and v ≤ v satisfying (Sλµ) (now we are considering the problem with fλ(x, u, v) and
gµ(x, u, v)). For all Q > 0, we define

https://doi.org/10.1017/S0013091524000476 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091524000476


Existence and non-existence results for a class of systems 23

Fk
λ (x, u, v) := Qu+ fk

λ (x, u, v)

Gk
µ(x, u, v) := Qv + gkµ(x, u, v).

If c(x) ≥ 0 (i.e. (H1) holds), then ∂tFk
λ (x, t, s) ≥ 0 for all Q > 0. If (H2) holds, then α > q.

Therefore, for all t0 > 0 and s0 > 0, for Q > 0 sufficiently large, we have ∂tFk
λ (x, t, s) ≥ 0

for x ∈ Ω, t ∈ [0, t0] and s ∈ [0, s0]. Analogously, we can suppose for the same Q > 0 that
∂sGk

µ(x, t, s) > 0 for x ∈ Ω, t ∈ [0, t0] and s0 ∈ [0, s0]. The last two expressions give us
for some Q > 0


0 ≤ s1 ≤ s2 ≤ ‖u‖∞
0 ≤ t1 ≤ t2 ≤ ‖v‖∞
0 ≤ s ≤ ‖u‖∞
0 ≤ t ≤ ‖v‖∞

=⇒

{
0 ≤ Fk

λ (x, s1, t) ≤ Fk
λ (x, s2, t)

0 ≤ Gk
µ(x, s, t1) ≤ Gk

µ(x, s, t2).
(4.1)

We define the monotone iteration for n ≥ 0, with u0 = u and v0 = v as follows:
−∆un+1 +Qun+1 = Fk

λ (x, un, vn) in Ω

−∆vn+1 +Qvn+1 = Gk
µ(x, un, vn) in Ω

un+1, vn+1 > 0 in Ω

un+1 = vn+1 = 0 on ∂Ω.

(Pnk
λµ)

From Equation (4.1), (Sk

λµ), (Sλµ) and the maximum principle, by induction, we get

0 ≤ u ≤ un ≤ un+1 ≤ u and 0 ≤ v ≤ vn ≤ vn+1 ≤ v in Ω. Thus, there are uk
λµ, v

k
λµ ∈

C1
0 (Ω) ∩W 2,s(Ω) such that u ≤ uk

λµ ≤ u and v ≤ vkλµ ≤ v in Ω with −∆uk
λµ + Quk

λµ =

Fk
λ (x, u

k
λµ, v

k
λµ) and −∆vkλµ +Qvkλµ = Gk

µ(x, u
k
λµ, v

k
λµ) in Ω. So, we have

−∆uk
λµ = fk

λ (x, u
k
λµ, v

k
λµ) and −∆vkλµ = gkµ(x, u

k
λµ, v

k
λµ) in Ω.

Therefore, we have ‖uk
λµ‖ and ‖vkλµ‖ bounded. Then, for some uλµ, vλµ ∈ H1

0 (Ω), u
k
λµ ⇀

uλµ and vkλµ ⇀ vλµ weakly in H1
0 (Ω) when k → +∞. Up to a subsequence, we have

u ≤ uλµ ≤ u and v ≤ vλµ ≤ v in Ω. For ϕ ∈ C∞
c (Ω), we have∫

Ω

∇uλµ∇ϕ = lim
k→∞

∫
Ω

−∆uk
λµϕ = lim

k→∞
fk
λ (x, u

k
λµ, v

k
λµ)ϕ =

∫
Ω

fλ(x, uλµ, vλµ)ϕ.

In the same way, we have∫
Ω

∇vλµ∇ϕ = lim
k→∞

∫
Ω

−∆vkλµϕ = lim
k→∞

gkµ(x, u
k
λµ, v

k
λµ)ϕ =

∫
Ω

gµ(x, uλµ, vλµ)ϕ.

So, (uλµ, vλµ) are weak solutions for (Pi). Since uλµ, vλµ ∈ L∞(Ω), from [31,
Theorems 7.26 and 9.15]) one has uλµ, vλµ ∈ C1

0 (Ω) ∩W 2,s(Ω), where C1
0 (Ω) := C1(Ω)∩

H1
0 (Ω). To finish the proof, we need to show that solutions are positive. The sub-solution
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u assumes one of the forms εϕ1aΩ, εϕ1h, uε (see the final comments in Lemma 3.9). In
the first two cases, we have u > 0 in Ω. If u = uε, by Remark 3.8, we get u > 0 in Ω.
Similarly, v > 0 in Ω, therefore uλµ, vλµ > 0 in Ω.

Proof of Theorem 1.4-(ii): We define (Pi
λµ) as the problem (Pi) with λ> 0 and

µ> 0. Let

O :=
{
(λ, µ) ∈ R2

+ : (Pi
λµ) has a solution

}
.

By statement (i), the set O is nonempty. Let (λ, µ) ∈ O and (u, v) be some solution of
(Pi

λµ
). We take λ, µ > 0 in such a way that 0 < λ ≤ λ, 0 < µ ≤ µ. From [13], we can set

uλ0 > 0 and v0µ > 0 as the unique positive solutions of{
−∆u = fλ(x, u, 0) in Ω

u = 0 on ∂Ω

{
−∆v = gµ(x, 0, v) in Ω

v = 0 on ∂Ω.

From Lemma 2.1, we have 0 < uλ0 ≤ u and 0 < v0µ ≤ v in Ω. We define the monotone
iteration for n ≥ 0, with u0 = uλ0 and v0 = v0µ as follows:

−∆un+1 = fλ(x, un, vn) in Ω

−∆vn+1 = gµ(x, un, vn) in Ω

un+1, vn+1 > 0 in Ω

un+1 = vn+1 = 0 on ∂Ω.

(Pn
λµ)

�

Since all weights a(·), b(·), c(·), d(·) are nonnegative, as in statement (i), by the max-
imum principle and induction on n ≥ 0, we get 0 < uλ0 ≤ un ≤ un+1 ≤ u and
0 < v0µ ≤ vn ≤ vn+1 ≤ v in Ω. Then, (un, vn) converge strongly in H1

0 × H1
0 to some

solution (uλµ, vλµ) of (Pi
λµ). Furthermore, 0 < uλ0 ≤ uλµ ≤ u and 0 < v0µ ≤ vλµ ≤ v, so

this solution is a minimal positive solution as defined in Equation (1.3).
If (ũ, ṽ) is a solution of (Pi

λµ), by Lemma 2.1, we have 0 < uλ0 ≤ ũ and 0 < v0µ ≤
ṽ in Ω. Therefore, 0 < uλ0 ≤ un ≤ ũ and 0 < v0µ ≤ vn ≤ ṽ in Ω, and so we get uλµ ≤ ũ
and vλµ ≤ ṽ. In this way, we prove the existence of minimal solutions for all (λ, µ) ∈ O and
(0, λ]× (0, µ] ⊂ O. Now we define O1 := {λ > 0 : for some µ > 0 we have (λ, µ) ∈ O}.
From the last observation, O1 is a nonempty interval. Let L∗

ij := supO1. From statement
(i), we see that L∗

ij = +∞ if and only if σij > 0 and σij > 0, which only holds when
i = j = 1 and i = j = 2. Taking λ ∈ (0, L∗

ij), we set the nonempty interval Oλ =
{µ > 0 : (λ, µ) ∈ O} and Λλ := supOλ. From Theorem 1.2, Λλ < +∞, and this ends
the proof of (ii).
If (ũ, ṽ) is a solution of (Pi

λµ), by Lemma 2.1, we have 0 < uλ0 ≤ ũ and 0 < v0µ ≤
ṽ in Ω. Therefore, 0 < uλ0 ≤ un ≤ ũ and 0 < v0µ ≤ vn ≤ ṽ in Ω, and so we get uλµ ≤ ũ
and vλµ ≤ ṽ. In this way, we prove the existence of minimal solutions for all (λ, µ) ∈ O and
(0, λ]× (0, µ] ⊂ O. Now we define O1 := {λ > 0 : for some µ > 0 we have (λ, µ) ∈ O}.
From the last observation, O1 is a nonempty interval. Let L∗

ij := supO1. From statement
(i), we see that L∗

ij = +∞ if and only if σij > 0 and σij > 0, which only holds when
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i = j = 1 and i = j = 2. Taking λ ∈ (0, L∗
ij), we set the nonempty interval Oλ =

{µ > 0 : (λ, µ) ∈ O} and Λλ := supOλ. From Theorem 1.2, Λλ < +∞, and this ends
the proof of (ii).

Proof of Theorem 1.4-(iii) and (iv): Follows immediately from (ii). �

Proof of Theorem 1.4-(v): The proof of the existence of a solution to 0 < λ < L∗
ij

and µ = Λλ is similar to the proof of [4, Lemma 3.5]. We will only deal with the case
related to the system (Pi) with i =1, as the case i =2 is quite similar. We will do a very

short proof. For all λ> 0 and µ < Λλ, we define Aλµ(x) = λa(x)uq−1
λµ + αc(x)uα−1

λµ vβλµ.
Despite the fact that the possibility of Aλµ(x) = +∞ for some values x ∈ ∂Ω, the spectral
theory for −∆−Aλµ(x) can still be carried over in H1

0 (Ω) (see [4, Remark 2.1]). We claim
that ν1, the first eigenvalue of (LP), is nonnegative.{

−∆φ−Aλµ(x)φ = νφ in Ω

φ = 0 on ∂Ω.
(LP)

�

In fact, suppose that ν1 < 0, and let φ1 > 0 be the first eigenfunction of (LP). Following
the proof of Lemma 3.5 in [4, p. 528], we obtain for a small ε> 0:

−∆(uλµ − εφ1) ≥ fλ(x, uλµ − εφ1, vλµ) in Ω.

On the other hand, we have:

−∆vλµ = gµ(x, uλµ, vλµ) ≥ gµ(x, uλµ − εφ1, vλµ) in Ω.

Then, (uλµ − εφ1, vλµ) satisfies (Sλµ). The iteration (Pn
λµ) gives us:

0 < uλ0 ≤ uλµ ≤ uλµ − εφ1 in Ω,

which is not possible because φ1 > 0. Therefore, we have ν1 ≥ 0. From (LP) we get:∫
Ω

|∇φ|2 −Aλµ(x)φ
2 ≥ 0, ∀φ ∈ H1

0 (Ω).

Taking φ = uλµ, we get:

‖uλµ‖2 ≥ λq

∫
Ω

a(x)uq+1
λµ + α

∫
Ω

c(x)uα+1
λµ vβλµ. (4.2)

Since (uλµ, vλµ) is a solution to (Pi
λµ), we have

‖uλµ‖2 = λ

∫
Ω

a(x)uq+1
λµ +

∫
Ω

c(x)uα+1
λµ vβλµ. (4.3)
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Everything we have done so far works for the case 0 < α ≤ 1. The only moment that we
have used α> 1 is now. By Equations (4.2) and (4.3), we get

‖uλµ‖2 ≤ λ

(
α− p

α− 1

)∫
Ω

a(x)uq+1
λµ .

Then for some Cq > 0, we have

‖uλµ‖1−q ≤ λCq

(
α− q

α− 1

)
. (4.4)

In the same way, if γ > 1 we get for some Cp > 0

‖vλµ‖1−p ≤ µCp

(
γ − p

γ − 1

)
. (4.5)

Now we will prove the existence of a solution for the case λ> 0 and µ = Λλ. In order to
do this, we take a sequence µn < µn+1 < Λλ such that µn → Λλ. We define un = uλµn

and vn = vλµn as the minimal solutions for (Pi
λµn

). Moreover, we have

0 < uλ0 ≤ un ≤ un+1 and 0 < v0µ ≤ vn ≤ vn+1 in Ω. (4.6)

Since α> 1 and γ > 1, by Equations (4.4) and (4.5), we have that un and vn are bounded
in H1

0 (Ω). Then, we have for some u, v ∈ H1
0 (Ω),

un ⇀ u and vn ⇀ v weakly in H1
0 (Ω). (4.7)

From Equation (4.6), we get

un ≤ u = lim
n→∞

un and vn ≤ v = lim
n→∞

vn. (4.8)

It is not hard to see that
lim

n→+∞

∫
Ω

c(x)uα
nv

β
nϕ =

∫
Ω

c(x)uαvβϕ, ∀ϕ ∈ C∞
c (Ω)

lim
n→+∞

∫
Ω

d(x)uθ
nv

γ
nϕ =

∫
Ω

d(x)uθvγϕ, ∀ϕ ∈ C∞
c (Ω).

(4.9)

Since (un, vn) is a solution for (Pi
λµn

) and µn → Λλ, by Equations (4.6)–(4.9), we have

that (u, v) is a weak solution for (Pi
λµ) with 0 < λ < L∗

ij and µ = Λλ. The other case is
similar.
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