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Abstract. In this paper, we show that each element in the convex hull of the rotation
set of a compact invariant chain transitive set is realized by a Birkhoff solution, which
is an improvement of the fundamental lemma of T. Zhou and W.-X. Qin [Pseudo
solutions, rotation sets, and shadowing rotations for monotone recurrence relations.
Math. Z. 297 (2021), 1673-1692] in the study of rotation sets for monotone recurrence
relations. We then investigate the properties of rotation sets assuming the system has
zero topological entropy. The rotation set for a Birkhoff recurrence class is a singleton
and the forward and backward rotation numbers are identical for each solution in the
same Birkhoff recurrence class. We also show the continuity of rotation numbers on
the set of non-wandering points. If the rotation set is upper-stable, then we show that
each boundary point is a rational number, and we also obtain a result of bounded
deviation.
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1. Introduction
We continue the investigation of rotation sets for monotone recurrence relations in [29].
The solutions of a monotone recurrence relation correspond to orbits of a monotone twist
map on the high-dimensional cylinder, a generalization of the classical monotone twist
map on the annulus.

Let k > 1,1 > 1 be integers, and A : R¥/*1 — R be continuous. Consider solutions
x = (x,) € RZ of

AXp—ks o esXny... Xpy1) =0 foralln € Z. (L1.1)
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We always assume in this paper that:

() A(x—,...,xp,...,x) is a non-decreasing function of all the x; except x.
Moreover, it is strictly increasing in x_j and x;;
2 A_r+1,...,x0+D)=A&_k,...,x1);
(3) limy ;400 A(X—k, ..., x) =Fooand limy, 400 A(X_g, ..., X)) = Fo00.
According to assumptions (1) and (3), we can solve equation (1.1) for x,4; if
(Xp—k» - - - » Xnqi—1) is given. Thus we define a continuous map F from R¥H to R+ by
FAn—ks « «+ s Xnti—1) = (Xn—k+15 + + s Xntl)-

The map F is a homeomorphism of R¥t onto itself. Taking into account the periodicity
assumption (2), we define on the high-dimensional cylinder S! x R¥*/~! a homeomor-
phism @ which is a generalization of the class of monotone twist maps of the annulus or
two-dimensional cylinder [3].

We say that a configuration x = (x,) € RZ has bounded action if there is a constant
L > 0 such that |x,+1 — x| < L for n € Z. Define the forward and backward rotation
intervals of X to be

p(x) = [lim inf x—n, lim sup x_n:| and p*(x) = [hm inf &, lim sup X_ni|7
n—>+o00 n n—+oo N n—»—00 n n——oco N

respectively. If p(x)(p*(x)) is a single point, that is, the limit lim,_, 1 o0 X, /n(lim,— _
Xp/n) exists, we say that x has a forward (backward) rotation number. If p(x) = p*(x) is
a singleton, then we say x has a rotation number.

We define p(A), the union of p(x), where x = (x;,) is a solution of equation (1.1) with
bounded action, as the rotation set of equation (1.1).

We also consider the rotation sets of solutions with bounded action of

AXp—ks-vrXny,--.,Xp47) = F foralln € Z, (1.2)
in which F' € R and A is the same as equation (1.1). In particular, if k =/ = 1 and
A(x_1,x0,Xx1) =x_1 —2x0 +x1 +asin2mwxg, ackR,

then it is called the tilted Frenkel-Kontorova model [4, 10], in which the constant F
represents the external driving force. We denote by p(A, F) the rotation set of solutions
of equation (1.2) with bounded action.

Let

S={xe RZ | x is a solution of equation (1.1) with bounded action} and S = S/(l),
where 1 denotes the configuration with all components being 1. For L > 0, let
St ={x=(,) €S||xpr1 —xp| <L, foralln e Z}.

Let 7,, , denote the translation on RZ defined by (TnX)i = Xi—m +nforx = (x;) € RZ
and 0 = t_10/(1). Then the system generated by o on S is equivalent to that by ¢a
on the high-dimensional cylinder restricted to orbits with bounded action. Therefore, we
would study the dynamical behavior and rotation set of ¢ on S rather than ¢ on the
high-dimensional cylinder.
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For each y € S, there is a lift x € S such thaty = x/(1). Define
Vi —Yj =X —Xj foralli,j e,

which is independent of the lift x. Define p(y) = p(x), which is also independent of x,
that is, p(x) = p(x) if x/(1) = x'/(1), where x, X' € S. Let p(K) denote the rotation set
of K, that is, p(K) = (Uycx 0 (X) for a set K of configurations with bounded action.

Some conclusions obtained in [29] are as follows. The rotation set p (A) is closed, each
w € p(A) is realized by a Birkhoff solution of equation (1.1), and if there exists a solution
x of equation (1.1) with bounded action such that p(x) is not a single point, then the
topological entropy of @4 is positive.

A fundamental lemma in [29] is that (p(K)) C p(A), where K = w(x) is the w-limit
set of the orbit {c"x |n € Z} and (-) denotes the convex hull. In this paper, we shall
improve this conclusion and show that (p(K)) C p(A) provided K is a compact invariant
chain transitive set for o, which is an analogue, to some extent, of Franks’s result on
surface homeomorphisms [14], and then discuss its applications assuming the rotation set
is upper-stable or o has zero topological entropy on S.

If the monotone recurrence relation of equation (1.1) has a generating function, then
zero topological entropy implies that Birkhoff minimizers with each rotation number form
a continuous foliation [19]. Our first topic in this paper is to investigate, for the general
monotone recurrence relations, the properties of rotation sets of equation (1.1) with zero
topological entropy.

There are large amounts of research work on the relation between topological entropy
and rotation sets of homeomorphisms on the torus and annulus, see [13, 23-25, 27]
and references therein. In [24], Le Calvez and Tal investigated rotation sets of surface
homeomorphisms with no topological horseshoe by developing a new criterion for the
existence of topological horseshoes for surface homeomorphisms together with forcing
theory [23]. For homeomorphisms on the two-dimensional cylinder isotopic to the identity,
they showed that (among other things) each orbit with non-empty w-limit set has a
well-defined forward rotation number; the forward and backward rotation numbers for
a non-wandering point are identical; the rotation number function is continuous on the
set of non-wandering points; and each Birkhoff recurrence class has a unique rotation
number.

The first part of this paper is devoted to the discussion of these questions for monotone
recurrence relations with zero topological entropy. Applying the results in §3, we obtain
that each Birkhoff recurrence class (see §2 for the definition) in S has a unique forward
and a unique backward rotation number, which are actually identical, implying that p(x) =
p*(x) for x being non-wandering. Moreover, the rotation number function is continuous
on the set of non-wandering points.

Let 2 C § denote the set of all non-wandering points of o.

THEOREM A. Assume o has zero topological entropy on S. Let L > 0 and K C Sp be a

non-empty Birkhoff recurrence class. Then p(K) is a single point and p(y) = p*(y) for
eachy € K.
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Remark. Let L > 0 and x € S; be a non-wandering point. Then (see §2) there is a
Birkhoff cycle containing x and hence the Birkhoff recurrence class containing X is
non-empty. It follows immediately from the above theorem that p*(x) = p(x).

THEOREM B. Assume o has zero topological entropy on S. Then for each L > 0, p :
QN Sy — Ris continuous.

For an endomorphism of the circle, the rotation set is a closed interval. Bamon, Malta,
and Pacifico proved [5] that if the rotation interval is stable (persistent), then its endpoints
must be rational numbers. For a homeomorphism on the torus homotopic to the identity,
Addas-Zanata showed in [1] that its rotation set, which is a compact convex subset of the
plane, is not upper-stable if it has an extremal point which is not a rational vector.

Inspired by these discussions, we shall investigate boundary points of rotation sets for
monotone recurrence relations assuming the rotation sets are upper-stable.

We say that p(A) is upper-stable if there exists &g > 0 such that p(A’) C p(A) for
each A’ continuous on RFT*! which satisfies assumptions (1)—(3) and sup,r |A(u) —
A'(u)| < &g for each compact set I' C RAHHL We say that p(A) is upper-stable with
respect to F if there exists &g > O such that p(A, F) C p(A) for F € (—e&p, €9). It is
obvious that if p(A) is upper-stable, then it is upper-stable with respect to F. It seems
that the upper-stability with respect to F is a weaker assumption than the upper-stability.
However, they are equivalent owing to Lemma 6.1.

THEOREM C. Assume p(A) is upper-stable with respect to F. Then there exists a positive
integer qo > 1 such that each boundary point of p(A) is rational and has the form p/q in
lowest terms with 1 < q < qq.

Remark 1. An immediate corollary of the above theorem is that if the rotation set is
compact and upper-stable, then it has finite boundary points which are all rational numbers.
We emphasize that a related result on rotation sets of homeomorphisms on the torus
isotopic to the identity was obtained by Guihéneuf and Koropecki in [18].

Remark 2. If an irrational w € p(A) which may not be upper-stable, then for each ¢ > 0,
there exists F € (—¢, ¢) such that p/q € p(A, F) for some rational p/q close to w. This
is a straightforward consequence of Lemmas 6.3 and 6.4, the proof of which is the same
as the last part of that of Theorem C. We remark that it is an analogue of a conclusion for
twist maps on the two-dimensional cylinder obtained by Le Calvez, see [22, §1.5].

We say that a configuration x = (x;,,) with forward rotation number p has bounded devi-
ation if there exists M > 0 such that |x, — xg — np| < M for all n € N. It is well known
that if x is Birkhoff (see §2 for the definition), then x has a rotation number and bounded
deviation. Generally, a solution of equation (1.1) which has forward rotation number does
not necessarily have bounded deviation. Neither do the orbits of homeomorphisms on the
annulus or torus [9, 20].

Recently, a great deal of attention has been gathered on the problem of bounded
deviation for homeomorphisms isotopic to the identity on the torus, see [2, 12, 17, 21,
28] and references therein. For homeomorphisms isotopic to the identity on the closed
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annulus, Conejeros and Tal showed [11] that if f is a homeomorphism on a region of
instability and the rotation numbers of the boundary components lie in the interior of the
rotation set, then f has uniformly bounded deviations from its rotation set. We shall study
a similar problem assuming the rotation set is upper-stable.

THEOREM D. Assume p(A) is upper-stable with respect to F. Let [a, b] be a connected
component of p(A) and L > 0. Then for each compact and o -invariant set K C Sp, with
(p(K)) C la, b], there exists M > 0, such that for each x = (x,) € K,

Xp—x0—nb <M and x,—xo—na>—-M foralln>1.

Remark. We should mention that Guihéneuf and Koropecki in [18] have also stud-
ied bounded deviations for torus homeomorphisms isotopic to the identity assuming
upper-stability of rotation sets. Our approach is highly inspired by their methods.

Since the system corresponding to solutions of equation (1.1) is a monotone twist
map on the high-dimensional cylinder, and we do not have powerful tools like forcing
theory [23] for two-dimensional cases, we have to make full use of monotonicity condition
of assumption (1). We define a-pseudo solutions (see also [29]) and introduce chain
transitivity for a-pseudo solutions of equation (1.1), which are similar to, but not equivalent
to, a-pseudo orbits and chain transitivity defined for general dynamical systems [14]. A
fundamental result we proved in §3 is that each element in the convex hull of the rotation
set of a compact invariant chain transitive set can be realized by a Birkhoff solution of
equation (1.1), which forms the basis for the proofs of the main conclusions in this paper.

2. Preliminaries
We denote by X the configuration space RZ equipped with the product topology and ¥ =
X/(1), where 1 denotes the configuration with each component being 1. Let P denote the
projection from X to Y defined by P(x) =y =x/(1) andcallx € X aliftof y € Y. Let
0:Y — Y be defined by oy = P(r_10X), where x € X is a lift of y € Y, and the shift
map Ty, : X — X is defined for m, n € Z by (v nX)i = xi—m +n, foralli € Z.

For L > 0, let

By={x=(x)€eX||xp—x|<L, forallieZ), B=|]BL
L>0

S; = {x € By | xis a solution of equation (L.1)}, § = U Sy

Let B, = P(B), B= P(B), Sy = P(S1), and S = P(S). It then follows immediately
from Tychonoff’s theorem that By and S; are compact.

Let x,y € Sz. We say that there is a Birkhoff connection from x to y if for each
neighborhood U of x and each neighborhood V of y, there exists n > 1 such that
o™ (UNS)NV #@. A Birkhoff cycle is a finite sequence xI, x2, ..., xP, xPH =Xl
in S; such that there is a Birkhoff connection from x’ to x't! for each i € {L,2,...,p}
A solution x € S is said to be Birkhoff recurrent for o if there exists a Birkhoff cycle
containing X.
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A solution x € §y, is said to be non-wandering for o if for each neighborhood U of
x, there exists n > 1 such that 6" (U N Sp) N U # @. Therefore, x is non-wandering if
and only if there is a Birkhoff cycle containing x with the cycle length p = 1. We say that
x € S is Birkhoff equivalent toy € Sz, if there is a Birkhoff cycle containing both x and y.
The equivalence class will be called Birkhoff recurrence class, see [24] for the introduction
of these concepts on surface homeomorphisms and related conclusions on rotation sets.

Let w= (w,), u= (u,) € Y, and w = (w,) € X be a lift of w, that is, P(W) = w.
Define

lwo — ug| = min{|wo — uo| | u = (i) € X, P(1) = u}
which is independent of w. Then there exists some & = (ii,,) € X with P (@) = u such that
|lwg — ug| = |wo — ugl. If lwo — ug| = % take u such that iy = Wy + % Define
|lwy, — uy| = |W, — iiy| foralln € Z. 2.1)
For each w = (w,,) € Y and § > 0, we define
Uw, ) ={u=y) €Y ||lup—wy| <8 n=—k,...,1 —1}. (2.2)

Define the relations <, <, < on the configuration space X as follows. We say that
x = (x;) <X = (x{) if and only if x; < x/ for i € Z, x < X if and only if x < x and
x # X/, x K< X' if and only if x; < x] fori € Z. Similarly, we can define >, >, and >>. We
say that x and x” are ordered if x < x’ or x > X/, x and X’ are strictly ordered if x < X/, or
x>»x,orx =x.

A configuration x € X is said to be Birkhoff if for any m,n € Z, 1, ,X and X are
ordered, that is, T, ,X < X Or T, ,X > X. We say that y € Y is Birkhoff if a lift y € X
of y is Birkhoff.

Let 8 C X denote the set of Birkhoff configurations. It is easy to check that 8 C B,
B is closed in the product topology, and rm,n@ = B, for all m, n € Z. It follows that each
Birkhoff configuration has a rotation number [6, 15].

LEMMA 2.1. Letx € X be a Birkhoff configuration. Then X has a rotation number p(X) =
p*(x) = p and

lxj —xi —(j—iDpl <1 foralli,jeZ. (2.3)
Moreover, the map X — p(X), B — R is continuous in the product topology [6, 15].

Definition 2.2. Given « > 0, a configuration X = (x;) is called an a-pseudo solution of
equation (1.1) if

[A(Xi—ky - - o> Xiq1)| <a foralli e Z.
Let py (A) denote the rotation set of «-pseudo solutions of equation (1.1), that is,

pa(8) = p),

where X is an a-pseudo solution of equation (1.1) with bounded action. It was proved
[29] that the pseudo rotation set of equation (1.1) defined by py (A) = (), Pa(A) is
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identical to p(A). For the study of pseudo rotation sets, see [7] for circle endomorphisms
and annulus homeomorphisms, and [18] for torus homeomorphisms.

The following conclusion was proved in [29], adapting Angenent’s approach for the
special case « = 0 in [3].

LEMMA 2.3. Ifx = (x;) is an a-pseudo solution of equation (1.1) and there exists v € R
such that sup; .z |x; — xo — iw| < oo, then equation (1.1) has a Birkhoff «-pseudo solution
with rotation number w.

Definition 2.4. Letd > 0,ip € Z,and x = (x,), X' = (x},) € X be two configurations with
|x, — x| < & forn=1ip—k,...,iop+1— 1. Then the configuration z = (z,,) is said to
be a §-gluing of x and X’ (at site ig) if

Zpn=x, foralln <iy and z, = x,; forall n > iyp.

Assume X = (X,) and X = (x,) are supersolution and subsolution of equation (1.1)
respectively, that is,

AXp—ks---»Xp+1) <0 and A(x, 4, ...,x,,;) >0 forallneZ.

It is said they exchange rotation numbers if

liminf 2 > @y, limsup 2% < @, limsup 2 < w;, liminf 22 > wy, (2.4)

n—oo n n——oo N n—oo N n—-=00 n
hold for some w < wy, see [3, §6].

A criterion presented by Angenent in [3] shows that if there exist a supersolution and a
subsolution of equation (1.1) exchanging rotation numbers, then the homeomorphism @
defined by equation (1.1), or o on S, has positive topological entropy, see [3, Theorem 7.1].

Remark. There are several objects called Birkhoff in this section. The notion of Birkhoff
configuration, which is central in this paper, corresponds to that of Birkhoff orbit, which
plays an important role in the Aubry—Mather theory, see, for example, [3, 6, 15]. Another
terminology, Birkhoff recurrence class, was borrowed from [24]. It seems that the notion
of Birkhoff recurrence class is related to that of Birkhoff region of instability for monotone
twist maps on the annulus [26].

3. Chain transitive sets
In this section, we introduce chain transitivity for solutions or a-pseudo solutions of
equation (1.1). Although it is not equivalent to that defined for general dynamical systems
[14], it does help us to provide the proof of Theorems A and B since the w-limit set w (x) of
x € S and the Birkhoff recurrence class are chain transitive according to our definition,
see Lemmas 3.6 and 4.3.

Definition 3.1. Assume o > 0, and x = (x,,), y = (¥,) € B are two a-pseudo solutions
of equation (1.1). A B-pseudo solution z = (z,,) € By is called a S-chain (8 > «) from x
toy if

Zn=X, and Zjiu =¥, n=-—k...,[—1,
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for some j > 0, where Z = (z;), X = (¥;), and y = (;) are lifts of z, X, and y, respectively.
An a-pseudo solution x € By is said to be chain recurrent if for each 8 > «, there is a
B-chain from x to itself. In particular, a solution x € Sy, is said to be chain recurrent if for
each 8 > 0, there is a B-chain from x to itself.

Definition 3.2. Assume o > 0 and K C By is a set of a-pseudo solutions of equation
(1.1). If for any x, y € K and any B > «, there is a B-chain from x to y, then we say that K
is chain transitive.

LEMMA 3.3. Assume K C By is an invariant for o and chain transitive set of a-pseudo
solutions of equation (1.1). Then for any X,y € K, any B > «, and arbitrarily large integer
m' > k + 1, there exists a B-pseudo solution z and m > m’, such that

n=2%x, and Zmyn=YyYn, n=—k,...,1—1,
where 7 = (Z;), X = (X;), and 'y = (3;) are lifts of 7, X, and y, respectively.

Proof. Lety =o~"y. Since x, ¥ € K, which is chain transitive, then for each g > «a,
there is a B-pseudo solution ' = (z},) € By, such that for some j > 0,

~ ~/ ~/
Z, =X, and Zjgn = Yn> n=-—k,...,1—1,

where 7' = (Z}), X = (X;), and §' = (J)) are lifts of z’, x, and y’, respectively. Note that
Yy =1t_noy isaliftof y. Let Z = (Z;) be constructed by

=/
Zjs

i<j—k,
=14 =5y_; j—k<i<j+l,
Vi_j = Viejoms P2 ] HL
Then z = P(z) is the desired B-pseudo solution with m = j + m’. [
Let K C By and denote p(K) = [y g £ (X) and its convex hull by (p(K)).

LEMMA 3.4. Let K C B be a compact invariant set for o. Then for each p € (p(K)),
there existy', y* € K, such that

y,l—yé—npfl and y,%—y%—npz—l foralln € N. 3.

Proof. The proof is the same as that of [29, Lemma 2.4].
Let the w-limit set of x € By, be denoted by w(x), that is,

w(x) = {y € Y | there exist m; € N such that ¢""'x — y asi — o0o}. O
LEMMA 3.5. Letx € By. Then p(X) C {p(w(X))).

Proof. Let p € p(x). Then there exist y! = (y,{) and y? = (y,zl) € w(x) (the proof is the
same as that of [29, Lemma 2.4] and hence omitted), such that equation (3.1) holds. It
follows that lim inf,,_, | (y,ll — yé)/n < pand lim sup,_, | (y,% — ycz))/n > p, implying
p € (p(w(x))). O
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LEMMA 3.6. Let > 0 and x be an o-pseudo solution of equation (1.1) with bounded
action. Then w(X) is chain transitive.

Proof. 1t is easy to check that each configuration in w(x) is an a-pseudo solution of
equation (1.1). Let y,z € w(x), 8 > «, and & > 0. Then there exist m, mr € N with
my —mj > 2(k + 1) such that

oc™xeU(y,8) and o"™x¢€ U(z,J),
implying the existence of X, y, and z, which are lifts of x, y, and z, respectively, such that
|Xmi4n — ¥ul <8 and  |Xppqn —2Znl <8 forn=—k,...,[—1.

Let w = (w;) be defined by

Viemy, i <mi+1-1,
w; = 1 X;, m +l—1<i<my—k,

Zimmy, M2 —k <.
Then we have a 8-chain from y to z provided é is small enough. O

LEMMA 3.7. Let K C By, be a compact invariant set for o. Then there exist X,y € K such
that p(x) = p*(x) = sup p(K) and p(y) = p*(y) = inf p(K).

Proof. The proof is similar to that of [29, Lemma 5.2] and hence omitted here, see also
[7, 8]. O

LEMMA 3.8. Let « > 0 and K C B be a set of a-pseudo solutions of equation (1.1)
which is compact and invariant for o. Assume K is chain transitive and p € (p(K)). Then
for each B > «, there exists a B-pseudo solution z = (z,,) satisfying

sup |z, —zo — np| < o0.
nez

Proof. The proof is postponed to Appendix A. O

THEOREM 3.9. Let @ > 0 and K C By be a set of a-pseudo solutions of equation (1.1)
which is compact and invariant for o. If K is chain transitive, then for each p € (p(K)),
there exists a Birkhoff a-pseudo solution z of equation (1.1) with p(z) = p, and hence

(p(K)) C pa(A).

Proof. For each p € (p(K)), we deduce by Lemmas 3.8 and 2.3 that for each § > «,
there exists a Birkhoff S-pseudo solution 2P = (zf) € Y satisfying |z,’? — zg —np| <1,
for all n € Z, due to Lemma 2.1. Applying Tychonoff’s theorem, we obtain an accumula-
tion point z of (2P} as B — o, which is a Birkhoff a-pseudo solution of equation (1.1) with

p(z) = p. 0

The following conclusions are actually generalizations of those in [29, Theorem A].
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THEOREM 3.10. For each a > 0, py(A) is closed. Moreover, for each p € py(A), there
exists a Birkhoff a-pseudo solution with rotation number p. If p = p/q is rational in lowest
terms, then there is a Birkhoff (p, q)-periodic o-pseudo solution.

Proof. Let p € py(A). Then there is an a-pseudo solution x of equation (1.1) with
bounded action such that p € p(x) C (p(w(x))) by Lemma 3.5. Note that o (X) is compact,
invariant for o, and chain transitive due to Lemma 3.6. We deduce by Theorem 3.9 the
existence of a Birkhoff «-pseudo solution with rotation number p.

Let p = p/q in lowest terms be rational and p(x) = p/gq, where x is a Birkhoff
a-pseudo solution. If x is (p, g)-periodic, then the proof is complete. If not, then we shall
show that the limit point lim,_ x is a Birkhoff (p, ¢)-periodic a-pseudo solution of
equation (1.1).

Indeed, if 74, X # X, then we assume 7, ,X > x (the proof for the case 7, ,x < xis the
same) since x is Birkhoff. It then follows that

n
Tq.p

xfrq,pr---fr(;px<

We claim that rg” XX+ 1 =10,1x, forall » > 1. Indeed, if this is not true, then we
have a positive integer n such that ;%X > x + 1 since 7,,x and 7o1x are ordered due
to the fact that x is Birkhoff. Consequently, rjﬁ,ox >x+j-1, forall j > 1, implying
p(X) > p/q + 1/(noq), a contradiction. Therefore, we have r;’px <x+1,foralln > 1,
and hence foreachi € Z, {(TZ;, px)i }n>0 is a non-decreasing and bounded sequence, leading

to the conclusion that {zj ,x},>0 has a unique limit point, denoted by z. Noting that

n+lg

_ R T
Ty pl=Tgp lim 7/ x= lim 1,7 'X =1z,

n—oo n—oco 1P

we obtain that z is a Birkhoff (p, ¢)-periodic «-pseudo solution of equation (1.1).
Let p, € py(A) and p, — p as n — oo. Then there are Birkhoff a-pseudo solutions
x" € Y of equation (1.1) with p(x") = p,,, for all n € N. The accumulation point x of {x"}
is an a-pseudo solution with p(x) = p by Lemma 2.1, implying that p,(A) is closed. [

4. Proof of Theorem A
LEMMA 4.1
(1) Letx,y € Sr. If there is a Birkhoff connection from X to'y, then there is a Birkhoff

connection from X to any point in {oc"y | n € N} U w(y).

(i) Letx,y e Sy andy & {o"x | n € N}. If there is a Birkhoff connection from X to'y,
then there is a Birkhoff connection from any point in {o"x |n € NJUw(x) toy.

(iii)) Letx,y € Sp andy & {o"x | n € N}. If there is a Birkhoff connection from X to'y,
then for each neighborhood V of y, each neighborhood U of X, and each N € N,
there exists n > N such that 6" (U N Sp) NV # @.

Proof. These facts are easy to check, see [24]. O]

LEMMA 4.2. Letx,y € S; andy & {0"x | n € N}. If there is a Birkhoff connection from
X to'y, then for each « > 0, there is an o-chain from X to'y.
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Proof. Let § > 0. Then U (x, §) and U(y, §) are neighborhoods of x and y, respectively.
From item (iii)) of Lemma 4.1, it follows that there exists u € U(x,8) NSy and
m > 2(k +[) such that c™u € U(y, §). Let u, X, and ¥y be lifts of u, x, and y, respectively,
such that |i; —X;| <8 and iy — ;| <8 for —k < j <I—1. Let Z=(Z) be
defined by

il‘? l51_19
Zi = uj, I <i<m—k,

yl’—m’ m_kfl

Then z = P(z) is an a-pseudo solution of equation (1.1) if § is small enough, and hence
there is an «-chain from x to y. O

LEMMA 4.3. Assume K C Sy is a Birkhoff recurrence class. Then the closure K of K is
chain transitive.

Proof. Let X',y € K, and U and V be neighborhoods of x' and y’, respectively. Then
there exist x €« U N K and y € V N K. Since X,y € K, which is a Birkhoff recurrence
class, there are x!, . .., x? € Sy, such that there exist Birkhoff connections from x to x.,
x! to x2, ..., and x” to y. From Lemma 4.2 it follows that for each @ > 0, there is an
o /2-chain from x to x!,.. ., ana /2-chain from x” to y. We then obtain an «/2-chain from
x to y. Choosing U and V small enough, we have an a-chain from x’ to y’. O

LEMMA 44. Let y',y*> € S; with p*(y") = p(y") =a < b = p*(y*) = p(y?) and
w1, w3 € p(A) with a < w1 < wy < b. Assume there is a Birkhoff connection from
y! 1o y?. Then there exists a supersolution X of equation (1.1) with p*(X) = w; and
p(X) = wy. Similarly, if there is a Birkhoff connection from y* to'y', then there is a
subsolution X with p(X) = w; and p*(X) = w>.

Proof. By Theorem 3.10, there are Birkhoff solutions in Xw! = (w,ll) and w? = (w%) such
that p*(w') = p(W') = wj and p*(W?) = p(W?) = @y,

Letz! = (z;) and 22 = (zﬁ) be the lifts of y' and y?, respectively. Then lim,,_, 400 (z,ll -
zé)/n =a and limn_&oo(zﬁ — z(z))/n = b. Since a < w1 < wy < b, there exists N > 0
such that

1 1 2 2
w, <z, W, >2I,

1 1 2 2

foralln < —-N and w, >z,, w, <z, foralln>N.

Next, we choose g9 > 0 such that

1 1 2 2
w, <z,—¢&, W,>z,+e& for —N—-k—-1<n=<-N,
and

1 1 2.2
w, >z,+¢e, w,<z,—& forN=<n=<N+k+IL

Since y2 ¢ {o"y! | n € N} and there is a Birkhoff connection from y' to y2, then by item
(iii) of Lemma 4.1, for each neighborhood V of y? and neighborhood U of y!, there exists
u € U NSy such that o™u € V, where m > 2(N + k + 1).
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For each 0 < ¢ < g, we choose U and V small enough such that
Ix) —zll<e and |x2—z2|<e for =N —k—Il<n<N+k+I,
where x! = (x,i) and x2 = (x,%) are lifts of u and o™ u, respectively. Hence,

<x

w i w,zlzx,zl for —N—-k—-1l<n<-—N,

1
n
and

w le w,zlfx2 forN <n<N+k+I.

1
n n’ n

Note that P(x!) = u and P (x?) = 6" u. Then there exists /> € Z such that

2

Xn

= x,iﬁn +1l foralln e Z.

We can replace x2, 72, and w2 by x2—5-1,z22—1-1, and w2 — 5 - 1, respectively.
Therefore, we may assume l, = 0 without loss of generality. It then follows that x> =
Lm’oxl.

We construct a supersolution X = (X ;) as follows. Let

w} j<—N-—I1—k,

w} = min{w}, x}}, —N—-Il—k<j<-—N,
min{w},x}}, —N<j<N,
x}:min{w;,x}}, N <j<N+Il+k,

Xj= x}:x}zfm, N+Il+k<j<m-—N-I—k,
sz._mzmin{sz_m,w?_m}, m—N-Il—k<j<m-—N,
mmﬁﬁﬂﬁwh m—N<j<m+N,
wjz._m:min{x]z_nl,w?_nl}, m+N<j<m+N+Il+k,
w?_m, m+N+I+k<j.

Note that w!, w2, x!, and x2 are solutions of equation (1.1). One can check by the
construction of X; and the monotonicity condition of assumption (1) that X = (x;) is a
supersolution of equation (1.1) which satisfies

Pr® =p*WH =w1 and p®) = p(W) = .
Similarly, we can construct, due to a Birkhoff connection from y? to y', a subsolution
x = (x,,) of equation (1.1) satistying p*(X) = w; and p(X) = w;. ]

Proof of Theorem A. Let K C St be a non-empty Birkhoff recurrence class. Then K is
invariant for o due to Lemma 4.1, and the closure K of K is compact and chain transitive
by Lemma 4.3. As a consequence of Theorem 3.9 by setting o = 0, (p(K)) C p(A).

We shall show that p(K) is a single point by contradiction. Assume a, b € p(K) with
a < b. Then [a, b] C (p(K)) C p(A) and there exist y!, y> € K such that p(y') =a,
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p(y%) = b since each solution of equation (1.1) with bounded action has a well-defined
forward rotation number if o has zero topological entropy on S, see [29, Theorem B].

Since y' and y> are in the same Birkhoff recurrence class, there is a Birkhoff
cycle {zl, 22, ..., 20, 7Pt = zl}(p > 2) such that z! = yl and z" = y2 for some n €
{2,..., p}. We assume without loss of generality that z'*! ¢ {o/z' | for all j € N}, and
hence we may replace z' by 2’ € w(z') by item (ii) of Lemma 4.1 if necessary. Note that
the proof of [29, Theorem B] actually shows that (p(w(z))) = p(z) is a single point for
each z € S if o has zero topological entropy on S. Therefore, we may assume by Lemma
37 p(E) =p*@) foralli =1,2,..., p.

We assume p(zz) = a| > a, otherwise consider the Birkhoff connection from z2 to
73. We also assume 0(zP) = ap > a, otherwise consider the Birkhoff connection from
277! to z”. By the first part of Lemma 4.4, we can construct a supersolution X with a <
p*(X) = w1 < p(X) = wy < min{ay, ay, b}, and by the second part of Lemma 4.4, we have
a subsolution x with p(X) = w; < wy = p*(x); hence a supersolution and a subsolution
exchanging rotation numbers, which implies that o on § has positive topological entropy
by [3, Theorem 7.1], a contradiction. Consequently, p(K) is a single point.

Finally, we show that p*(y) = p(y) for each y € K. Indeed, we can show as above that
p*(K) is a singleton since o' also has zero topological entropy. Note that by Lemma
4.1, we have w(y) C K, and hence there exists z € w(y) C K such that p*(z) = p(z) by
Lemma 3.7, implying p*(K) = p(K). O

5. Proof of Theorem B
We denote by y ~ x if there is a Birkhoff connection from y to x and a Birkhoff connection
fromxtoy. Letx € Sz and

B(x)={yeS.|y~x}
LEMMA 5.1. Letx € N Sr. Then B(X) is non-empty, invariant, and closed.

Proof. Since x € Sy for some L > 0 is a non-wandering point, that is, for each neighbor-
hood U of x, there exists m € N such that (U N S;) N U # @, then there is a Birkhoff
connection from x to itself, and hence x € B(x).

For each y € B(x), if oy # X, then from Lemma 4.1, it follows that there is a Birkhoff
connection from x to oy and a Birkhoff connection from oy to X, implying oy € B(x).
If oy = x, then naturally oy € B(x). Therefore, o (B(x)) C B(x). Similarly, we have
o1 (B(x)) C B(x), and hence B(x) is invariant for o

Let {y"} C B(x) and y" — y in the product topology as n — oo. For each neigh-
borhood U of x and each neighborhood V of y, there exists N € N such that y" e
B(x) N V. We deduce the existence of ny, ny € N such that "' (U NS )NV # @ and
c"2(VNSL) NU # @, implying y € B(x) and hence B(x) C Sy is closed. O

LEMMA 5.2. Assume o has zero topological entropy on S and x € Q. Then p(y) = p(x)
foreachy € B(X).

Proof. Since each y € B(x) and x are in the same Birkhoff recurrence class containing x
which is non-empty, we derive the conclusion by Theorem A. O
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For § > 0, let
UBx),8) = ] U@,

z€ B(X)

where U (z, §) is defined as in equation (2.2).

LEMMA 53. Let L > 0, X" € QN Sy, and X" — X as n — 00 in the product topology.
Then for each § > 0, there exists N € N such that forn > N, B(x") C 2(B(x), §).

Proof. We prove by contradiction. Assume the conclusion is not true. Then there exists
80 > 0 and a sequence y" € B(x") C Sp such that y" & Z(B(x), &p), forall i > 1.
There is a convergent subsequence of {y"}, not relabeled, such that lim; ., y" =y &
2(B(x), §p). For each neighborhood U of x and each neighborhood V of y, there is a
sufficiently large n; such that x"/ € U and y"/ € V. Since x"/ ~ y"/, then there exist
mi > 1 and my > 1 such that 6™ (UNS,) NV £ 0 and ¢"™2(VNSL)NU # @, and
hence x ~ y, which is a contradiction to y & Z(B(x), 8p). O]

Foré > 0,1et K C S,
%(K,(S):UU(X,(S) and O(K,8)={ye S, |o"ye%K,§), foralln > 0}.

xekK

LEMMA 5.4. Let K C S; be a compact and invariant set for o and denote (p(K)) =
[a, b]. Then,

lim inf p(y)=a and lim sup p(y) =>b.
8—0 yeO(K ,8) $=0 yep(k.5)

Proof. Since sup p(K) = b, then for each ¢ > 0 and each x = (x,,) € K, there exists
n > 1 such that x, —xo < n(b+ ¢). It follows from the continuity of o on § that
there exists a neighborhood U(x, y) with y > 0 small enough, such that for each
yeUX,y)NS, we have y, — yo < n(b + ¢). The compactness of K implies the exis-

tence of N > 1 such that
N

K c|JUux,y,
j=1

and y,; —yo <nj(b+e)ify = (y,) e UK/, y)) N S.
Taking § > 0 small enough such that

N
uK,8) c | UK, v,
j=1

we deduce that for each z = (z,,) € O(K, §) and each s > 1,

znjl—z()<njl(b—|—8) for some j; € {1,..., N},
(o™i Dnj, — (c"1z)g < nj,(b+¢) for some j, € {1,..., N},
(a”-/’1+"'+n-"s—1z)an — (0" T Mm1z)g < mj (b+e) forsome jy € {1,..., N}
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Letx = (x,) be alift of z. Then x; — x; = z; — z; fori, j € Z, and hence

Xnj, —X0 <nj b+e),... s Xy deetngy = Xy eetn < Mg b+ e),

implying
Xg, — X0 < ks(b +¢),
where ks =nj +---+nj > 0,5 > 1, and kg = 0. Therefore, it follows that

lim sup(xg, — x0)/ks < b+ €.
§—> 00
Letm =max{n; | j =1,..., N}. Foreachn € N, there exists s > 0 such thatk; <n <
ks4+1 and n — kg < m. Note that

Xn — X0 Xn — Xk

s

Xk, — X0 k_s

n n kg n

Consequently, we obtain that lim sup,,_, ., (x, — x0)/n < b + 2¢ due to the facts
X, —x¢ | <mL and lim ks/n =1,
; n—oo

and hence sup,c gk 5) P(2) < b+ 2¢, leading to the second equality by the fact K C
O(K, §). The proof for the other equality is similar. O

Proof of Theorem B. Note that each solution of equation (1.1) with bounded action has
a well-defined forward rotation number if o has zero topological entropy on S, see [29,
Theorem B]. Letx’, x € QN S, x" — xasn — 00, and p(x) = a. Note that B(x) C St
is compact and invariant by Lemma 5.1. Then from Lemma 5.2, it follows that p(y) = a
for eachy € B(x), implying by Lemma 5.4 that for each ¢ > 0, there exists § > 0 such that
p(y) € la —¢,a+ ¢] for each y € O(B(x), §). For this § > 0, there exists N € N due to
Lemma 5.3 such that for n > N, B(x") C Z(B(x), §). According to Lemma 5.1, we have
x" € O(B(x), 8), and hence p(x") € [a —&,a +¢] forn > N. L]

6. Proof of Theorem C
LEMMA 6.1. Ifthere exists a Birkhoff a-pseudo solution X of equation (1.1) with p(X) = w,
then there exists F € [—a, ], such that w € p(A, F).

Proof. Let x = (x,,) be a Birkhoff «-pseudo solution x of equation (1.1) with p(x) = w.
Note that for w € R, it follows from [3, Theorem 9.1] that there are a Birkhoff configuration
y = (y») with p(y) = w and some A € R satisfying

AWVp—ks--->yny1) =1 foralln € Z.
If A € [—a, «], then the proof is complete. If 1 > «, then
AVp—ksr-++>Yn+1) —a >0 foralln e Z.
Note that by Lemma 2.1, we have

o <yo+now+1 and xo+nw—1<x, forallneZ.
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Take an integer m > yy — xo + 2. Then we have
Wm<yt+no+1<xx—24+mt+no+1<xy+nwo—14+m<=<x,+m foralln eZ,
and hence y < z = x+ m - 1. Combining the assumption
AZpn—ks+ - s2nt1) —a <0 foralln € Z,
we obtain by [3, Theorem 4.2] a configuration w = (w,) satisfying
y<w<z and A(w,_g,...,wyy) =a forallne€Z,
implying @ = p(w) € p(A, ). The case A < —a is proved similarly. O

LEMMA 6.2. Assume that p(A) is upper-stable with respect to F. Then there exists g9 > 0
such that py (A) = p(A) for0 < o < gp.

Proof. Let gy > 0 such that p(A, F) C p(A) for F € (—e&p, &9). Let 0 < o < gy and
w € pu(A). We deduce by Theorem 3.10 the existence of a Birkhoff «-pseudo solution
x of equation (1.1) with p(x) = w and hence by Lemma 6.1 that w € p(A, F) C
p(A) for some F € [—a, a] C (—&o, &9). We conclude that p,(A) C p(A) and hence
Pa(A) = p(A). U

LEMMA 6.3. Let 0 < a < '. Then there exists §' > 0 such that the following conclusion
holds true for 0 < 8 < §'. Assume X = (x,) € Y is an a-pseudo solution of equation
(1.1) with bounded action, and there is an integer ¢ > 1 such that c9x € U (X, §). Then
there exist p € 7 such that |x; — xo — p| < 8, a (p, q)-periodic o'-pseudo solution'y €
O(K', §), where K' = {o"x | foralln € Z}, § = (k + 1+ 1)8, and an F € [—a/', o'] with

p/q € p(A, F).
Proof. The assumption 09x € U (x, §) implies the existence of alift X of x and p € Z such
that
|Xitg —Xi —pl<d, i=—k,...,0,...,1—1 6.1)
Let
yj =Xi+mp where j=i+mgqg,ic{0,1,...,9—1}, meZ. (6.2)

Then § = (¥,) is a (p, q)-periodic configuration. We shall show that y is an o’-pseudo
solution if 8’ is small enough.
Let j =i + mgq as above and

Zj—k =Xj_x+mp, ... ,Zj = fj =X +mp,... 2 Zj+ = Xiy +mp. (6.3)
The assumption X is an a-pseudo solution implies that
[A@j ks s Zjse-->2j4D) <a forall j € Z.

In what follows, we shall estimate |y, — zj x| for n € {—k, ..., [}. First we consider
|yj+l — Zj+l|- Note that

j=i+mq, 0<i<qg-—1 and j+Il=i"+m'q whereO0<i'<qg—1, m' >m.
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If m =m,theni <i’=i+1 <q — 1 and hence

Yj+l = Xir +mp =2zj4.

If m" > m, then we choose integers iy, i, . . . , i’ such that
h=i+l—q, ib=i+1-2q,...,i' =i+1—m —mgq,
and hence
jHl=i1+m+g=ir+m+2)q=---=i"+mq.
Note that —k <0<i'<---<ip<ij=i+1—¢q <Il—1. It follows from equation
(6.1) that

lzj41 — Kiy + (m+ D p)| = 1Xi44 — X, — pl <6,
|Xiy + (m + 1D)p — (Xi, + (m +2)p)| = |Xiy4g — Xi, —p| <8, ..., and
|Xir4g + (m' — D)p — (& +m'p)| = |Xjryq — % — pl < 8.

Consequently, we deduce that

12j+1 — Fjril = |2jp1 — G +m'p)| < (m" —m)8.

The estimates for |zjy, — yj4n| for n € {—k, ..., I — 1} can be obtained similarly.
Therefore, we arrive at the conclusion that for j € Z,n € {—k, ..., 1},
|2j4n = Fjtnl < (k+D /g + 18 < (k+1+1)8 =3. 6.4)

Let y = P(§). Then y € O(K', §) is a (p, ¢)-periodic o’-pseudo solution provided 0 <
8 < & and &' is taken to be small enough. We deduce by Lemma 2.3 the existence of
a Birkhoff o’-pseudo solution with rotation number p/q, and hence by Lemma 6.1 that
p/q € p(A, F) for some F € [—a/, a']. O

LEMMA 6.4. Let x = (x;) € Y be a Birkhoff configuration with p(X) = w, t € Z, and
s € N. Then for each ¢ > 0, there exists z € {c"x | n € Z} such that

|Zivs —2i —t| < (k+Dlso—t|+¢e, i=—k,...,1—1
Proof. Let X be a lift of x and n € N. Since X is Birkhoff, it follows from Lemma 2.1 that
[Xigsn — Xi —snw| <1 and |Xjysn —nt — X;j| <n|swo—t|+1 foralli € Z.

Assume t_s ;X > X. The proof for the case 7_; _,X < X is similar. Note that

-1

-1
Yo R —FKi= ) [Fip —nt — K| < k+Dalso—t]+1), (6.5
i=—k i=—k

https://doi.org/10.1017/etds.2022.23 Published online by Cambridge University Press


https://doi.org/10.1017/etds.2022.23

1754 W.-X. Qin et al

and
-1 -1 n—1
n > =~ j+1l = j ~
0< Y (@ Ri—-F=> Y xi- %
i=— i=—k j=0

1 1
(r j+l

—
|

n

tX)l (T tX)l

0 i=—k

~.
I

We deduce by the drawer principle and equation (6.5) the existence of jo € {0, 1, ...,
n — 1} such that

0< Z @M% — @ % < (k+D(so — 1] + 1/n).
i=—k

Taking n large enough and denoting Z = f’s’_li and z = P(z), we obtain

3 lgies —zi — 1] < (k+Dlsw — 1] +e. O
i=—k

LEMMA 6.5. Let 0 < a < o'. Then there exists an integer qo > 0 such that if p/q €
P (A) in lowest terms with q > qq, then for each t/s witht,s € Z, s > 0, and qt — ps =
+1, there exists F € [—d/, o'] satisfying t /s € p(A, F).

Proof. Let 8’ > 0 be determined by Lemma 6.3 and g be an integer with g9 > (k +1 +
1)/8'. Then for p/q € py(A) in lowest terms with g > g, there exists by Theorem 3.10 a
(p, g)-periodic Birkhoff «-pseudo solution x. We deduce by Lemma 6.4 the existence of
z € {o"x | n € Z} for e = 1/q such that

|Zies —zi —t| < (k+D|sp/g—t|+1/g<k+1+1)/g=56<68, i=—k,...,1—1,

implying 6%z € U(z, §) and hence by Lemma 6.3 that t/s € p(A, F) for some F €
[—o/, a']. O

We say that [p’/q’, p/q]is a Farey interval if ¢'p — qp’ = 1, where p'/q’, p/q € Qin
lowest terms.

Proof of Theorem C. Since p(A) is upper-stable with respect to F, there exists g9 > 0
such that p(A, F) C p(A) for F € (—sp, &0). Let 0 = o« < o’ < g9, and §’ > 0 and g be
determined by Lemmas 6.3 and 6.5, respectively.

Assume p/q € p(A) in lowest terms with g > go. Then it follows from Lemma 6.5
that ' /s’, t/s € p(A) where t,s,t',s" € Z and s > 0, s’ > 0 satisfying gr — ps = 1 and
qt' — ps' = —1.

Note that both [¢'/s’, p/q] and [p/q, t/s] are Farey intervals. If we denote by p’/q’ =
(p +1)/(q + s) the mediant of p/g and /s, then we deduce by Lemma 6.5 that p’/q’ €
p(A).

Applying Lemma 6.5 again, we obtain that both the mediant of p’/q’ and ¢/s and the
mediant of p/q and p’/q’ lie in p(A) since ¢’ > qo. Therefore, by induction all rational
numbers (see [16]) in [p/q, t/s] are in p(A) and hence [p/q, t/s] C p(A) since p(A) is
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closed (see [29, Theorem Al)). Similarly, we have [¢'/s’, p/q] C p(A) and hence p/q is in
the interior of p(A).

Let w € p(A) be irrational and x € S be the corresponding Birkhoff solution with
p(x) = w by Theorem 3.10. Take two consecutive convergents of w, p’/q’ and p/q, such
that p’/q' <w < p/q,q > qo,and |gw — p| < 1/q. Then it follows from Lemma 6.4 that
for e = 1/q, there exists z € {c"x | n € Z} such that

lzivg =2z — Pl < k+Dlgo — pl+1/g <k +1+1)/g <8, i=—k....[-1,

and hence p/q € p(A, F) C p(A) for some F € [—a/, '] by Lemma 6.3. We then arrive
at the conclusion that p’/q’ € p(A, F) C p(A) for some F € [—a’, a’] by Lemma 6.5,
and hence the Farey interval [p’/q’, p/q] C p(A) by repeating the previous argument,
implying w is in the interior of p(A). This completes the proof. O

7. Proof of Theorem D
The conclusion of Theorem D is a straightforward consequence of the following theorem
by setting o = 0.

THEOREM 7.1. Assume p(A) is upper-stable with respect to F and [a, b] is a connected
component of p(A). Then there exists g > 0, such that for 0 < a < g9, L > 0, it follows
that for each compact and o -invariant set K C By with (p(K)) C [a, b], there exists
M > 0, such that for each X = (x,) € K which is an a-pseudo solution of equation (1.1),

Xp—x0—nb<M and x,—xo—na>—-M foralln>1.

Proof. From Theorem C, we know that the boundary points of p(A) are isolated, implying
the connected component [a, b] is isolated. By Lemma 6.2, we deduce the existence of
go > 0 such that py(A) = p(A) for 0 < a < &p.

Let 0 <a < a’ <&y, 8 > 0 be defined by Lemma 6.3, and 0 < § < §’. Since K is
compact, there exist kg € N, z!,...,7% ¢ K such that K C Ufi] U(zi, 5/2).

Let x = (x;) € K be an a-pseudo solution with p(x) C (o(K)) C [a, b] and n € N.
Define a sequence of integers 0 = go < g1 < - - - < g, = n recursively as follows. Let g
be the smallest number of {1, ..., n} such that o/x gU(x,8)forg) <j<nlIfo"xe
U(x, d), set g1 = n. Assume ¢; has been defined and g; < n. Define ¢;4 as the smallest
element of {g; + 1, ..., n} such that

olx ¢ U(c¥x,8) forgip1 <j <n.

Ifo"x € U(o?Xx, §),setgi+1 =nandthenm =i + 1.
The sequence {qo, g1, - - - » ¢m} has the property that

oclix g U(c?x,8) forO0<i<j<m-—1. (7.1)

We claim that m < kg. Indeed, since x € K C qu’:l U (zi ,8/2), we may assume
without of loss of generality that x € U(z',8/2). Then o%x ¢ U(z',8/2) for
i=1,...,m—1. Otherwise, due to x € U(zl, 8/2), we shall have c%x € U(X, §), a
contradiction to equation (7.1).

We assume without loss of generality again that 09'x € U (22, §/2). Then we deduce
that c%x ¢ U (zz, §/2) for 2 <i < m — 1 with the same reason as above, leading to the
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conclusion that o2x & U (z', §/2) U U (22, §/2). Inductively, we conclude that
ko
oln-1x ¢ U U, 8/2) DK
i=1
if we assume m > kg + 1, which is a contradiction to that K is invariant for o. Therefore,
m < ko.
For 0 <i <m —2, if gi+1 — ¢q; > 2, since o di+1—1-4i (0%x) € U(c%x, §), applying
Lemma 6.3, we obtain p; € Z such that
g1 —Xg —pil <8 and r;=—2L € p(A). (12)
gi+1—1—gqi
Furthermore, we deduce that r; € [a, b]. Indeed, from Lemma 6.3, we know that the
corresponding (p;, gi+1 — | — g;)-periodic configuration y constructed by Lemma 6.3
lies in O(K', ), where § = (k 4+ 1+ 1)8, and K’ = {o"x | for all n € Z}, implying y €
O(K, §). Then Lemma 5.4 and the assumption {p(K)) C [a, b] imply that
ri€la—e,b+¢elNp(A)

for arbitrarily small € if we choose § small enough. Since [a, b] is an isolated component of
p(A), we choose a smaller § which is independent of x if necessary such that r; € [a, b].
As a consequence of equation (7.2), we have —8 < x4, -1 — X4, — pi < &, and hence

—d+a(@i+1—qi — 1) <xg-1 —Xg <8+ b(qgit1 —qi — 1). (7.3)
Combining —L < x4, ., — Xg;,;—1 < L, we derivefor0 <i <m — 2,
—L—-6+a(qiv1—qi—1) <xg, — x4 <L +8+b(giy1—qi — D). (7.4)

Note that equation (7.4) also holds for the case gj+1 — ¢; = 1.
For i = m — 1, there are two cases. One is that o%+!x € U(0?x, §), the other is that
o%+1x & U(o?x, §). For the former case, we have by the same discussion as above

=0+ a(gi+1 — qi) < Xgy — Xg; <8+ D(git1 — qi)-

For the latter case, we must have o9+~ !'x € U(c%x, §) according to the definition of
gi+1, and again we have equations (7.3) and (7.4).
Consequently, we have forn € N,

Xp—xo—nb<m(L+68§—-—b) or x,—x9o—nb<m(L+65§—D>b)—+0b,
and
X, —xo—na>—-m(L+8§+a) or x,—x9o—na>-m(L+d6+a)+a.

Taking M = max{ko(L + 1 — b) + |b|, ko(L + 1 + a) + |a|}, we complete the proof. []
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A. Appendix. Proof of Lemma 3.8
The proof is a slight modification of that of [29, Lemma 4.1]. Lemma 4.2 in [29] says
that if we already have a B-pseudo solution z = (z;) with sup;( |zi —z0 — ip| < 0o, then
there exists a S-pseudo solution u = (u,,) satisfying sup, .7 |u, — ug — np| < oo.

By Lemma 3.4, there exist yl, y2 € K, such that

yil—yé—i,ofl and yiz—yg—i,oz—l foralli e N.
If there exists C > O such that foralli € N,
—C<yl —y—ip<1l or —1<y’—y}—ip=C,

then we can construct an a-pseudo solution z = (z,,) with sup,,.7 |z, — 2o — np| < oo by
[29, Lemma 4.2]. Otherwise, for each C > 0, there exist i, j € N such that

yi]—y(l)—i,o<—C and yjz—yg—j,o>C. (A1)

We shall construct a 8-pseudo solution z = (z,,) with sup,,»¢ |z, — zo — np| < oo for each
B> «a.

Given B > B’ > a > 0, there exists 0 < § < min{l, L} such that for arbitrary two
B’-pseudo solutions in By, their 6-gluing is a B-pseudo solution. This is a straightforward
consequence of the uniform continuity of A on By. In fact, we can glue more than two
B’-pseudo solutions to obtain a B-pseudo solution, as we do in what follows.

For each w= (w,) € K, let U(w,§/2) be defined as in equation (2.2). Then
{U(w, 5/2)}wek 1s an open cover of K and hence it has a finite subcover, say, {U; | i =
3,...,q}since K C Y is compact. Denote U; = U(y!, §/2) and U, = U(y2, 8/2).

Since K is chain transitive, we can construct by Lemma 3.3 a B’-pseudo solution y =
(yn) € By with the following properties.

(1) y € U, Denotey by u?.
() o™@)=vw"leU_; with mj >k+1, i=2,3,...,q, that is, y=u? —
~~~—>u3—>u2—>uleU1.

We remark that there is an integer N > 0 such that

k+l<my+---+my <N-—-1 and N>2+2/L. (A.2)
Take a lift of yl eK,z' = (z,ll) € X with z(l) € [0, 1]. Note that zl-l — Z}- = yi1 — yjl- for all
i,jeZ Let
zn =z foralln <0. (A.3)
Choose C; = 2N L. Note that
Zj—2g—jp=—jL—jlpl = —(k + DL — (k+ DL = —2NL forj=1,... . k+1.

Then by equation (A.l), there exists j; > k + [ such that
zj, =2~ jip < —C1=-2NL,
and

—2NL=-Ci<zj—zy—jp <1 forj=1,...,1—1 (A.4)
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Since |z}l - Z}‘.—l' < L and |p| < L, then by equation (A.4)

1

2 —z—he=0G} = _D+GE) ——Gi—-Dp)—p= —L—-C—L>=-3NL.

As a consequence, we have

—3NL <zj —zy— jip < —2NL. (A.5)
Let
=z forn=1,...,j -1 (A.6)
Since crjly1 € K, there exists some i € {3, ..., ¢q} such that ajly1 € U;. We may assume
i = 3. The construction is the same fori =4, ..., q.

Step 1: Note that P(r_jl,ozl) = o/ly! € Uz and v® € Us. We take a lift x> = (x,Sl) eX
of u’, that is, P(X3) = u3, such that

(T 020 —x2| <8 forn=—k,...,[—1, (A7)

and then we obtain a §-gluing of 7_ jl,()Zl and x> as follows. Note that due to equation
(A.6),

Zjitn = (r_jl,ozl)n forn=—-j+1,...,—1.

Take n; = m3 > k + [ such that 0”1 (u?) = u2. Let

Zjjin =x2 forn=0,1,...,n — 1 (A.8)
Then we obtain z, forn = 1,..., ji, ..., j1 +ni — 1 by gluing 7_}, oz' and x* at site ji.
Since x3 € By, then by equations (A.6) and (A.7), withn = 0, we have for 1 <n <n; —

1<N-1,
—(m1 — DL < 2j4n — 2j, = X; — x5 < (n1 — DL.
Combining equation (A.5), we derive
—8—3NL <zj —20— jip=x)— 2} +2;, =20 — jip <8 —2NL,
and hence
—(11 = DL =8 =3NL = nlp| < zjy1n — 20 — (1 +n)p
= (Zji4n —2j) + (zj; —20 — J1p) —np
<@m —DL+8§—-2NL +n|p|,
forO <n <n;—1< N — 1. Note that |p| < L. It follows that
~5SNL <zjj4n—20— (j1+n)p <0 forn=0,1,...,n1 — 1. (A.9)

Steps 2—4 are similar to those in the proof of [29, Lemma 4.1] and hence omitted here.
We know that these four steps can be repeated. Therefore, z = (z;) is a B-pseudo solution
satisfying sup,>q [z, — 20 — np| < M, where M = 6N L (see the proof of [29, Lemma
4.1]). We use [29, Lemma 4.2] to complete the proof. U
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