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Abstract

We prove that, under suitable conditions, a Jacobi Poincaré series of exponential type of integer weight
and matrix index does not vanish identically. For the classical Jacobi forms, we construct a basis
consisting of the ‘first’ few Poincaré series, and also give conditions, both dependent on and independent
of the weight, that ensure the nonvanishing of a classical Jacobi Poincaré series. We also obtain a result
on the nonvanishing of a Jacobi Poincaré series when an odd prime divides the index.
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1. Introduction

Rankin [9] proved that the mth Poincaré series Pk
m of weight k for the full modular

group SL(2, Z) is not identically zero for sufficiently large positive integers k and
finitely many positive integers m depending on k. Mozzochi extended Rankin’s result
to integral weight modular forms for congruence subgroups in [7].

In this paper we prove similar results for higher-degree Jacobi Poincaré series
defined on the full Jacobi group 0 J

g = SL(2, Z)n (Zg
× Zg), where g is a positive

integer called the degree of the Jacobi group. The Jacobi group operates on H× Cg

and also on functions φ :H× Cg
→ C, where H denotes the upper half plane. We

write |k,m for the action on functions. See Section 2 for the definitions.
Let PSym(g, 1

2Z) be the set of symmetric, positive definite, half integral (g × g)
matrices. We define A[B] := Bt AB for matrices A and B of appropriate sizes, where
Bt is the transpose of the matrix B, and e(z) := e2π i z . More generally, we will use the
standard notation ea(z) := e2π i z/a .

Let k, g ∈ Z, and m ∈ PSym(g, 1
2Z). The vector space of Jacobi cusp forms of

weight k, index m and degree g, denoted by J cusp
k,m,g , is defined to be the space of all
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holomorphic functions φ :H× Cg
→ C that satisfy φ|k,mγ = φ, for all γ ∈ 0 J

g , and
have a Fourier expansion of the form

φ(τ, z)=
∑

n∈Z+,r∈Zg

4n>m−1
[r t
]

cφ(n, r)e(nτ + r z).

We denote J cusp
k,m,1 by J cusp

k,m .

For n ∈ Z+, r ∈ Zg and m ∈ PSym(g, 1
2Z) such that 4n > m−1

[r t
], let Pk,m

n,r be the
(n, r)th Poincaré series of weight k and index m (of exponential type) defined when
k > g + 2, as in [1] (see Section 2 for the definition). It is well known that the Poincaré
series Pk,m

n,r , where n ∈ Z and r ∈ Zg , span J cusp
k,m,g . It is then natural to ask whether such

Poincaré series vanish identically or not. We prove the following theorem, which gives
a partial answer to this question.

Let k′ := k − g/2− 1 and define

D := det
(

2n r
r t 2m

)
.

THEOREM 1.1. Suppose that 2r ≡ 0 mod Zg
· 2m. Then there exist an integer k0 that

depends only on g, and a constant B > 3 log 2 such that for all even k ≥ k0, the Jacobi
Poincaré series Pk,m

n,r does not vanish identically when

k′ ≤
πD

det(2m)
≤ k′1+α(g) exp

(
−

B log k′

log log k′

)
,

where

α(g)=


2

3(g + 2)
if 1≤ g ≤ 4,

2
3g

if g ≥ 5.

We construct a basis of J cusp
k,m consisting of the ‘first’ dim(J cusp

k,m ) Poincaré series (see
Theorem 6.1 in Section 6). We also give conditions for the nonvanishing of Poincaré
series independent of the weight for the classical Jacobi forms, where g = 1.

As in [9], define

M(x) := exp
(

B1 log x

log log 2x

)
∀x ≥ 2,

where B1 is a constant as in [9] (B1 > log 2).

THEOREM 1.2. Suppose that g = 1 and πD > 2m. Then Pk,m
D,r 6≡ 0 provided that

M

(
πD

m

)
σ0(D)D <

m8/7

29/4π

(
2

62/3 +
54

25/6 +
16

23/4

)−3/2

,

where σ0(D) :=
∑

d|D 1.
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Finally, following [9], we give conditional statements on the nonvanishing of Jacobi
Poincaré series, based on the relation between g-dimensional Kloosterman sums and
the corresponding one-dimensional sums and identities involving these.

THEOREM 1.3. Suppose that µ ∈ Z+ and that p is an odd prime such that p | (m, r)

but p - n. If Pk,pµm
pµn,pµr 6≡ 0, then either Pk,mpµ−1

npµ−1,r pµ−1 6≡ 0 or both Pk,p2µm
np2µ,r p2µ 6≡ 0 and

Pk,p2µm
n,r pµ 6≡ 0.

(Here p | m means that p divides every entry of m; this makes sense since 2m is a
(g × g) matrix with integer entries and p is odd.)

REMARK 1.4. In Section 3, we first prove that the Poincaré series Pk,m
n,r does not

vanish when

πD

det(2m)
= 2π

(
n −

1
4

m−1
[r t
]

)
≤ Ck′,

giving the constant C explicitly, and pointing out for which k this is valid. This follows
from Proposition 3.1 for arbitrary g and also from Theorem 6.1 in the case where g = 1
(recall that dim J cusp

k,m,1 ≤ C( 1
12 k(m + 1)), where the constant C may be taken to be 1

when k is large enough).

REMARK 1.5. Theorem 1.1 improves the trivial case mentioned in the previous
remark. However, achieving the ‘order of k2−ε when ε > 0’ as in [9] in the case of
Jacobi Poincaré series using Rankin’s methods seems difficult, mainly because of
the presence of the factor gcd(c, D) instead of gcd(c, D)1/2 in the estimate of
Kloosterman sums of degree g (even for small g); see Section 3.

REMARK 1.6. The condition that k be even when 2r ≡ 0 mod Zg
· 2m in Theorem 1.1

is necessary, as the (n, r)th Poincaré series vanish when k is odd and 2r ≡ 0
mod Zg

· 2m. The restriction k′ ≤ πD/det(2m) in Theorem 1.1 is natural, since we
know the result in the complement (see Proposition 3.1). The same is true for the
condition πD > 2m in Theorem 1.2.

2. Notation and preliminaries

The Jacobi group 0 J
g operates on H× Cg in the usual way by((

a b
c d

)
, (λ, µ)

)
◦ (τ, z) :=

(
aτ + b

cτ + d
, (cτ + d)−1(z + λτ + µ)

)
.

Let k ∈ Z and m ∈ PSym(g, 1
2Z). Then the action of 0 J

g on functions φ :H× Cg
→ C

is given by

φ|k,mγ (τ, z) := (cτ + d)−ke(−c(cτ + d)−1m[z + λτ + µ]

+ m[λ]τ + 2λt mz)φ(γ ◦ (τ, z)).
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The vector space of Jacobi cusp forms of weight k, index m and degree g, denoted
by J cusp

k,m,g , is defined to be the space of all holomorphic functions φ :H× Cg
→ C that

satisfy φ|k,mγ = φ, for all γ ∈ 0 J
g , and have a Fourier expansion of the form

φ(τ, z)=
∑

n∈Z+,r∈Zg

4n>m−1
[r t
]

cφ(n, r)e(nτ + r z).

For n ∈ Z+ and r ∈ Zg such that 4n > m−1
[r t
], let Pk,m

n,r be the (n, r)th Poincaré
series of weight k and index m (of exponential type) defined when k > g + 2 by

Pk,m
n,r (τ, z) :=

∑
γ∈0 J

g,∞\0
J
g

e(nτ + r z)|k,mγ (τ, z) ∀τ ∈H, z ∈ Cg,

where

0 J
g,∞ :=

{((
1 n
0 1

)
, (0, µ)

) ∣∣∣∣ n ∈ Z, µ ∈ Zg
}
.

It is well known that J cusp
k,m,g is finite-dimensional and the family of Poincaré series

Pk,m
n,r , where n ∈ Z+ and r ∈ Zg , generate the space J cusp

k,m,g . In [1, Lemma 1], Böcherer

and Kohnen found the following Fourier expansion of Pk,m
n,r .

PROPOSITION 2.1. The function Pk,m
n,r is in J cusp

k,m,g . The Fourier expansion of the
Poincaré series is given by

Pk,m
n,r (τ, z)=

∑
n′∈Z+,r ′∈Zg

4n′>m−1
[r ′t ]

ck,m
n,r (n

′, r ′)e(n′τ + r ′z)

and

ck,m
n,r (n

′, r ′) = δm(n, r, n′, r ′)+ (−1)kδm(n, r, n′,−r ′)

+ 2π ik det(2m)−1/2(D′/D)k
′/2
∑
c≥1

(Hm,c(n, r, n′, r ′)

+ (−1)k Hm,c(n, r, n′,−r ′))Jk′

(
2π
√

DD′

c det(2m)

)
,

where

D′ := det
(

2n′ r ′

r ′t 2m

)
,

δm(n, r, n′, r ′) :=

{
1 if D = D′ and r ≡ r ′ mod Zg

· 2m,

0 otherwise,

Hm,c(n, r, n′, r ′) := c−g/2−1
∑
x,y

ec((m[x] + r x + n)ȳ + n′y + r ′x)e2c(r
′m−1r t ).
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In the last sum, x and y run over a complete set of representatives for Z(g,1)/cZ(g,1)
and (Z/cZ)∗ respectively and ȳ denotes an inverse of y modulo c, while ec(z) :=
e2π i z/c and Jν denotes the Bessel function of order ν.

Further, 〈φ, Pk,m
n,r 〉 = λk,m,Dcφ(n, r), where 〈·, ·〉 is the Petersson inner product on

J cusp
k,m,g , while cφ(n, r) denotes the (n, r)th Fourier coefficient of φ and

λk,m,D :=
2g(k′−1)0(k′)det(m)k

′
−1/2

(2πD)k′
.

From Proposition 2.1, we conclude that the Poincaré series Pk,m
n,r is nonzero if and

only if its (n, r)th Fourier coefficient ck,m
n,r is positive. So it is enough to prove that

ck,m
n,r is nonzero.

LEMMA 2.2. The Poincaré series Pk,m
n,r vanishes if k is odd and 2r ≡ 0 mod Zg

· 2m.

PROOF. Suppose that 2r ≡ 0 mod Zg
· 2m. Then m−1r t

∈ Zg , and we may consider
the group element

γm,r :=

((
−1 0
0 −1

)
, (m−1r t , 0)

)
∈ 0 J

g .

We note that
e(nτ + r z)|k,mγm,r = (−1)ke(nτ + r z).

It follows that Pk,m
n,r = (−1)k Pk,m

n,r , and the proof of the lemma is complete. 2

We also note that the (n, r)th coefficient c(n, r) of a general Jacobi form of degree g
is zero if k is odd when 2r ≡ 0 mod Zg

· 2m. This is an easy consequence of the
transformation property of Jacobi forms. See, for instance, [4] for the case where
g = 1. For the rest of this paper, we suppose that k is even when 2r ≡ 0 mod Zg

· 2m.
Now 2m is a positive definite matrix with integer entries, and so det(2m)≥ 1, so

we deduce from the Fourier expansion of Pk,m
n,r that, in order to prove that Pk,m

n,r is
nonzero, it is enough to prove that |S(n, r)|< (2π)−1, where

S(n, r) := det(2m)−1/2
∑
c≥1

(Hm,c(n, r, n, r)

+ (−1)k Hm,c(n, r, n,−r))Jk′

(
2πD

c det(2m)

)
.

(2.1)

We will need the following estimates:

|Jν(x)| ≤min
{

1,
1

0(ν + 1)

(
x

2

)ν}
∀x > 0, ν ≥ 2, (2.2)

|Hm,c(n, r, n,±r)| ≤ 2ω(c)cg/2−1 gcd(D, c), (2.3)

where ω(c) is the number of distinct prime divisors of c. See [1, 12, 13] respectively
for the details.
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3. Some simple bounds

In this section, we will first establish the following proposition and lemma, using
trivial estimates of Bessel functions.

PROPOSITION 3.1. There exists an integer k0 such that the (n, r)th Poincaré series
Pk,m

n,r does not vanish identically whenever k ≥ k0, (n, r) ∈ Z+ × Zg and eπD ≤
k′ det(2m). If k > g + 3, then one may take k0 =max(g + 4, b 1

2 gc + 69).

The Poincaré series Pk,m
n,r does not vanish identically whenever πD < det(2m) and

either k > g + 3 if g ≥ 2 or k > 5 if g = 1.

LEMMA 3.2. When g = 1, for all positive integers n no greater than (m + 3)/36,
there exists r such that r2 < 4mn and πD < det(2m). So the condition πD < det(2m)
in the second part of Proposition 3.1 is nontrivial.

PROOF. Suppose that D < 2m/π < 2m/3. Then 2m(2n − 1/3) < r2 < 4mn. Note
that there is an integral square in the interval [x, y] when 2

√
x + 1< y − x , so we

need
2(2m(2n − 1

3 ))
1/2
+ 1< 2

3 m,

that is,

n <
(2m + 3)2

144m
=

m + 3
36
+

1
16m

,

which, since n is an integer, is equivalent to requiring that

n ≤
m + 3

36
.

Thus, in the case where g = 1, the Poincaré series Pn,r
k,m does not vanish identically

when k > 4 and n ≤ (m + 3)/36. 2

PROOF OF PROPOSITION 3.1. Let S := πD/det(2m). In a straightforward manner,
using estimates (2.2) and (2.3), we get

|S(n, r)| ≤
2Sk′

0(k′ + 1)

∑
c≥1

2ω(c)

ck−g−1 . (3.1)

Recall Stirling’s formula,
n! =
√

2πn(n/e)neλn ,

where (12n + 1)−1 < λn < (12n)−1 for all n ∈ Z+. We let ξ :=
∑

c≥1 2ω(c)/ck−g−1.
Since 0(x) and (x/e)x are increasing functions of x in the intervals [ 32 ,∞) and (1,∞)
respectively and k′ ≥ 5

2 , the hypothesis of the theorem gives

|S(n, r)| ≤
2ξ

0(bk′c + 1)

(
bk′c + 1

e

)bk′c+1

<
2ξ

√
2π(bk′c + 1)

.
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Therefore by choosing k large enough, we get the first assertion of Proposition 3.1.
For the second assertion, when k ≥ g + 4, note that ξ < 1/π2, which follows from the
trivial estimate 2ω(c) ≤ c.

For the second part of Proposition 3.1, we refer to equation (3.1). In this case,
S < 1. We need to have 0(k′ + 1) > 2

3π
2, since ξ < ζ(2) from the conditions on k.

The result follows by noting that k′ ≥ 5. 2

4. Poincaré series for small weights

When Re(s) > 1
2 (1− k′), the Jacobi Poincaré series is defined using the ‘Hecke

trick’ as in [2] by

Pk,m
n,r;s(τ, z) :=

∑
γ∈0 J

g,∞\0
J
g

(
v

|cτ + d|2

)s

e(nτ + r z)|k,mγ (τ, z)

for all τ = u + iv ∈H, all z ∈ Cg , and all s ∈ C. If k > 1
2 g + 2, then Pk,m

n,r;0 ∈ J cusp
k,m

and has the same Fourier properties as Pk,m
n,r . We also consider conditions on its

nonvanishing in the following proposition.

PROPOSITION 4.1. There exists an integer c(m) such that the Poincaré series Pk,m
n,r;0

does not vanish identically when k ≥max{c(m), 1
2 (g + 7)} while (n, r) ∈ Z+ × Zg

and eπD ≤ k′ det(2m).

PROOF. This proposition follows from the arguments of the proof of Proposition 3.1.
Here we use the following estimate for Kloosterman sums of degree g (see [1, pp. 508
and 512]):

Hm,c(n, r, n,±r)≤ 2ω(c)c−1/2 gcd(D, c) ∀c ≥ C(m),

where C(m) is a constant. As in the proof of Proposition 3.1, put S := πD/det 2m,
and recall the definition (2.1) of S(n, r). Then for some positive constant C1(m),

|S(n, r)| ≤
∑

1≤c≤C(m)

2ω(c)+1cg/2−1 gcd(D, c)

0(k′ + 1)

(
S

c

)k′

+

∑
c>C(m)

2ω(c)+1c−1/2 gcd(D, c)

0(k′ + 1)

(
S

c

)k′

≤ C(m)(g−1)/2
∑

1≤c≤C(m)

2ω(c)+1c−1/2 gcd(D, c)

0(k′ + 1)

(
S

c

)k′

+

∑
c>C(m)

2ω(c)+1c−1/2 gcd(D, c)

0(k′ + 1)

(
S

c

)k′

≤
2C1(m)Sk′

0(k′ + 1)

∑
c

2ω(c)

ck′−1/2
.
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The condition k > (g + 7)/2 precisely guarantees convergence of the series above.
The rest of the proof is identical to that of Proposition 3.1. 2

5. Proof of Theorem 1.1

We now come to the main result of this paper. For convenience of notation we will
drop (k, m) in the calculations.

PROOF OF THEOREM 1.1. We use Rankin’s method, as in [9]. With S(n, r) as
in (2.1), we need to prove that |S(n, r)|< 1/2π . Define

σ := k′−1/6
, Q∗ :=

2πD

k′ det(2m)
, M(D) := exp

(
B1 log D

log log 2D

)
,

and

H±m,c(n, r, n, r) := Hm,c(n, r, n, r)+ (−1)k Hm,c(n, r, n,−r).

Then

|S(n, r)| ≤ det(2m)−1/2
|S1(n, r)| + det(2m)−1/2

|S2(n, r)|,

where

|S1(n, r)| :=
∑

1≤c≤Q∗
|H±m,c(n, r, n, r)|

∣∣∣∣Jk′

(
k′Q∗

c

)∣∣∣∣,
|S2(n, r)| :=

∑
c>Q∗
|H±m,c(n, r, n, r)|

∣∣∣∣Jk′

(
k′Q∗

c

)∣∣∣∣.
After calculations similar to [9] (see also [7]), we get

|S1(n, r)| ≤ A1 M(D)Q∗g/2−1
∑

d|D,d≤Q∗
2ω(d)(Q∗σ 3

+ 3dσ 2)

≤ A2 M(D)3
Q∗g/2

k′1/2
+ A3 M(D)3

Q∗g/2

k′1/3

≤ A4 M(D)3
(πD)g/2

det(2m)g/2k′g/2+1/2 + A5 M(D)3
(πD)g/2

det(2m)g/2k′g/2+1/3 .

(5.1)

However, the sum S2(n, r) needs to be handled differently. We have

|S2(n, r)| ≤
∑

Q∗<c≤k′Q∗
2ω(c)+1cg/2−1 gcd(D, c)

∣∣∣∣Jk′

(
2πD

c det(2m)

)∣∣∣∣
+

∑
c>k′Q∗

2ω(c)+1cg/2−1 gcd(D, c)

∣∣∣∣Jk′

(
2πD

c det(2m)

)∣∣∣∣
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≤ 2M(D)
(πD)k

′

det(2m)k′0(k′ + 1)

∑
Q∗<c≤k′Q∗

1

ck′−g/2

+ 2
∑

c>k′Q∗
cg/2

∣∣∣∣Jk′

(
2πD

c det(2m)

)∣∣∣∣
≤

2M(D)

Q∗k
′−g/2−1−ε

(πD)k
′

det(2m)k′0(k′ + 1)

∑
Q∗<c≤k′Q∗

1

c1+ε

+
2(πD)g/2+1+δ

det(2m)k′0(k′ + 1)

∑
c>k′Q∗

1

c1+δ

≤ a0
M(D)

k′g/2+3/2+ε

(
πD

det(2m)

)g/2+1+ε

+ a1
(πD/det(2m))g/2+1+δ

k′k
′+1/2

,

(5.2)

where the ai and A j are constants, and 0< ε, δ < 1. Now let α(g)= 2(3g + 2)−1.
For all g ≥ 1, choose 0< ε, δ < 1/2. We find that S1(n, r) and S2(n, r) are small if
k is chosen large enough. If g ≥ 5, then we find that a better bound, α(g)= 2(3g)−1,
also works. This completes the proof. 2

6. An explicit basis for Jcusp
k,m and the proof of Theorem 1.2

It is well known that the space of cusp forms Sk for SL(2, Z) has an explicit basis
of the form {1Ea

4 Eb
6 | 4a + 6b = k − 12}. Here 1 is the discriminant cusp form of

weight 12, while E4 and E6 are the Eisenstein series of weight 4 and 6. Such an
explicit result is not available for J cusp

k,m . Petersson proved that the set of Poincaré series

{Pk
1 , . . . , Pk

dk
} is a basis for Sk , where dk = dim Sk . We prove the corresponding result

for Jacobi forms. The proof is based on the dimension formula in [4, p. 121].

THEOREM 6.1. Let k ≥ m + 12, and define

Dµ := 4m

(⌊
µ2

4m

⌋
+ 1

)
− µ2.

Then {Pk,m
Dµ+4mλµ,µ

} is the classical basis for J cusp
k,m,1, where the range of the indices is

given as follows:

(1) if k is even, µ= 0, 1, . . . , m; λµ = 0, 1, . . . , dim Sk+2µ − bµ
2(4m)−1

c − 1;
(2) if k is odd,µ= 1, . . . , m − 1; λµ=0, 1, . . . , dim Sk+2µ−1−bµ

2(4m)−1
c‘−1.

PROOF. We prove the theorem for even k, the odd case being analogous. The
condition that k ≥ m + 12 ensures that dim Sk+2µ ≥ bµ

2(4m)−1
c + 1 (see [4, p. 103]).

The proof follows Petersson’s argument in the elliptic case (see [8, 10]). Let dk,m =
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dim J cusp
k,m and {φ1, . . . , φdk,m } be an orthonormal basis. We write

φ j (τ, z)=
∑

D′>0,r∈Z
D′≡−r2 mod 4m

c j (D
′, r)e

(
D′ + r2

4m
τ + r z

)

and

Pk,m
Dµ+4mλµ,µ

= λ−1
k,m,Dµ+4mλµ

dk,m∑
j=1

c j (Dµ + 4mλµ, µ)φ j ,

where µ and λµ vary as in the statement of the theorem. We get a dk,m × dk,m matrix
indexed by pairs (Dµ + 4mλµ, λµ) and j . It suffices to prove that the matrix is
invertible. If not, then there would be a linear relation

dk,m∑
j=1

ξ j c j (Dµ + 4mλµ, µ)= 0

for all (Dµ + 4mλµ, µ), where (ξ1, . . . , ξdk,m ) 6= (0, . . . , 0).

Considering the nonzero Jacobi cusp form8 :=
∑dk,m

j=1 ξ jφ j , we see that the Fourier
coefficients c8(Dµ + 4mλµ, µ) of8 are zero, where µ and λµ vary as in the theorem.
This implies that D2µ8= 0 when µ= 0, . . . , m (see [4, p. 32] for the definition of
the operators D2µ), which shows that 8= 0, a contradiction.

To see that D2µ8= 0 when µ= 0, . . . , m, we recall the following Fourier
expansion of the modular form D2ν8 of weight k + 2ν, where k is even and ν =
0, . . . , m (see [4, p. 32]):

D2ν8= Ak,ν

∑
n≥0

∑
r :r2<4mn
µ:0≤µ≤ν

(k + 2ν − µ− 2)! (−mn)µr2ν−2µ

(k + 2ν − 2)! µ! (2ν − 2µ)!
c8(nν, rν)q

n, (6.1)

where q := e(τ ) and

Ak,ν := (2π i)−ν
(k + 2ν − 2)! (2ν)!
(k + ν − 2)!

.

Let ` be an even positive integer, and put d` := dim S`. It is well known that an
elliptic cusp form

∑
∞

n=1 a(n, f )qn of weight ` is determined by the first d` of its
Fourier coefficients a(1, f ), . . . , a(d`, f ). Therefore, looking at equation (6.1), we
need to prove that

c8(nν, rν)= 0 (6.2)

for all ν = 0, . . . , m, all rν such that r2
ν < 4mnν and 0≤ rν ≤ m, and all nν such that

br2
ν (4m)−1

c + 1≤ nν ≤ dk+2ν . Let ` denote k + 2ν, where ν = 0, . . . , m, and for
convenience, we drop the suffix ν in the terms nν and rν . To see (6.2), if |r |> m in
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equation (6.1), we can find suitable integers x and n′ ≥ 1 such that

−m ≤ r ′ = r − 2mx ≤ m and 4mn′ − r ′2 = 4mn − r2. (6.3)

We then use the facts that c8(n′, r ′)= c8(n, r) and n ≥ n′ ≥ 1, implying that n′

satisfies the same upper bound as n, namely, br ′2(4m)−1
c + 1≤ n′ ≤ d`. We may

finally reduce to the case where 0≤ r ≤ m since c8(n, r)= c8(n,−r) as ` is even.
But any such nν may be written

nν = bν
2(4m)−1

c + 1+ λν =
Dν + ν2

+ 4mλν
4m

,

where 0≤ ν ≤ m and Dν and λν are as in the statement of the theorem. This completes
the proof. 2

The Eichler–Zagier map Z1 : Jk,1→ M+k−1/2 for Jacobi forms of integral weight

and index 1 (M+k−1/2 denotes the Kohnen + space for 00(4), as in [6]) is defined by

Z1 :
∑

D∈Z+,r∈Z
D≡−r2 mod 4

c(D)e

(
D + r2

4
τ + r z

)
7→

∑
D∈Z+

c(D)e(Dτ),

where the Fourier coefficient c(D) does not depend on r .
Suppose that k is even and (−1)k−1 D ≡ 0, 1 mod 4. Following the notation in [6],

let Pk−1,4,D be the Dth Poincaré series in M+k−1/2. By comparing the Fourier
developments of PD,r from [1] and of Pk−1,4,D from [6], we get the following
result.

PROPOSITION 6.2. The Eichler–Zagier map Z1 takes PD,r ∈ J cusp
k,1 to 3Pk−1,4,D ∈

M+k−1/2.

PROOF. The proof involves an easy calculation of Gauss sums, which may be found
in [3]. 2

PROPOSITION 6.3. There exist positive constants k0 and B, where B > 4 log 2, such
that, for all even k ≥ k0 and all positive integers D ≤ k2 exp(−B log k/log log k),
the Poincaré series Pk−1,4,D and hence also the Poincaré series Pk,1

D,r do not vanish
identically.

PROOF. From the Fourier expansion of Pk−1,4,D given in [6], we see that the proof is
the same as in the case of integral weight Poincaré series for congruence subgroups of
SL(2, Z) given in [7]; we omit it. 2
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PROOF OF THEOREM 1.2. We write S(n, r)= S1(n, r)+ S2(n, r), where

S1(n, r) := ikπ
√

2m−1/2
∑

1≤c≤πD/m

H±m,c(n, r, n, r)Jk′

(
πD

mc

)
,

S2(n, r) := ikπ
√

2m−1/2
∑

c>πD/m

H±m,c(n, r, n, r)Jk′

(
πD

mc

)
.

To estimate S1(n, r), we use the following estimate of Bessel functions:

|Jν(r)| ≤ Cr−1/3,

when ν ≥ 0 and r ≥ 1; see [5, Lemma 3.4]. The constant C in this lemma may be
computed to be the constant A in Theorem 1.2 of this paper using [11, p. 333]. Then

|S1(n, r)| ≤
23/2π

m1/2

∑
1≤c≤πD/m

2ω(c) gcd(D, c)

c1/2

∣∣∣∣Jk′

(
πD

mc

)∣∣∣∣
≤

23/2m1/3π2/3

D1/3m1/2 M(πD/m)
∑

1≤c≤πD/m

gcd(D, c)

c1/6

≤
23/2π2/3

D1/3m1/6 M(πD/m)
∑

d|D,d<πD/m

d

≤
23/2 D2/3π5/3

m7/6 M(πD/m)σ0(D),

(6.4)

and

|S2(n, r)| ≤
23/2π

m1/2

∑
c>πD/m

c3/2
∣∣∣∣Jk′

(
πD

mc

)∣∣∣∣
≤

23/2π

0(k′ + 1)m1/2

∑
c>πD/m

c3/2
(
πD

mc

)3/2+2

≤
23/2π9/2 D7/2

0(k′ + 1)m4

∑
c>πD/m

1

c2

≤
23/2π13/2 D7/2

60(k′ + 1)m4 .

(6.5)

From the bound given in Theorem 1.2, it follows from estimates (6.4) and (6.5) that
S1 and S2 are both less than 1

2 in absolute value. Finally, from the expression for the

(n, r)th Fourier coefficient of Pk,m
n,r given in Proposition 2.1, we get the theorem. 2
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7. Further results

Recall the one-dimensional Kloosterman sum for a positive integer c,

S(r, m; c)=
∑

1≤h≤c
(h,c)=1

ec(rh + mh′), (7.1)

where hh′ ≡ 1 mod c. It is well known (see, for example, [9, Section 3]) that the
following relation holds for a prime p:

S(r pρ, mpµ; cp)= S(r, mpρ+µ; cp)+ pS(r pρ−1, mpµ−1
; c), (7.2)

where p - rm and ρ, µ≥ 1.

DEFINITION 7.1. Suppose that n, n′ ∈ Z+ and r, r ′ ∈ Zg . We let

Km,c(n, r, n′, r ′) =
∑
x,y

ec((m[x] + r x + n)ȳ + n′y + r ′x)

= cg/2+1e2c(−r ′m−1r t )Hm,c(n, r, n′, r ′),

where in the sum, x and y run over a complete set of representatives for Z(g,1)/cZ(g,1)
and (Z/cZ)∗ respectively and ȳ denotes an inverse of y modulo c.

LEMMA 7.2. Let p be a odd prime such that p | (m, r) and p - nn′, and let µ′ =
µ− 1 and ρ′ = ρ − 1. Then the following identity holds:

Kmpµ,cp(pµn, pµr, pρn′, r ′p) = Kmpρ+µ,cp(p
ρ+µn, pρ+µr, n′, r ′p)

+ p2Kmpµ′ ,c(p
µ′n, pµ

′

r, pρ
′

n′, r ′).
(7.3)

PROOF. The proof follows by noting that

Km,cp(n, r, n′, r ′p)=
∑

x mod cp

ec(r
′x)S(n′, m[x] + r x + n; cp), (7.4)

from which the left-hand side and the first term on the right-hand side in (7.3) are
taken care of by summing both sides of equation (7.2) with appropriate arguments
over x modulo cp. For the last term, we split the summation in equation (7.4) as
x = cx1 + x2, where x1 and x2 range over Zg/pZg and Zg/cZg , respectively. After
replacing (m, n, r, n′; cp) by (pµ

′

m, pµ
′

n, pµ
′

r, pρ
′

n′; c) and summing, we have∑
x mod c

ecp(r
′x)S(pρ

′

n′, pµ
′

(m[x] + r x + n); c)

=

∑
x1,x2

ec(r
′(cx1 + x2))S(p

ρ′n′, pµ
′

(m[cx1 + x2] + pµ
′

(r(cx1 + x2)+ n)); c)

=

∑
x1

e(r ′cx1)
∑
x2

ec(r
′, x2)S(p

ρ′n′, pµ
′

(m[x2] + r x2 + n); c)

= pKmpµ′ ,c(p
µ′n, pµ

′

r, pρ
′

n′, r ′).

Therefore the lemma follows from (7.2). 2
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PROOF OF THEOREM 1.3. From Lemma 7.2, we easily deduce that under the
conditions of the lemma,

Hmpµ,cp(pµn, pµr, pρn′, r ′p)

= Hmpρ+µ,cp(p
ρ+µn, pρ+µr, n′, r ′p)

+ p−g/2+1 Hmpµ−1,c(p
µ−1n, pµ−1r, pρ−1n′, r ′).

(7.5)

The following equality also follows from the definition, when p - c:

Hmpµ,c(p
µn, pµr, pρn′, r ′p)= Hmpρ+µ,c(p

ρ+µn, pρ+µr, n′, r ′p). (7.6)

We sum equation (7.5) over all c ≥ 1, and equation (7.6) over all c ≥ 1 coprime
to p, after multiplying them by the appropriate Bessel functions, and add them; see
Proposition 2.1. Gathering all of the terms, putting ρ = µ and n′ = n and r ′p = pµr ,
in all three sums, we find positive constants α1 and α2 such that

ck,pµm(pµn, pµr)= α1ck,p2µm(p2µn, p2µr; n, pµr)+ α2ck,pµ−1m(pµ−1n, pµ−1r)

(we have used the notation cPk,m
n,r
(n, r) := ck,m(n, r; n, r)= ck,m(n, r)). This

immediately implies the conclusion of Theorem 1.3. 2
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