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Abstract. In this paper, we show that each element in the convex hull of the rotation
set of a compact invariant chain transitive set is realized by a Birkhoff solution, which
is an improvement of the fundamental lemma of T. Zhou and W.-X. Qin [Pseudo
solutions, rotation sets, and shadowing rotations for monotone recurrence relations.
Math. Z. 297 (2021), 1673–1692] in the study of rotation sets for monotone recurrence
relations. We then investigate the properties of rotation sets assuming the system has
zero topological entropy. The rotation set for a Birkhoff recurrence class is a singleton
and the forward and backward rotation numbers are identical for each solution in the
same Birkhoff recurrence class. We also show the continuity of rotation numbers on
the set of non-wandering points. If the rotation set is upper-stable, then we show that
each boundary point is a rational number, and we also obtain a result of bounded
deviation.
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1. Introduction
We continue the investigation of rotation sets for monotone recurrence relations in [29].
The solutions of a monotone recurrence relation correspond to orbits of a monotone twist
map on the high-dimensional cylinder, a generalization of the classical monotone twist
map on the annulus.

Let k ≥ 1, l ≥ 1 be integers, and � : Rk+l+1 → R be continuous. Consider solutions
x = (xn) ∈ RZ of

�(xn−k , . . . , xn, . . . , xn+l) = 0 for all n ∈ Z. (1.1)
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We always assume in this paper that:
(1) �(x−k , . . . , x0, . . . , xl) is a non-decreasing function of all the xj except x0.

Moreover, it is strictly increasing in x−k and xl ;
(2) �(x−k + 1, . . . , xl + 1) = �(x−k , . . . , xl);
(3) limx−k→±∞ �(x−k , . . . , xl) = ±∞ and limxl→±∞ �(x−k , . . . , xl) = ±∞.

According to assumptions (1) and (3), we can solve equation (1.1) for xn+l if
(xn−k , . . . , xn+l−1) is given. Thus we define a continuous map F� from Rk+l to Rk+l by

F�(xn−k , . . . , xn+l−1) = (xn−k+1, . . . , xn+l).

The map F� is a homeomorphism of Rk+l onto itself. Taking into account the periodicity
assumption (2), we define on the high-dimensional cylinder S1 × Rk+l−1 a homeomor-
phism ϕ� which is a generalization of the class of monotone twist maps of the annulus or
two-dimensional cylinder [3].

We say that a configuration x = (xn) ∈ RZ has bounded action if there is a constant
L > 0 such that |xn+1 − xn| ≤ L for n ∈ Z. Define the forward and backward rotation
intervals of x to be

ρ(x) =
[

lim inf
n→+∞

xn

n
, lim sup
n→+∞

xn

n

]
and ρ∗(x) =

[
lim inf
n→−∞

xn

n
, lim sup
n→−∞

xn

n

]
,

respectively. If ρ(x)(ρ∗(x)) is a single point, that is, the limit limn→+∞ xn/n(limn→−∞
xn/n) exists, we say that x has a forward (backward) rotation number. If ρ(x) = ρ∗(x) is
a singleton, then we say x has a rotation number.

We define ρ(�), the union of ρ(x), where x = (xn) is a solution of equation (1.1) with
bounded action, as the rotation set of equation (1.1).

We also consider the rotation sets of solutions with bounded action of

�(xn−k , . . . , xn, . . . , xn+l) = F for all n ∈ Z, (1.2)

in which F ∈ R and � is the same as equation (1.1). In particular, if k = l = 1 and

�(x−1, x0, x1) = x−1 − 2x0 + x1 + a sin 2πx0, a ∈ R,

then it is called the tilted Frenkel–Kontorova model [4, 10], in which the constant F
represents the external driving force. We denote by ρ(�, F) the rotation set of solutions
of equation (1.2) with bounded action.

Let

S̃ = {x ∈ RZ | x is a solution of equation (1.1) with bounded action} and S = S̃/〈1〉,
where 1 denotes the configuration with all components being 1. For L > 0, let

SL = {x = (xn) ∈ S | |xn+1 − xn| ≤ L, for all n ∈ Z}.
Let τm,n denote the translation on RZ defined by (τm,nx)i = xi−m + n for x = (xi) ∈ RZ

and σ = τ−1,0/〈1〉. Then the system generated by σ on S is equivalent to that by ϕ�
on the high-dimensional cylinder restricted to orbits with bounded action. Therefore, we
would study the dynamical behavior and rotation set of σ on S rather than ϕ� on the
high-dimensional cylinder.
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For each y ∈ S, there is a lift x ∈ S̃ such that y = x/〈1〉. Define

yi − yj = xi − xj for all i, j ∈ Z,

which is independent of the lift x. Define ρ(y) = ρ(x), which is also independent of x,
that is, ρ(x) = ρ(x′) if x/〈1〉 = x′/〈1〉, where x, x′ ∈ S̃. Let ρ(K) denote the rotation set
of K, that is, ρ(K) = ⋃

x∈K ρ(x) for a set K of configurations with bounded action.
Some conclusions obtained in [29] are as follows. The rotation set ρ(�) is closed, each

ω ∈ ρ(�) is realized by a Birkhoff solution of equation (1.1), and if there exists a solution
x of equation (1.1) with bounded action such that ρ(x) is not a single point, then the
topological entropy of ϕ� is positive.

A fundamental lemma in [29] is that 〈ρ(K)〉 ⊂ ρ(�), where K = ω(x) is the ω-limit
set of the orbit {σnx | n ∈ Z} and 〈·〉 denotes the convex hull. In this paper, we shall
improve this conclusion and show that 〈ρ(K)〉 ⊂ ρ(�) provided K is a compact invariant
chain transitive set for σ , which is an analogue, to some extent, of Franks’s result on
surface homeomorphisms [14], and then discuss its applications assuming the rotation set
is upper-stable or σ has zero topological entropy on S.

If the monotone recurrence relation of equation (1.1) has a generating function, then
zero topological entropy implies that Birkhoff minimizers with each rotation number form
a continuous foliation [19]. Our first topic in this paper is to investigate, for the general
monotone recurrence relations, the properties of rotation sets of equation (1.1) with zero
topological entropy.

There are large amounts of research work on the relation between topological entropy
and rotation sets of homeomorphisms on the torus and annulus, see [13, 23–25, 27]
and references therein. In [24], Le Calvez and Tal investigated rotation sets of surface
homeomorphisms with no topological horseshoe by developing a new criterion for the
existence of topological horseshoes for surface homeomorphisms together with forcing
theory [23]. For homeomorphisms on the two-dimensional cylinder isotopic to the identity,
they showed that (among other things) each orbit with non-empty ω-limit set has a
well-defined forward rotation number; the forward and backward rotation numbers for
a non-wandering point are identical; the rotation number function is continuous on the
set of non-wandering points; and each Birkhoff recurrence class has a unique rotation
number.

The first part of this paper is devoted to the discussion of these questions for monotone
recurrence relations with zero topological entropy. Applying the results in §3, we obtain
that each Birkhoff recurrence class (see §2 for the definition) in S has a unique forward
and a unique backward rotation number, which are actually identical, implying that ρ(x) =
ρ∗(x) for x being non-wandering. Moreover, the rotation number function is continuous
on the set of non-wandering points.

Let 	 ⊂ S denote the set of all non-wandering points of σ .

THEOREM A. Assume σ has zero topological entropy on S. Let L > 0 and K ⊂ SL be a
non-empty Birkhoff recurrence class. Then ρ(K) is a single point and ρ(y) = ρ∗(y) for
each y ∈ K .

https://doi.org/10.1017/etds.2022.23 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.23


1740 W.-X. Qin et al

Remark. Let L > 0 and x ∈ SL be a non-wandering point. Then (see §2) there is a
Birkhoff cycle containing x and hence the Birkhoff recurrence class containing x is
non-empty. It follows immediately from the above theorem that ρ∗(x) = ρ(x).

THEOREM B. Assume σ has zero topological entropy on S. Then for each L > 0, ρ :
	 ∩ SL → R is continuous.

For an endomorphism of the circle, the rotation set is a closed interval. Bamon, Malta,
and Pacífico proved [5] that if the rotation interval is stable (persistent), then its endpoints
must be rational numbers. For a homeomorphism on the torus homotopic to the identity,
Addas-Zanata showed in [1] that its rotation set, which is a compact convex subset of the
plane, is not upper-stable if it has an extremal point which is not a rational vector.

Inspired by these discussions, we shall investigate boundary points of rotation sets for
monotone recurrence relations assuming the rotation sets are upper-stable.

We say that ρ(�) is upper-stable if there exists ε0 > 0 such that ρ(�′) ⊂ ρ(�) for
each �′ continuous on Rk+l+1 which satisfies assumptions (1)–(3) and supu∈� |�(u)−
�′(u)| < ε0 for each compact set � ⊂ Rk+l+1. We say that ρ(�) is upper-stable with
respect to F if there exists ε0 > 0 such that ρ(�, F) ⊂ ρ(�) for F ∈ (−ε0, ε0). It is
obvious that if ρ(�) is upper-stable, then it is upper-stable with respect to F. It seems
that the upper-stability with respect to F is a weaker assumption than the upper-stability.
However, they are equivalent owing to Lemma 6.1.

THEOREM C. Assume ρ(�) is upper-stable with respect to F. Then there exists a positive
integer q0 ≥ 1 such that each boundary point of ρ(�) is rational and has the form p/q in
lowest terms with 1 ≤ q ≤ q0.

Remark 1. An immediate corollary of the above theorem is that if the rotation set is
compact and upper-stable, then it has finite boundary points which are all rational numbers.
We emphasize that a related result on rotation sets of homeomorphisms on the torus
isotopic to the identity was obtained by Guihéneuf and Koropecki in [18].

Remark 2. If an irrational ω ∈ ρ(�) which may not be upper-stable, then for each ε > 0,
there exists F ∈ (−ε, ε) such that p/q ∈ ρ(�, F) for some rational p/q close to ω. This
is a straightforward consequence of Lemmas 6.3 and 6.4, the proof of which is the same
as the last part of that of Theorem C. We remark that it is an analogue of a conclusion for
twist maps on the two-dimensional cylinder obtained by Le Calvez, see [22, §1.5].

We say that a configuration x = (xn)with forward rotation number ρ has bounded devi-
ation if there exists M > 0 such that |xn − x0 − nρ| ≤ M for all n ∈ N. It is well known
that if x is Birkhoff (see §2 for the definition), then x has a rotation number and bounded
deviation. Generally, a solution of equation (1.1) which has forward rotation number does
not necessarily have bounded deviation. Neither do the orbits of homeomorphisms on the
annulus or torus [9, 20].

Recently, a great deal of attention has been gathered on the problem of bounded
deviation for homeomorphisms isotopic to the identity on the torus, see [2, 12, 17, 21,
28] and references therein. For homeomorphisms isotopic to the identity on the closed
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annulus, Conejeros and Tal showed [11] that if f is a homeomorphism on a region of
instability and the rotation numbers of the boundary components lie in the interior of the
rotation set, then f has uniformly bounded deviations from its rotation set. We shall study
a similar problem assuming the rotation set is upper-stable.

THEOREM D. Assume ρ(�) is upper-stable with respect to F. Let [a, b] be a connected
component of ρ(�) and L > 0. Then for each compact and σ -invariant set K ⊂ SL with
〈ρ(K)〉 ⊂ [a, b], there exists M > 0, such that for each x = (xn) ∈ K ,

xn − x0 − nb ≤ M and xn − x0 − na ≥ −M for all n ≥ 1.

Remark. We should mention that Guihéneuf and Koropecki in [18] have also stud-
ied bounded deviations for torus homeomorphisms isotopic to the identity assuming
upper-stability of rotation sets. Our approach is highly inspired by their methods.

Since the system corresponding to solutions of equation (1.1) is a monotone twist
map on the high-dimensional cylinder, and we do not have powerful tools like forcing
theory [23] for two-dimensional cases, we have to make full use of monotonicity condition
of assumption (1). We define α-pseudo solutions (see also [29]) and introduce chain
transitivity for α-pseudo solutions of equation (1.1), which are similar to, but not equivalent
to, α-pseudo orbits and chain transitivity defined for general dynamical systems [14]. A
fundamental result we proved in §3 is that each element in the convex hull of the rotation
set of a compact invariant chain transitive set can be realized by a Birkhoff solution of
equation (1.1), which forms the basis for the proofs of the main conclusions in this paper.

2. Preliminaries
We denote by X the configuration space RZ equipped with the product topology and Y =
X/〈1〉, where 1 denotes the configuration with each component being 1. Let P denote the
projection from X to Y defined by P(x) = y = x/〈1〉 and call x ∈ X a lift of y ∈ Y . Let
σ : Y → Y be defined by σy = P(τ−1,0x), where x ∈ X is a lift of y ∈ Y , and the shift
map τm,n : X → X is defined for m, n ∈ Z by (τm,nx)i = xi−m + n, for all i ∈ Z.

For L > 0, let

B̃L = {x = (xi) ∈ X | |xi+1 − xi | ≤ L, for all i ∈ Z}, B̃ =
⋃
L>0

B̃L,

S̃L = {x ∈ B̃L | x is a solution of equation (1.1)}, S̃ =
⋃
L>0

S̃L.

Let BL = P(B̃L), B = P(B̃), SL = P(S̃L), and S = P(S̃). It then follows immediately
from Tychonoff’s theorem that BL and SL are compact.

Let x, y ∈ SL. We say that there is a Birkhoff connection from x to y if for each
neighborhood U of x and each neighborhood V of y, there exists n ≥ 1 such that
σn(U ∩ SL) ∩ V = ∅. A Birkhoff cycle is a finite sequence x1, x2, . . . , xp, xp+1 = x1

in SL such that there is a Birkhoff connection from xi to xi+1 for each i ∈ {1, 2, . . . , p}.
A solution x ∈ SL is said to be Birkhoff recurrent for σ if there exists a Birkhoff cycle
containing x.
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A solution x ∈ SL is said to be non-wandering for σ if for each neighborhood U of
x, there exists n ≥ 1 such that σn(U ∩ SL) ∩ U = ∅. Therefore, x is non-wandering if
and only if there is a Birkhoff cycle containing x with the cycle length p = 1. We say that
x ∈ SL is Birkhoff equivalent to y ∈ SL if there is a Birkhoff cycle containing both x and y.
The equivalence class will be called Birkhoff recurrence class, see [24] for the introduction
of these concepts on surface homeomorphisms and related conclusions on rotation sets.

Let w = (wn), u = (un) ∈ Y , and w̃ = (w̃n) ∈ X be a lift of w, that is, P(w̃) = w.
Define

|w0 − u0| = min{|w̃0 − ũ0| | ũ = (ũn) ∈ X, P(ũ) = u}
which is independent of w̃. Then there exists some û = (ûn) ∈ X with P(û) = u such that
|w0 − u0| = |w̃0 − û0|. If |w0 − u0| = 1

2 , take û such that û0 = w̃0 + 1
2 . Define

|wn − un| = |w̃n − ûn| for all n ∈ Z. (2.1)

For each w = (wn) ∈ Y and δ > 0, we define

U(w, δ) = {u = (un) ∈ Y | |un − wn| < δ, n = −k, . . . , l − 1}. (2.2)

Define the relations ≤, <, � on the configuration space X as follows. We say that
x = (xi) ≤ x′ = (x′

i ) if and only if xi ≤ x′
i for i ∈ Z, x < x′ if and only if x ≤ x′ and

x = x′, x � x′ if and only if xi < x′
i for i ∈ Z. Similarly, we can define ≥, >, and �. We

say that x and x′ are ordered if x ≤ x′ or x ≥ x′, x and x′ are strictly ordered if x � x′, or
x � x′, or x = x′.

A configuration x ∈ X is said to be Birkhoff if for any m, n ∈ Z, τm,nx and x are
ordered, that is, τm,nx ≤ x or τm,nx ≥ x. We say that y ∈ Y is Birkhoff if a lift ỹ ∈ X
of y is Birkhoff.

Let B̃ ⊂ X denote the set of Birkhoff configurations. It is easy to check that B̃ ⊂ B̃,
B̃ is closed in the product topology, and τm,nB̃ = B̃, for all m, n ∈ Z. It follows that each
Birkhoff configuration has a rotation number [6, 15].

LEMMA 2.1. Let x ∈ X be a Birkhoff configuration. Then x has a rotation number ρ(x) =
ρ∗(x) = ρ and

|xj − xi − (j − i)ρ| ≤ 1 for all i, j ∈ Z. (2.3)

Moreover, the map x �→ ρ(x), B̃→ R is continuous in the product topology [6, 15].

Definition 2.2. Given α > 0, a configuration x = (xi) is called an α-pseudo solution of
equation (1.1) if

|�(xi−k , . . . , xi+l)| ≤ α for all i ∈ Z.

Let ρα(�) denote the rotation set of α-pseudo solutions of equation (1.1), that is,

ρα(�) =
⋃

ρ(x),

where x is an α-pseudo solution of equation (1.1) with bounded action. It was proved
[29] that the pseudo rotation set of equation (1.1) defined by ρψ(�) = ⋂

α>0 ρα(�) is
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identical to ρ(�). For the study of pseudo rotation sets, see [7] for circle endomorphisms
and annulus homeomorphisms, and [18] for torus homeomorphisms.

The following conclusion was proved in [29], adapting Angenent’s approach for the
special case α = 0 in [3].

LEMMA 2.3. If x = (xi) is an α-pseudo solution of equation (1.1) and there exists ω ∈ R

such that supi∈Z |xi − x0 − iω| < ∞, then equation (1.1) has a Birkhoff α-pseudo solution
with rotation number ω.

Definition 2.4. Let δ > 0, i0 ∈ Z, and x = (xn), x′ = (x′
n) ∈ X be two configurations with

|xn − x′
n| < δ for n = i0 − k, . . . , i0 + l − 1. Then the configuration z = (zn) is said to

be a δ-gluing of x and x′ (at site i0) if

zn = xn for all n < i0 and zn = x′
n for all n ≥ i0.

Assume x = (xn) and x = (xn) are supersolution and subsolution of equation (1.1)
respectively, that is,

�(xn−k , . . . , xn+l) ≤ 0 and �(xn−k , . . . , xn+l) ≥ 0 for all n ∈ Z.

It is said they exchange rotation numbers if

lim inf
n→∞

xn

n
≥ ω2, lim sup

n→−∞
xn

n
≤ ω1, lim sup

n→∞
xn

n
≤ ω1, lim inf

n→−∞
xn

n
≥ ω2, (2.4)

hold for some ω1 < ω2, see [3, §6].
A criterion presented by Angenent in [3] shows that if there exist a supersolution and a

subsolution of equation (1.1) exchanging rotation numbers, then the homeomorphism ϕ�

defined by equation (1.1), or σ on S, has positive topological entropy, see [3, Theorem 7.1].

Remark. There are several objects called Birkhoff in this section. The notion of Birkhoff
configuration, which is central in this paper, corresponds to that of Birkhoff orbit, which
plays an important role in the Aubry–Mather theory, see, for example, [3, 6, 15]. Another
terminology, Birkhoff recurrence class, was borrowed from [24]. It seems that the notion
of Birkhoff recurrence class is related to that of Birkhoff region of instability for monotone
twist maps on the annulus [26].

3. Chain transitive sets
In this section, we introduce chain transitivity for solutions or α-pseudo solutions of
equation (1.1). Although it is not equivalent to that defined for general dynamical systems
[14], it does help us to provide the proof of Theorems A and B since the ω-limit set ω(x) of
x ∈ SL and the Birkhoff recurrence class are chain transitive according to our definition,
see Lemmas 3.6 and 4.3.

Definition 3.1. Assume α ≥ 0, and x = (xn), y = (yn) ∈ BL are two α-pseudo solutions
of equation (1.1). A β-pseudo solution z = (zn) ∈ BL is called a β-chain (β > α) from x
to y if

z̃n = x̃n and z̃j+n = ỹn, n = −k, . . . , l − 1,
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for some j > 0, where z̃ = (z̃i ), x̃ = (x̃i), and ỹ = (ỹi) are lifts of z, x, and y, respectively.
An α-pseudo solution x ∈ BL is said to be chain recurrent if for each β > α, there is a
β-chain from x to itself. In particular, a solution x ∈ SL is said to be chain recurrent if for
each β > 0, there is a β-chain from x to itself.

Definition 3.2. Assume α ≥ 0 and K ⊂ BL is a set of α-pseudo solutions of equation
(1.1). If for any x, y ∈ K and any β > α, there is a β-chain from x to y, then we say that K
is chain transitive.

LEMMA 3.3. Assume K ⊂ BL is an invariant for σ and chain transitive set of α-pseudo
solutions of equation (1.1). Then for any x, y ∈ K , any β > α, and arbitrarily large integer
m′ > k + l, there exists a β-pseudo solution z and m > m′, such that

z̃n = x̃n and z̃m+n = ỹn, n = −k, . . . , l − 1,

where z̃ = (z̃i), x̃ = (x̃i), and ỹ = (ỹi) are lifts of z, x, and y, respectively.

Proof. Let y′ = σ−m′y. Since x, y′ ∈ K , which is chain transitive, then for each β > α,
there is a β-pseudo solution z′ = (z′n) ∈ BL such that for some j > 0,

z̃′n = x̃n and z̃′j+n = ỹ′
n, n = −k, . . . , l − 1,

where z̃′ = (z̃′i ), x̃ = (x̃i), and ỹ′ = (ỹ′
i ) are lifts of z′, x, and y′, respectively. Note that

ỹ = τ−m′,0ỹ′ is a lift of y. Let z̃ = (z̃i ) be constructed by

z̃i =

⎧⎪⎪⎨
⎪⎪⎩
z̃′i , i < j − k,

z̃′i = ỹ′
i−j , j − k ≤ i < j + l,

ỹ′
i−j = ỹi−j−m′ , i ≥ j + l.

Then z = P(z̃) is the desired β-pseudo solution with m = j +m′.

Let K ⊂ BL and denote ρ(K) = ⋃
x∈K ρ(x) and its convex hull by 〈ρ(K)〉.

LEMMA 3.4. Let K ⊂ BL be a compact invariant set for σ . Then for each ρ ∈ 〈ρ(K)〉,
there exist y1, y2 ∈ K , such that

y1
n − y1

0 − nρ ≤ 1 and y2
n − y2

0 − nρ ≥ −1 for all n ∈ N. (3.1)

Proof. The proof is the same as that of [29, Lemma 2.4].
Let the ω-limit set of x ∈ BL be denoted by ω(x), that is,

ω(x) = {y ∈ Y | there exist mi ∈ N such that σmix → y as i → ∞}. �

LEMMA 3.5. Let x ∈ BL. Then ρ(x) ⊂ 〈ρ(ω(x))〉.
Proof. Let ρ ∈ ρ(x). Then there exist y1 = (y1

n) and y2 = (y2
n) ∈ ω(x) (the proof is the

same as that of [29, Lemma 2.4] and hence omitted), such that equation (3.1) holds. It
follows that lim infn→+∞(y1

n − y1
0)/n ≤ ρ and lim supn→+∞(y2

n − y2
0)/n ≥ ρ, implying

ρ ∈ 〈ρ(ω(x))〉.
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LEMMA 3.6. Let α ≥ 0 and x be an α-pseudo solution of equation (1.1) with bounded
action. Then ω(x) is chain transitive.

Proof. It is easy to check that each configuration in ω(x) is an α-pseudo solution of
equation (1.1). Let y, z ∈ ω(x), β > α, and δ > 0. Then there exist m1, m2 ∈ N with
m2 −m1 > 2(k + l) such that

σm1x ∈ U(y, δ) and σm2x ∈ U(z, δ),

implying the existence of x̃, ỹ, and z̃, which are lifts of x, y, and z, respectively, such that

|x̃m1+n − ỹn| < δ and |x̃m2+n − z̃n| < δ for n = −k, . . . , l − 1.

Let w̃ = (w̃i) be defined by

w̃i =

⎧⎪⎪⎨
⎪⎪⎩
ỹi−m1 , i ≤ m1 + l − 1,

x̃i , m1 + l − 1 < i < m2 − k,

z̃i−m2 , m2 − k ≤ i.

Then we have a β-chain from y to z provided δ is small enough.

LEMMA 3.7. LetK ⊂ BL be a compact invariant set for σ . Then there exist x, y ∈ K such
that ρ(x) = ρ∗(x) = sup ρ(K) and ρ(y) = ρ∗(y) = inf ρ(K).

Proof. The proof is similar to that of [29, Lemma 5.2] and hence omitted here, see also
[7, 8].

LEMMA 3.8. Let α ≥ 0 and K ⊂ BL be a set of α-pseudo solutions of equation (1.1)
which is compact and invariant for σ . Assume K is chain transitive and ρ ∈ 〈ρ(K)〉. Then
for each β > α, there exists a β-pseudo solution z = (zn) satisfying

sup
n∈Z

|zn − z0 − nρ| < ∞.

Proof. The proof is postponed to Appendix A. �

THEOREM 3.9. Let α ≥ 0 and K ⊂ BL be a set of α-pseudo solutions of equation (1.1)
which is compact and invariant for σ . If K is chain transitive, then for each ρ ∈ 〈ρ(K)〉,
there exists a Birkhoff α-pseudo solution z of equation (1.1) with ρ(z) = ρ, and hence
〈ρ(K)〉 ⊂ ρα(�).

Proof. For each ρ ∈ 〈ρ(K)〉, we deduce by Lemmas 3.8 and 2.3 that for each β > α,
there exists a Birkhoff β-pseudo solution zβ = (z

β
n ) ∈ Y satisfying |zβn − z

β

0 − nρ| ≤ 1,
for all n ∈ Z, due to Lemma 2.1. Applying Tychonoff’s theorem, we obtain an accumula-
tion point z of {zβ} as β → α, which is a Birkhoff α-pseudo solution of equation (1.1) with
ρ(z) = ρ.

The following conclusions are actually generalizations of those in [29, Theorem A].
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THEOREM 3.10. For each α ≥ 0, ρα(�) is closed. Moreover, for each ρ ∈ ρα(�), there
exists a Birkhoff α-pseudo solution with rotation number ρ. If ρ = p/q is rational in lowest
terms, then there is a Birkhoff (p, q)-periodic α-pseudo solution.

Proof. Let ρ ∈ ρα(�). Then there is an α-pseudo solution x of equation (1.1) with
bounded action such that ρ ∈ ρ(x) ⊂ 〈ρ(ω(x))〉 by Lemma 3.5. Note thatω(x) is compact,
invariant for σ , and chain transitive due to Lemma 3.6. We deduce by Theorem 3.9 the
existence of a Birkhoff α-pseudo solution with rotation number ρ.

Let ρ = p/q in lowest terms be rational and ρ(x) = p/q, where x is a Birkhoff
α-pseudo solution. If x is (p, q)-periodic, then the proof is complete. If not, then we shall
show that the limit point limn→∞ τnq,px is a Birkhoff (p, q)-periodic α-pseudo solution of
equation (1.1).

Indeed, if τq,px = x, then we assume τq,px ≥ x (the proof for the case τq,px ≤ x is the
same) since x is Birkhoff. It then follows that

x ≤ τq,px ≤ · · · ≤ τnq,px ≤ · · · .

We claim that τnq,px ≤ x + 1 = τ0,1x, for all n ≥ 1. Indeed, if this is not true, then we
have a positive integer n0 such that τn0

q,px ≥ x + 1 since τn0
q,px and τ0,1x are ordered due

to the fact that x is Birkhoff. Consequently, τ jn0
q,p x ≥ x + j · 1, for all j ≥ 1, implying

ρ(x) ≥ p/q + 1/(n0q), a contradiction. Therefore, we have τnq,px ≤ x + 1, for all n ≥ 1,
and hence for each i ∈ Z, {(τnq,px)i}n≥0 is a non-decreasing and bounded sequence, leading
to the conclusion that {τnq,px}n≥0 has a unique limit point, denoted by z. Noting that

τq,pz = τq,p lim
n→∞ τnq,px = lim

n→∞ τn+1
q,p x = z,

we obtain that z is a Birkhoff (p, q)-periodic α-pseudo solution of equation (1.1).
Let ρn ∈ ρα(�) and ρn → ρ as n → ∞. Then there are Birkhoff α-pseudo solutions

xn ∈ Y of equation (1.1) with ρ(xn) = ρn, for all n ∈ N. The accumulation point x of {xn}
is an α-pseudo solution with ρ(x) = ρ by Lemma 2.1, implying that ρα(�) is closed.

4. Proof of Theorem A
LEMMA 4.1.

(i) Let x, y ∈ SL. If there is a Birkhoff connection from x to y, then there is a Birkhoff
connection from x to any point in {σny | n ∈ N} ∪ ω(y).

(ii) Let x, y ∈ SL and y ∈ {σnx | n ∈ N}. If there is a Birkhoff connection from x to y,
then there is a Birkhoff connection from any point in {σnx | n ∈ N} ∪ ω(x) to y.

(iii) Let x, y ∈ SL and y ∈ {σnx | n ∈ N}. If there is a Birkhoff connection from x to y,
then for each neighborhood V of y, each neighborhood U of x, and each N ∈ N,
there exists n ≥ N such that σn(U ∩ SL) ∩ V = ∅.

Proof. These facts are easy to check, see [24].

LEMMA 4.2. Let x, y ∈ SL and y ∈ {σnx | n ∈ N}. If there is a Birkhoff connection from
x to y, then for each α > 0, there is an α-chain from x to y.
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Proof. Let δ > 0. Then U(x, δ) and U(y, δ) are neighborhoods of x and y, respectively.
From item (iii) of Lemma 4.1, it follows that there exists u ∈ U(x, δ) ∩ SL and
m > 2(k + l) such that σmu ∈ U(y, δ). Let ũ, x̃, and ỹ be lifts of u, x, and y, respectively,
such that |ũj − x̃j | < δ and |ũm+j − ỹj | < δ for −k ≤ j ≤ l − 1. Let z̃ = (z̃i) be
defined by

z̃i =

⎧⎪⎪⎨
⎪⎪⎩

x̃i , i ≤ l − 1,

ũi , l ≤ i < m− k,

ỹi−m, m− k ≤ i.

Then z = P(z̃) is an α-pseudo solution of equation (1.1) if δ is small enough, and hence
there is an α-chain from x to y.

LEMMA 4.3. Assume K ⊂ SL is a Birkhoff recurrence class. Then the closure K of K is
chain transitive.

Proof. Let x′, y′ ∈ K , and U and V be neighborhoods of x′ and y′, respectively. Then
there exist x ∈ U ∩K and y ∈ V ∩K . Since x, y ∈ K , which is a Birkhoff recurrence
class, there are x1, . . . , xp ∈ SL such that there exist Birkhoff connections from x to x1,
x1 to x2, . . ., and xp to y. From Lemma 4.2 it follows that for each α > 0, there is an
α/2-chain from x to x1, . . ., an α/2-chain from xp to y. We then obtain an α/2-chain from
x to y. Choosing U and V small enough, we have an α-chain from x′ to y′.

LEMMA 4.4. Let y1, y2 ∈ SL with ρ∗(y1) = ρ(y1) = a < b = ρ∗(y2) = ρ(y2) and
ω1, ω2 ∈ ρ(�) with a < ω1 < ω2 < b. Assume there is a Birkhoff connection from
y1 to y2. Then there exists a supersolution x of equation (1.1) with ρ∗(x) = ω1 and
ρ(x) = ω2. Similarly, if there is a Birkhoff connection from y2 to y1, then there is a
subsolution x with ρ(x) = ω1 and ρ∗(x) = ω2.

Proof. By Theorem 3.10, there are Birkhoff solutions inXw1 = (w1
n) and w2 = (w2

n) such
that ρ∗(w1) = ρ(w1) = ω1 and ρ∗(w2) = ρ(w2) = ω2.

Let z1 = (z1
n) and z2 = (z2

n) be the lifts of y1 and y2, respectively. Then limn→±∞(z1
n −

z1
0)/n = a and limn→±∞(z2

n − z2
0)/n = b. Since a < ω1 < ω2 < b, there exists N > 0

such that

w1
n < z1

n, w2
n > z2

n for all n ≤ −N and w1
n > z1

n, w2
n < z2

n for all n ≥ N .

Next, we choose ε0 > 0 such that

w1
n ≤ z1

n − ε0, w2
n ≥ z2

n + ε0 for −N − k − l ≤ n ≤ −N ,

and

w1
n ≥ z1

n + ε0, w2
n ≤ z2

n − ε0 for N ≤ n ≤ N + k + l.

Since y2 ∈ {σny1 | n ∈ N} and there is a Birkhoff connection from y1 to y2, then by item
(iii) of Lemma 4.1, for each neighborhood V of y2 and neighborhood U of y1, there exists
u ∈ U ∩ SL such that σmu ∈ V , where m > 2(N + k + l).
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For each 0 < ε ≤ ε0, we choose U and V small enough such that

|x1
n − z1

n| ≤ ε and |x2
n − z2

n| ≤ ε for −N − k − l ≤ n ≤ N + k + l,

where x1 = (x1
n) and x2 = (x2

n) are lifts of u and σmu, respectively. Hence,

w1
n ≤ x1

n , w2
n ≥ x2

n for −N − k − l ≤ n ≤ −N ,

and

w1
n ≥ x1

n , w2
n ≤ x2

n for N ≤ n ≤ N + k + l.

Note that P(x1) = u and P(x2) = σmu. Then there exists l2 ∈ Z such that

x2
n = x1

m+n + l2 for all n ∈ Z.

We can replace x2, z2, and w2 by x2 − l2 · 1, z2 − l2 · 1, and w2 − l2 · 1, respectively.
Therefore, we may assume l2 = 0 without loss of generality. It then follows that x2 =
τ−m,0x1.

We construct a supersolution x = (xj ) as follows. Let

xj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1
j , j ≤ −N − l − k,

w1
j = min{w1

j , x1
j }, −N − l − k < j ≤ −N ,

min{w1
j , x1

j }, −N < j ≤ N ,

x1
j = min{w1

j , x1
j }, N < j ≤ N + l + k,

x1
j = x2

j−m, N + l + k < j ≤ m−N − l − k,

x2
j−m = min{x2

j−m, w2
j−m}, m−N − l − k < j ≤ m−N ,

min{x2
j−m, w2

j−m}, m−N < j ≤ m+N ,

w2
j−m = min{x2

j−m, w2
j−m}, m+N < j ≤ m+N + l + k,

w2
j−m, m+N + l + k < j .

Note that w1, w2, x1, and x2 are solutions of equation (1.1). One can check by the
construction of xj and the monotonicity condition of assumption (1) that x = (xj ) is a
supersolution of equation (1.1) which satisfies

ρ∗(x) = ρ∗(w1) = ω1 and ρ(x) = ρ(w2) = ω2.

Similarly, we can construct, due to a Birkhoff connection from y2 to y1, a subsolution
x = (xn) of equation (1.1) satisfying ρ∗(x) = ω2 and ρ(x) = ω1.

Proof of Theorem A. Let K ⊂ SL be a non-empty Birkhoff recurrence class. Then K is
invariant for σ due to Lemma 4.1, and the closure K of K is compact and chain transitive
by Lemma 4.3. As a consequence of Theorem 3.9 by setting α = 0, 〈ρ(K)〉 ⊂ ρ(�).

We shall show that ρ(K) is a single point by contradiction. Assume a, b ∈ ρ(K) with
a < b. Then [a, b] ⊂ 〈ρ(K)〉 ⊂ ρ(�) and there exist y1, y2 ∈ K such that ρ(y1) = a,
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ρ(y2) = b since each solution of equation (1.1) with bounded action has a well-defined
forward rotation number if σ has zero topological entropy on S, see [29, Theorem B].

Since y1 and y2 are in the same Birkhoff recurrence class, there is a Birkhoff
cycle {z1, z2, . . . , zp, zp+1 = z1}(p ≥ 2) such that z1 = y1 and zn = y2 for some n ∈
{2, . . . , p}. We assume without loss of generality that zi+1 ∈ {σ j zi | for all j ∈ N}, and
hence we may replace zi by ẑi ∈ ω(zi ) by item (ii) of Lemma 4.1 if necessary. Note that
the proof of [29, Theorem B] actually shows that 〈ρ(ω(z))〉 = ρ(z) is a single point for
each z ∈ S if σ has zero topological entropy on S. Therefore, we may assume by Lemma
3.7 ρ(zi ) = ρ∗(zi ) for all i = 1, 2, . . . , p.

We assume ρ(z2) = a1 > a, otherwise consider the Birkhoff connection from z2 to
z3. We also assume ρ(zp) = a2 > a, otherwise consider the Birkhoff connection from
zp−1 to zp. By the first part of Lemma 4.4, we can construct a supersolution x with a <
ρ∗(x) = ω1 < ρ(x) = ω2 < min{a1, a2, b}, and by the second part of Lemma 4.4, we have
a subsolution x with ρ(x) = ω1 < ω2 = ρ∗(x); hence a supersolution and a subsolution
exchanging rotation numbers, which implies that σ on S has positive topological entropy
by [3, Theorem 7.1], a contradiction. Consequently, ρ(K) is a single point.

Finally, we show that ρ∗(y) = ρ(y) for each y ∈ K . Indeed, we can show as above that
ρ∗(K) is a singleton since σ−1 also has zero topological entropy. Note that by Lemma
4.1, we have ω(y) ⊂ K , and hence there exists z ∈ ω(y) ⊂ K such that ρ∗(z) = ρ(z) by
Lemma 3.7, implying ρ∗(K) = ρ(K).

5. Proof of Theorem B
We denote by y ∼ x if there is a Birkhoff connection from y to x and a Birkhoff connection
from x to y. Let x ∈ SL and

B(x) = {y ∈ SL | y ∼ x}.
LEMMA 5.1. Let x ∈ 	 ∩ SL. Then B(x) is non-empty, invariant, and closed.

Proof. Since x ∈ SL for some L > 0 is a non-wandering point, that is, for each neighbor-
hood U of x, there exists m ∈ N such that σm(U ∩ SL) ∩ U = ∅, then there is a Birkhoff
connection from x to itself, and hence x ∈ B(x).

For each y ∈ B(x), if σy = x, then from Lemma 4.1, it follows that there is a Birkhoff
connection from x to σy and a Birkhoff connection from σy to x, implying σy ∈ B(x).
If σy = x, then naturally σy ∈ B(x). Therefore, σ(B(x)) ⊂ B(x). Similarly, we have
σ−1(B(x)) ⊂ B(x), and hence B(x) is invariant for σ .

Let {yn} ⊂ B(x) and yn → y in the product topology as n → ∞. For each neigh-
borhood U of x and each neighborhood V of y, there exists N ∈ N such that yN ∈
B(x) ∩ V . We deduce the existence of n1, n2 ∈ N such that σn1(U ∩ SL) ∩ V = ∅ and
σn2(V ∩ SL) ∩ U = ∅, implying y ∈ B(x) and hence B(x) ⊂ SL is closed.

LEMMA 5.2. Assume σ has zero topological entropy on S and x ∈ 	. Then ρ(y) = ρ(x)
for each y ∈ B(x).
Proof. Since each y ∈ B(x) and x are in the same Birkhoff recurrence class containing x
which is non-empty, we derive the conclusion by Theorem A.
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For δ > 0, let

U(B(x), δ) =
⋃

z∈B(x)
U(z, δ),

where U(z, δ) is defined as in equation (2.2).

LEMMA 5.3. Let L > 0, xn ∈ 	 ∩ SL, and xn → x as n → ∞ in the product topology.
Then for each δ > 0, there exists N ∈ N such that for n ≥ N , B(xn) ⊂ U(B(x), δ).

Proof. We prove by contradiction. Assume the conclusion is not true. Then there exists
δ0 > 0 and a sequence yni ∈ B(xni ) ⊂ SL such that yni ∈ U(B(x), δ0), for all i ≥ 1.
There is a convergent subsequence of {yni }, not relabeled, such that limi→∞ yni = y ∈
U(B(x), δ0). For each neighborhood U of x and each neighborhood V of y, there is a
sufficiently large nj such that xnj ∈ U and ynj ∈ V . Since xnj ∼ ynj , then there exist
m1 ≥ 1 and m2 ≥ 1 such that σm1(U ∩ SL) ∩ V = ∅ and σm2(V ∩ SL) ∩ U = ∅, and
hence x ∼ y, which is a contradiction to y ∈ U(B(x), δ0).

For δ > 0, let K ⊂ SL,

U(K , δ) =
⋃
x∈K

U(x, δ) and O(K , δ) = {y ∈ SL | σny ∈ U(K , δ), for all n ≥ 0}.

LEMMA 5.4. Let K ⊂ SL be a compact and invariant set for σ and denote 〈ρ(K)〉 =
[a, b]. Then,

lim
δ→0

inf
y∈O(K ,δ)

ρ(y) = a and lim
δ→0

sup
y∈O(K ,δ)

ρ(y) = b.

Proof. Since sup ρ(K) = b, then for each ε > 0 and each x = (xn) ∈ K , there exists
n ≥ 1 such that xn − x0 < n(b + ε). It follows from the continuity of σ on S that
there exists a neighborhood U(x, γ ) with γ > 0 small enough, such that for each
y ∈ U(x, γ ) ∩ S, we have yn − y0 < n(b + ε). The compactness of K implies the exis-
tence of N ≥ 1 such that

K ⊂
N⋃
j=1

U(xj , γj ),

and ynj − y0 < nj (b + ε) if y = (yn) ∈ U(xj , γj ) ∩ S.
Taking δ > 0 small enough such that

U(K , δ) ⊂
N⋃
j=1

U(xj , γj ),

we deduce that for each z = (zn) ∈ O(K , δ) and each s ≥ 1,

znj1
− z0 < nj1(b + ε) for some j1 ∈ {1, . . . , N},

(σnj1 z)nj2 − (σnj1 z)0 < nj2(b + ε) for some j2 ∈ {1, . . . , N},
· · · · · ·
(σ
nj1+···+njs−1 z)njs − (σ

nj1+···+njs−1 z)0 < njs (b + ε) for some js ∈ {1, . . . , N}.
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Let x = (xn) be a lift of z. Then xi − xj = zi − zj for i, j ∈ Z, and hence

xnj1
− x0 < nj1(b + ε), . . . , xnj1+···+njs − xnj1+···+njs−1

< njs (b + ε),

implying

xks − x0 ≤ ks(b + ε),

where ks = nj1 + · · · + njs > 0, s ≥ 1, and k0 = 0. Therefore, it follows that

lim sup
s→∞

(xks − x0)/ks ≤ b + ε.

Let m = max{nj | j = 1, . . . , N}. For each n ∈ N, there exists s ≥ 0 such that ks ≤ n <

ks+1 and n− ks ≤ m. Note that

xn − x0

n
= xn − xks

n
+ xks − x0

ks
· ks
n

.

Consequently, we obtain that lim supn→∞(xn − x0)/n ≤ b + 2ε due to the facts

|xn − xks | ≤ mL and lim
n→∞ ks/n = 1,

and hence supz∈O(K ,δ) ρ(z) ≤ b + 2ε, leading to the second equality by the fact K ⊂
O(K , δ). The proof for the other equality is similar.

Proof of Theorem B. Note that each solution of equation (1.1) with bounded action has
a well-defined forward rotation number if σ has zero topological entropy on S, see [29,
Theorem B]. Let xn, x ∈ 	 ∩ SL, xn → x as n → ∞, and ρ(x) = a. Note that B(x) ⊂ SL

is compact and invariant by Lemma 5.1. Then from Lemma 5.2, it follows that ρ(y) = a

for each y ∈ B(x), implying by Lemma 5.4 that for each ε > 0, there exists δ > 0 such that
ρ(y) ∈ [a − ε, a + ε] for each y ∈ O(B(x), δ). For this δ > 0, there exists N ∈ N due to
Lemma 5.3 such that for n ≥ N , B(xn) ⊂ U(B(x), δ). According to Lemma 5.1, we have
xn ∈ O(B(x), δ), and hence ρ(xn) ∈ [a − ε, a + ε] for n ≥ N .

6. Proof of Theorem C
LEMMA 6.1. If there exists a Birkhoff α-pseudo solution x of equation (1.1) with ρ(x) = ω,
then there exists F ∈ [−α, α], such that ω ∈ ρ(�, F).

Proof. Let x = (xn) be a Birkhoff α-pseudo solution x of equation (1.1) with ρ(x) = ω.
Note that forω ∈ R, it follows from [3, Theorem 9.1] that there are a Birkhoff configuration
y = (yn) with ρ(y) = ω and some λ ∈ R satisfying

�(yn−k , . . . , yn+l) = λ for all n ∈ Z.

If λ ∈ [−α, α], then the proof is complete. If λ > α, then

�(yn−k , . . . , yn+l)− α > 0 for all n ∈ Z.

Note that by Lemma 2.1, we have

yn ≤ y0 + nω + 1 and x0 + nω − 1 ≤ xn for all n ∈ Z.
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Take an integer m ≥ y0 − x0 + 2. Then we have

yn ≤ y0 + nω + 1 ≤ x0 − 2 +m+ nω + 1 ≤ x0 + nω − 1 +m ≤ xn +m for all n ∈ Z,

and hence y ≤ z = x +m · 1. Combining the assumption

�(zn−k , . . . , zn+l)− α ≤ 0 for all n ∈ Z,

we obtain by [3, Theorem 4.2] a configuration w = (wn) satisfying

y ≤ w ≤ z and �(wn−k , . . . , wn+l) = α for all n ∈ Z,

implying ω = ρ(w) ∈ ρ(�, α). The case λ < −α is proved similarly.

LEMMA 6.2. Assume that ρ(�) is upper-stable with respect to F. Then there exists ε0 > 0
such that ρα(�) = ρ(�) for 0 ≤ α < ε0.

Proof. Let ε0 > 0 such that ρ(�, F) ⊂ ρ(�) for F ∈ (−ε0, ε0). Let 0 ≤ α < ε0 and
ω ∈ ρα(�). We deduce by Theorem 3.10 the existence of a Birkhoff α-pseudo solution
x of equation (1.1) with ρ(x) = ω and hence by Lemma 6.1 that ω ∈ ρ(�, F) ⊂
ρ(�) for some F ∈ [−α, α] ⊂ (−ε0, ε0). We conclude that ρα(�) ⊂ ρ(�) and hence
ρα(�) = ρ(�).

LEMMA 6.3. Let 0 ≤ α < α′. Then there exists δ′ > 0 such that the following conclusion
holds true for 0 < δ < δ′. Assume x = (xn) ∈ Y is an α-pseudo solution of equation
(1.1) with bounded action, and there is an integer q ≥ 1 such that σqx ∈ U(x, δ). Then
there exist p ∈ Z such that |xq − x0 − p| < δ, a (p, q)-periodic α′-pseudo solution y ∈
O(K ′, δ̃), where K ′ = {σnx | for all n ∈ Z}, δ̃ = (k + l + 1)δ, and an F ∈ [−α′, α′] with
p/q ∈ ρ(�, F).

Proof. The assumption σqx ∈ U(x, δ) implies the existence of a lift x̃ of x and p ∈ Z such
that

|x̃i+q − x̃i − p| < δ, i = −k, . . . , 0, . . . , l − 1. (6.1)

Let

ỹj = x̃i +mp where j = i +mq, i ∈ {0, 1, . . . , q − 1}, m ∈ Z. (6.2)

Then ỹ = (ỹj ) is a (p, q)-periodic configuration. We shall show that ỹ is an α′-pseudo
solution if δ′ is small enough.

Let j = i +mq as above and

zj−k = x̃i−k +mp, . . . , zj = ỹj = x̃i +mp, . . . , zj+l = x̃i+l +mp. (6.3)

The assumption x is an α-pseudo solution implies that

|�(zj−k , . . . , zj , . . . , zj+l)| ≤ α for all j ∈ Z.

In what follows, we shall estimate |ỹj+n − zj+n| for n ∈ {−k, . . . , l}. First we consider
|ỹj+l − zj+l |. Note that

j = i +mq, 0 ≤ i ≤ q − 1 and j + l = i′ +m′q where 0 ≤ i′ ≤ q − 1, m′ ≥ m.
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If m′ = m, then i < i′ = i + l ≤ q − 1 and hence

ỹj+l = x̃i′ +mp = zj+l .

If m′ > m, then we choose integers i1, i2, . . . , i′ such that

i1 = i + l − q, i2 = i + l − 2q, . . . , i′ = i + l − (m′ −m)q,

and hence

j + l = i1 + (m+ 1)q = i2 + (m+ 2)q = · · · = i′ +m′q.

Note that −k < 0 ≤ i′ < · · · < i2 < i1 = i + l − q ≤ l − 1. It follows from equation
(6.1) that

|zj+l − (x̃i1 + (m+ 1)p)| = |x̃i1+q − x̃i1 − p| < δ,

|x̃i1 + (m+ 1)p − (x̃i2 + (m+ 2)p)| = |x̃i2+q − x̃i2 − p| < δ, . . . , and

|x̃i′+q + (m′ − 1)p − (x̃i′ +m′p)| = |x̃i′+q − x̃i′ − p| < δ.

Consequently, we deduce that

|zj+l − ỹj+l | = |zj+l − (x̃i′ +m′p)| < (m′ −m)δ.

The estimates for |zj+n − ỹj+n| for n ∈ {−k, . . . , l − 1} can be obtained similarly.
Therefore, we arrive at the conclusion that for j ∈ Z, n ∈ {−k, . . . , l},

|zj+n − ỹj+n| < ((k + l)/q + 1)δ ≤ (k + l + 1)δ = δ̃. (6.4)

Let y = P(ỹ). Then y ∈ O(K ′, δ̃) is a (p, q)-periodic α′-pseudo solution provided 0 <
δ < δ′ and δ′ is taken to be small enough. We deduce by Lemma 2.3 the existence of
a Birkhoff α′-pseudo solution with rotation number p/q, and hence by Lemma 6.1 that
p/q ∈ ρ(�, F) for some F ∈ [−α′, α′].

LEMMA 6.4. Let x = (xj ) ∈ Y be a Birkhoff configuration with ρ(x) = ω, t ∈ Z, and
s ∈ N. Then for each ε > 0, there exists z ∈ {σnx | n ∈ Z} such that

|zi+s − zi − t | ≤ (k + l)|sω − t | + ε, i = −k, . . . , l − 1.

Proof. Let x̃ be a lift of x and n ∈ N. Since x̃ is Birkhoff, it follows from Lemma 2.1 that

|x̃i+sn − x̃i − snω| ≤ 1 and |x̃i+sn − nt − x̃i | ≤ n|sω − t | + 1 for all i ∈ Z.

Assume τ−s,−t x̃ ≥ x̃. The proof for the case τ−s,−t x̃ ≤ x̃ is similar. Note that

l−1∑
i=−k

(τn−s,−t x̃)i − x̃i =
l−1∑
i=−k

|x̃i+sn − nt − x̃i | ≤ (k + l)(n|sω − t | + 1), (6.5)
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and

0 ≤
l−1∑
i=−k

(τn−s,−t x̃)i − x̃i =
l−1∑
i=−k

n−1∑
j=0

(τ
j+1
−s,−t x̃)i − τ

j
−s,−t x̃i

=
n−1∑
j=0

l−1∑
i=−k

(τ
j+1
−s,−t x̃)i − (τ

j
−s,−t x̃)i .

We deduce by the drawer principle and equation (6.5) the existence of j0 ∈ {0, 1, . . . ,
n− 1} such that

0 ≤
l−1∑
i=−k

(τ
j0+1
−s,−t x̃)i − (τ

j0−s,−t x̃)i ≤ (k + l)(|sω − t | + 1/n).

Taking n large enough and denoting z̃ = τ
j0−s,−t x̃ and z = P(z̃), we obtain

l−1∑
i=−k

|zi+s − zi − t | ≤ (k + l)|sω − t | + ε.

LEMMA 6.5. Let 0 ≤ α < α′. Then there exists an integer q0 > 0 such that if p/q ∈
ρα(�) in lowest terms with q > q0, then for each t/s with t , s ∈ Z, s > 0, and qt − ps =
±1, there exists F ∈ [−α′, α′] satisfying t/s ∈ ρ(�, F).

Proof. Let δ′ > 0 be determined by Lemma 6.3 and q0 be an integer with q0 ≥ (k + l +
1)/δ′. Then for p/q ∈ ρα(�) in lowest terms with q > q0, there exists by Theorem 3.10 a
(p, q)-periodic Birkhoff α-pseudo solution x. We deduce by Lemma 6.4 the existence of
z ∈ {σnx | n ∈ Z} for ε = 1/q such that

|zi+s − zi − t |≤ (k+ l)|sp/q− t |+ 1/q≤ (k+ l+ 1)/q= δ <δ′, i= − k, . . . , l − 1,

implying σ sz ∈ U(z, δ) and hence by Lemma 6.3 that t/s ∈ ρ(�, F) for some F ∈
[−α′, α′].

We say that [p′/q ′, p/q] is a Farey interval if q ′p − qp′ = 1, where p′/q ′, p/q ∈ Q in
lowest terms.

Proof of Theorem C. Since ρ(�) is upper-stable with respect to F, there exists ε0 > 0
such that ρ(�, F) ⊂ ρ(�) for F ∈ (−ε0, ε0). Let 0 = α < α′ < ε0, and δ′ > 0 and q0 be
determined by Lemmas 6.3 and 6.5, respectively.

Assume p/q ∈ ρ(�) in lowest terms with q > q0. Then it follows from Lemma 6.5
that t ′/s′, t/s ∈ ρ(�) where t , s, t ′, s′ ∈ Z and s > 0, s′ > 0 satisfying qt − ps = 1 and
qt ′ − ps′ = −1.

Note that both [t ′/s′, p/q] and [p/q, t/s] are Farey intervals. If we denote by p′/q ′ =
(p + t)/(q + s) the mediant of p/q and t/s, then we deduce by Lemma 6.5 that p′/q ′ ∈
ρ(�).

Applying Lemma 6.5 again, we obtain that both the mediant of p′/q ′ and t/s and the
mediant of p/q and p′/q ′ lie in ρ(�) since q ′ > q0. Therefore, by induction all rational
numbers (see [16]) in [p/q, t/s] are in ρ(�) and hence [p/q, t/s] ⊂ ρ(�) since ρ(�) is

https://doi.org/10.1017/etds.2022.23 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.23


Zero entropy and stable rotation sets 1755

closed (see [29, Theorem A]). Similarly, we have [t ′/s′, p/q] ⊂ ρ(�) and hence p/q is in
the interior of ρ(�).

Let ω ∈ ρ(�) be irrational and x ∈ S be the corresponding Birkhoff solution with
ρ(x) = ω by Theorem 3.10. Take two consecutive convergents of ω, p′/q ′ and p/q, such
that p′/q ′ < ω < p/q, q > q0, and |qω − p| < 1/q. Then it follows from Lemma 6.4 that
for ε = 1/q, there exists z ∈ {σnx | n ∈ Z} such that

|zi+q − zi − p| ≤ (k + l)|qω − p| + 1/q ≤ (k + l + 1)/q < δ′, i = −k, . . . , l − 1,

and hence p/q ∈ ρ(�, F) ⊂ ρ(�) for some F ∈ [−α′, α′] by Lemma 6.3. We then arrive
at the conclusion that p′/q ′ ∈ ρ(�, F) ⊂ ρ(�) for some F ∈ [−α′, α′] by Lemma 6.5,
and hence the Farey interval [p′/q ′, p/q] ⊂ ρ(�) by repeating the previous argument,
implying ω is in the interior of ρ(�). This completes the proof.

7. Proof of Theorem D
The conclusion of Theorem D is a straightforward consequence of the following theorem
by setting α = 0.

THEOREM 7.1. Assume ρ(�) is upper-stable with respect to F and [a, b] is a connected
component of ρ(�). Then there exists ε0 > 0, such that for 0 ≤ α < ε0, L > 0, it follows
that for each compact and σ -invariant set K ⊂ BL with 〈ρ(K)〉 ⊂ [a, b], there exists
M > 0, such that for each x = (xn) ∈ K which is an α-pseudo solution of equation (1.1),

xn − x0 − nb ≤ M and xn − x0 − na ≥ −M for all n ≥ 1.

Proof. From Theorem C, we know that the boundary points of ρ(�) are isolated, implying
the connected component [a, b] is isolated. By Lemma 6.2, we deduce the existence of
ε0 > 0 such that ρα(�) = ρ(�) for 0 ≤ α < ε0.

Let 0 ≤ α < α′ < ε0, δ′ > 0 be defined by Lemma 6.3, and 0 < δ < δ′. Since K is
compact, there exist k0 ∈ N, z1, . . . , zk0 ∈ K such that K ⊂ ⋃k0

i=1 U(z
i , δ/2).

Let x = (xj ) ∈ K be an α-pseudo solution with ρ(x) ⊂ 〈ρ(K)〉 ⊂ [a, b] and n ∈ N.
Define a sequence of integers 0 = q0 < q1 < · · · < qm = n recursively as follows. Let q1

be the smallest number of {1, . . . , n} such that σ jx ∈ U(x, δ) for q1 ≤ j ≤ n. If σnx ∈
U(x, δ), set q1 = n. Assume qi has been defined and qi < n. Define qi+1 as the smallest
element of {qi + 1, . . . , n} such that

σjx ∈ U(σqix, δ) for qi+1 ≤ j ≤ n.

If σnx ∈ U(σqix, δ), set qi+1 = n and then m = i + 1.
The sequence {q0, q1, . . . , qm} has the property that

σqj x ∈ U(σqix, δ) for 0 ≤ i < j ≤ m− 1. (7.1)

We claim that m ≤ k0. Indeed, since x ∈ K ⊂ ⋃k0
i=1 U(z

i , δ/2), we may assume
without of loss of generality that x ∈ U(z1, δ/2). Then σqix ∈ U(z1, δ/2) for
i = 1, . . . , m− 1. Otherwise, due to x ∈ U(z1, δ/2), we shall have σqix ∈ U(x, δ), a
contradiction to equation (7.1).

We assume without loss of generality again that σq1 x ∈ U(z2, δ/2). Then we deduce
that σqix ∈ U(z2, δ/2) for 2 ≤ i ≤ m− 1 with the same reason as above, leading to the
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conclusion that σq2 x ∈ U(z1, δ/2) ∪ U(z2, δ/2). Inductively, we conclude that

σqm−1x ∈
k0⋃
i=1

U(zi , δ/2) ⊃ K

if we assume m ≥ k0 + 1, which is a contradiction to that K is invariant for σ . Therefore,
m ≤ k0.

For 0 ≤ i ≤ m− 2, if qi+1 − qi ≥ 2, since σqi+1−1−qi (σ qix) ∈ U(σqix, δ), applying
Lemma 6.3, we obtain pi ∈ Z such that

|xqi+1−1 − xqi − pi | < δ and ri = pi

qi+1 − 1 − qi
∈ ρ(�). (7.2)

Furthermore, we deduce that ri ∈ [a, b]. Indeed, from Lemma 6.3, we know that the
corresponding (pi , qi+1 − 1 − qi)-periodic configuration y constructed by Lemma 6.3
lies in O(K ′, δ̃), where δ̃ = (k + l + 1)δ, and K ′ = {σnx | for all n ∈ Z}, implying y ∈
O(K , δ̃). Then Lemma 5.4 and the assumption 〈ρ(K)〉 ⊂ [a, b] imply that

ri ∈ [a − ε, b + ε] ∩ ρ(�)
for arbitrarily small ε if we choose δ small enough. Since [a, b] is an isolated component of
ρ(�), we choose a smaller δ which is independent of x if necessary such that ri ∈ [a, b].

As a consequence of equation (7.2), we have −δ < xqi+1−1 − xqi − pi < δ, and hence

−δ + a(qi+1 − qi − 1) < xqi+1−1 − xqi < δ + b(qi+1 − qi − 1). (7.3)

Combining −L ≤ xqi+1 − xqi+1−1 ≤ L, we derive for 0 ≤ i ≤ m− 2,

−L− δ + a(qi+1 − qi − 1) ≤ xqi+1 − xqi ≤ L+ δ + b(qi+1 − qi − 1). (7.4)

Note that equation (7.4) also holds for the case qi+1 − qi = 1.
For i = m− 1, there are two cases. One is that σqi+1 x ∈ U(σqix, δ), the other is that

σqi+1 x ∈ U(σqix, δ). For the former case, we have by the same discussion as above

−δ + a(qi+1 − qi) < xqi+1 − xqi < δ + b(qi+1 − qi).

For the latter case, we must have σqi+1−1x ∈ U(σqix, δ) according to the definition of
qi+1, and again we have equations (7.3) and (7.4).

Consequently, we have for n ∈ N,

xn − x0 − nb ≤ m(L+ δ − b) or xn − x0 − nb ≤ m(L+ δ − b)+ b,

and

xn − x0 − na ≥ −m(L+ δ + a) or xn − x0 − na ≥ −m(L+ δ + a)+ a.

TakingM = max{k0(L+ 1 − b)+ |b|, k0(L+ 1 + a)+ |a|}, we complete the proof.
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A. Appendix. Proof of Lemma 3.8
The proof is a slight modification of that of [29, Lemma 4.1]. Lemma 4.2 in [29] says
that if we already have a β-pseudo solution z = (zi) with supi≥0 |zi − z0 − iρ| < ∞, then
there exists a β-pseudo solution u = (un) satisfying supn∈Z |un − u0 − nρ| < ∞.

By Lemma 3.4, there exist y1, y2 ∈ K , such that

y1
i − y1

0 − iρ ≤ 1 and y2
i − y2

0 − iρ ≥ −1 for all i ∈ N.

If there exists C > 0 such that for all i ∈ N,

−C ≤ y1
i − y1

0 − iρ ≤ 1 or − 1 ≤ y2
i − y2

0 − iρ ≤ C,

then we can construct an α-pseudo solution z = (zn) with supn∈Z |zn − z0 − nρ| < ∞ by
[29, Lemma 4.2]. Otherwise, for each C > 0, there exist i, j ∈ N such that

y1
i − y1

0 − iρ < −C and y2
j − y2

0 − jρ > C. (A.1)

We shall construct a β-pseudo solution z = (zn)with supn≥0 |zn − z0 − nρ| < ∞ for each
β > α.

Given β > β ′ > α ≥ 0, there exists 0 < δ < min{1, L} such that for arbitrary two
β ′-pseudo solutions in B̃L, their δ-gluing is a β-pseudo solution. This is a straightforward
consequence of the uniform continuity of � on BL. In fact, we can glue more than two
β ′-pseudo solutions to obtain a β-pseudo solution, as we do in what follows.

For each w = (wn) ∈ K , let U(w, δ/2) be defined as in equation (2.2). Then
{U(w, δ/2)}w∈K is an open cover of K and hence it has a finite subcover, say, {Ui | i =
3, . . . , q} since K ⊆ Y is compact. Denote U1 = U(y1, δ/2) and U2 = U(y2, δ/2).

Since K is chain transitive, we can construct by Lemma 3.3 a β ′-pseudo solution y =
(yn) ∈ BL with the following properties.
(i) y ∈ Uq . Denote y by uq .

(ii) σmi (ui ) = ui−1 ∈ Ui−1 with mi > k + l, i = 2, 3, . . . , q, that is, y = uq →
· · · → u3 → u2 → u1 ∈ U1.

We remark that there is an integer N > 0 such that

k + l < m2 + · · · +mq ≤ N − 1 and N ≥ 2 + 2/L. (A.2)

Take a lift of y1 ∈ K , z1 = (z1
n) ∈ X with z1

0 ∈ [0, 1]. Note that z1
i − z1

j = y1
i − y1

j for all
i, j ∈ Z. Let

zn = z1
n for all n ≤ 0. (A.3)

Choose C1 = 2NL. Note that

z1
j − z1

0 − jρ ≥ −jL− j |ρ| ≥ −(k + l)L− (k + l)L ≥ −2NL for j = 1, . . . , k + l.

Then by equation (A.1), there exists j1 > k + l such that

z1
j1

− z1
0 − j1ρ < −C1 = −2NL,

and

−2NL = −C1 ≤ z1
j − z1

0 − jρ ≤ 1 for j = 1, . . . , j1 − 1. (A.4)

https://doi.org/10.1017/etds.2022.23 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.23


1758 W.-X. Qin et al

Since |z1
j1

− z1
j1−1| ≤ L and |ρ| ≤ L, then by equation (A.4)

z1
j1

− z1
0 − j1ρ= (z1

j1
− z1

j1−1)+ (z1
j1−1 − z1

0 − (j1 −1)ρ)−ρ≥ − L− C1 − L≥−3NL.

As a consequence, we have

−3NL ≤ z1
j1

− z1
0 − j1ρ < −2NL. (A.5)

Let

zn = z1
n for n = 1, . . . , j1 − 1. (A.6)

Since σ j1 y1 ∈ K , there exists some i ∈ {3, . . . , q} such that σ j1 y1 ∈ Ui . We may assume
i = 3. The construction is the same for i = 4, . . . , q.

Step 1: Note that P(τ−j1,0z1) = σ j1 y1 ∈ U3 and u3 ∈ U3. We take a lift x3 = (x3
n) ∈ X

of u3, that is, P(x3) = u3, such that

|(τ−j1,0z1)n − x3
n| < δ for n = −k, . . . , l − 1, (A.7)

and then we obtain a δ-gluing of τ−j1,0z1 and x3 as follows. Note that due to equation
(A.6),

zj1+n = (τ−j1,0z1)n for n = −j1 + 1, . . . , −1.

Take n1 = m3 > k + l such that σn1(u3) = u2. Let

zj1+n = x3
n for n = 0, 1, . . . , n1 − 1. (A.8)

Then we obtain zn for n = 1, . . . , j1, . . . , j1 + n1 − 1 by gluing τ−j1,0z1 and x3 at site j1.
Since x3 ∈ B̃L, then by equations (A.6) and (A.7), with n = 0, we have for 1 ≤ n ≤ n1 −
1 ≤ N − 1,

−(n1 − 1)L ≤ zj1+n − zj1 = x3
n − x3

0 ≤ (n1 − 1)L.

Combining equation (A.5), we derive

−δ − 3NL ≤ zj1 − z0 − j1ρ = x3
0 − z1

j1
+ z1

j1
− z1

0 − j1ρ ≤ δ − 2NL,

and hence

−(n1 − 1)L− δ − 3NL− n|ρ| ≤ zj1+n − z0 − (j1 + n)ρ

= (zj1+n − zj1)+ (zj1 − z0 − j1ρ)− nρ

≤ (n1 − 1)L+ δ − 2NL+ n|ρ|,
for 0 ≤ n ≤ n1 − 1 ≤ N − 1. Note that |ρ| ≤ L. It follows that

−5NL ≤ zj1+n − z0 − (j1 + n)ρ ≤ 0 for n = 0, 1, . . . , n1 − 1. (A.9)

Steps 2–4 are similar to those in the proof of [29, Lemma 4.1] and hence omitted here.
We know that these four steps can be repeated. Therefore, z = (zn) is a β-pseudo solution
satisfying supn≥0 |zn − z0 − nρ| < M , where M = 6NL (see the proof of [29, Lemma
4.1]). We use [29, Lemma 4.2] to complete the proof. �

https://doi.org/10.1017/etds.2022.23 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.23


Zero entropy and stable rotation sets 1759

REFERENCES

[1] S. Addas-Zanata. Instability for the rotation set of homeomorphisms of the torus homotopic to the identity.
Ergod. Th. & Dynam. Sys. 24 (2004), 319–328.

[2] S. Addas-Zanata. Uniform bounds for diffeomorphisms of the torus and a conjecture of Boyland. J. Lond.
Math. Soc. (2) 91 (2015), 537–553.

[3] S. Angenent. Monotone recurrence relations, their Birkhoff orbits and topological entropy. Ergod. Th. &
Dynam. Sys. 10 (1990), 15–41.

[4] C. Baesens and R. S. MacKay. Gradient dynamics of tilted Frenkel–Kontorova models. Nonlinearity 11
(1998), 949–964.

[5] R. Bamon, I. Malta and M. J. Pacífico. Changing rotation intervals of endomorphisms of the circle. Invent.
Math. 83 (1986), 257–264.

[6] V. Bangert. Mather sets for twist maps and geodesics on tori. Dynamics Reported. Vol. 1. Eds.
U. Kirchgraber and H. O. Walther. Wiley, New York, 1988, pp. 1–56.

[7] M. Barge and R. Swanson. Rotation shadowing properties of circle and annulus maps. Ergod. Th. & Dynam.
Sys. 8 (1988), 509–521.

[8] F. Botelho. Rotation sets of maps of the annulus. Pacific J. Math. 133 (1988), 251–266.
[9] P. L. Boyland. The rotation set as a dynamical invariant. Twist Mappings and Their Applications (IMA

Volumes in Mathematics, 44). Eds. R. McGehee and K. R. Meyer. Springer, New York, 1992, pp. 73–86.
[10] O. M. Braun and Y. S. Kivshar. The Frenkel–Kontorova Model, Concepts, Methods, and Applications.

Springer-Verlag, Berlin, 2004.
[11] J. Conejeros and F. A. Tal. Applications of forcing theory to homeomorphisms of the closed annulus.

Preprint, 2019, arXiv:1909.09881v1.
[12] P. Dávalos. On annular maps of the torus and sublinear diffusion. J. Inst. Math. Jussieu 17 (2018), 913–978.
[13] H. Enrich, N. Guelman, A. Larcanché and I. Liousse. Diffeomorphisms having rotation sets with non-empty

interior. Nonlinearity 22 (2009), 1899–1907.
[14] J. Franks. Recurrence and fixed points of surface homeomorphisms. Ergod. Th. & Dynam. Sys. 8 (1988),

99–107.
[15] C. Golé. Symplectic Twist Maps: Global Variational Techniques. World Scientific, Singapore, 2001.
[16] R. L. Graham, D. E. Knuth and O. Patashnik. Concrete Mathematics, 2nd edn. Addison-Wesley, Reading,

MA, 1994.
[17] N. Guelman, A. Koropecki and F. A. Tal. A characterization of annularity for area-preserving toral

homeomorphisms. Math. Z. 276 (2014), 673–689.
[18] P.-A. Guihéneuf and A. Koropecki. Stability of the rotation set of area-preaserving toral homeomorphisms.

Nonlinearity 30 (2017), 1089–1096.
[19] L. Guo, X.-Q. Miao, Y.-N. Wang and W.-X. Qin. Positive topological entropy for monotone recurrence

relations. Ergod. Th. & Dynam. Sys. 35 (2015), 1880–1901.
[20] A. Koropecki and F. A. Tal. Area-preserving irrotational diffeomorphisms of the torus with sublinear

diffusion. Proc. Amer. Math. Soc. 142 (2014), 3483–3490.
[21] A. Koropecki and F. A. Tal. Bounded and unbounded behavior for area-preserving rational pseudo-rotations.

Proc. Lond. Math. Soc. (3) 109 (2014), 785–822.
[22] P. Le Calvez. Dynamical Properties of Diffeomorphisms of the Annulus and of the Torus (SMF/AMS Texts

and Monographs, 4). American Mathematical Society, Providence, RI, 2000.
[23] P. Le Calvez and F. Tal. Forcing theory for transverse trajectories of surface homeomorphisms. Invent.

Math. 212 (2018), 619–729.
[24] P. Le Calvez and F. Tal. Topological horseshoes for surface homeomorphisms. Preprint, 2021,

arXiv:1803.04557v2.
[25] J. Llibre and R. S. MacKay. Rotation vectors and entropy for homeomorphisms of the torus isotopic to the

identity. Ergod. Th. & Dynam. Sys. 11 (1991), 115–128.
[26] J. N. Mather. Variational construction of orbits of twist diffeomorphisms. J. Amer. Math. Soc. 4 (1991),

207–263.
[27] A. Passeggi, R. Potrie and M. Sambarino. Rotation intervals and entropy on attracting annular continua.

Geom. Topol. 22 (2018), 2145–2186.
[28] G. S. Salomão and F. A. Tal. Non-existence of sublinear diffusion for a class of torus homeomorphisms.

Ergod. Th. & Dynam. Sys. doi:10.1017/etds.2020.137. Published online 18 January 2021.
[29] T. Zhou and W.-X. Qin. Pseudo solutions, rotation sets, and shadowing rotations for monotone recurrence

relations. Math. Z. 297 (2021), 1673–1692.

https://doi.org/10.1017/etds.2022.23 Published online by Cambridge University Press

https://arxiv.org/abs/1909.09881v1
https://arxiv.org/abs/1803.04557v2
http://dx.doi.org/10.1017/etds.2020.137
https://doi.org/10.1017/etds.2022.23

	1 Introduction
	2 Preliminaries
	3 Chain transitive sets
	4 Proof of Theorem A
	5 Proof of Theorem B
	6 Proof of Theorem C
	7 Proof of Theorem D
	Acknowledgements
	A Appendix. Proof of Lemma 3.8
	References

