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Jia-Wei Guo and Yifan Yang

ABSTRACT

By constructing suitable Borcherds forms on Shimura curves and using Schofer’s formula
for norms of values of Borcherds forms at CM points, we determine all of the equations
of hyperelliptic Shimura curves X’(N). As a byproduct, we also address the problem
of whether a modular form on Shimura curves X (N)/Wp y with a divisor supported
on CM divisors can be realized as a Borcherds form, where X (N)/Wp x denotes
the quotient of X’(N) by all of the Atkin-Lehner involutions. The construction of
Borcherds forms is done by solving certain integer programming problems.

1. Introduction

For an indefinite quaternion algebra B of discriminant D over Q and a positive integer N with
(D,N) =1, we let X’(N) be the Shimura curve associated to an Eichler order O of level N in
B. When D = 1, the Shimura curve X (V) is simply the classical modular curve Xo(N), which
is the coarse moduli space of elliptic curves together with a cyclic subgroup of order N and has
been studied extensively in the literature. When D > 1, the curve X (N) is the coarse moduli
space of principally polarized abelian surfaces with multiplication by O. The arithmetic of such
a Shimura curve is similar to those of classical modular curves, but the lack of cusps makes the
Diophantine geometry and explicit calculation of such a Shimura curve more interesting and
challenging than those of classical modular curves. The primary purpose of the present paper is
to address the problem of determining equations of Shimura curves.

In the classical modular case, which has been studied extensively and is well known for
admitting Fourier expansions around the cusps, there are many constructions of modular forms
and modular functions, such as Eisenstein series, the Dedekind function, theta series, etc., and
there are formulas for their Fourier expansions. Thus, it is often easy to determine equations
of modular curves. We refer the reader to Galbraith [Gal96], Yang [Yan06], and the references
contained therein for more information about equations of modular curves.

On the other hand, when D # 1, the absence of cusps has been an obstacle for explicit
approaches to Shimura curves since modular forms or modular functions on Shimura curves
do not have Fourier expansions and, as a result, most of the methods for classical modular
curves cannot possibly be extended to the case of general Shimura curves. Up to now, only a
few equations of Shimura curves are known. Thara [Tha79] was perhaps the first to give defining
equations of Shimura curves. For example, he found an equation for the curve Xg(l) of genus
zero. Kurihara [Kur79] extended Thara’s method and determined equations of X}%(1) and X32(1)
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of genus zero and X$4(1), X21(1), and X§®(1) of genus one. Jordan [Jor81] computed equations
of two Shimura curves X}°(1) and X33(1) of genus one. Later on, Gonzalez and Rotger [GR04,
GRO6] completed the list of equations of Shimura curves X’(N) of genus one and two. For
Shimura curves X’ (N) of higher genus, Elkies [Elk08] found equations of Shimura curves X§57(1)
and X2%(1) using the fact that some families of K3 surfaces are parameterized by Shimura
curves. More recently, Molina [Mol12] found equations of X3%(1) and X3°(1) and Atkin-Lehner
quotients of some Shimura curves. Also, Gonzélez and Molina [GM16] determine equations of
all Shimura curves X{(1) of genus three. (Note that it happens that all of these curves are
hyperelliptic.) We remark that all of the methods in the above-mentioned works other than
those in [EIk0O8] are strongly based on the Cerednik—Drinfeld theory of p-adic uniformization
of Shimura curves [BC92|, p|D, and arithmetic properties of CM points. In addition, other
than [EIkO8], their methods do not allow us to locate general CM points on the curves.

In this paper, we will adopt a very different approach, using the theory of Borcherds forms
and explicit formulas for values of Borcherds forms at CM points to obtain equations of Shimura
curves. (See §2 for a quick introduction to Borcherds forms.) The main result of this paper is a
complete list of equations of all hyperelliptic Shimura curves X&(N).

THEOREM 1. The tables in Appendix A give a complete list of equations of hyperelliptic Shimura
curves XP(N), D > 1.

The idea of realizing modular forms on Shimura curves as Borcherds forms is not new.
For example, as a corollary to his formula for average values of Borcherds forms at CM
points, Schofer [Sch09] proved a weak analogue of Gross and Zagier’s result [GZ85] on the
prime factorization of the norm of the difference of two singular moduli on the classical
modular curve Xo(1) for the case of Shimura curves. Later on, Errthum [Err11] applied Schofers
formula to compute singular moduli on X§(1)/Ws 1 and X3%(1)/Whg 1, verifying Elkies numerical
computation [E1k98], where Wp y denotes the full Atkin-Lehner group on X (N). However,
applications of Borcherds forms to the theory of Shimura curves were not explored any further
in the literature. One possible reason is that in order to successfully use Borcherds forms to
perform computation on Shimura curves, one needs a systematic method to construct them in
the first place, but such a method has not yet been developed in the literature. Thus, our first
task here is to develop a systematic method to construct Borcherds forms. We will see that the
problem of constructing Borcherds forms reduces to that of solving certain integer programming
problems, which we solve by using the AMPL modeling language (http://www.ampl.com) and
the Gurobi solver (http://www.gurobi.com).

Note that our method works for any Shimura curve XP(N) such that XP(N)/Wp y has
genus zero, but because there are too many of them, here we consider only the hyperelliptic
cases. (There are more than 110 non-hyperelliptic Shimura curves X#’(N) whose Atkin-Lehner
quotient X (N)/Wp y has genus zero.) In addition, under a certain technical assumption
(Assumption 40), it is also possible to determine equations of X’(N)/Wp y even if it is not of
genus zero. In §4.3, we give two such examples. However, the method becomes less systematic
and it is not clear whether it will always work in general.

In principle, our list of equations should also be obtainable using Elkies’ approach [E1k08], but
our approach via Borcherds forms have potential applications to other problems about Shimura
curves beyond the scope of the present paper. To illustrate our point, in the arXiv version of
the present paper (http://arxiv.org/pdf/1510.06193), we also discuss how our construction of
Borcherds forms leads to a method to compute heights of CM points on Shimura curves, again
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EQUATIONS OF HYPERELLIPTIC SHIMURA CURVES

under Assumption 40. Note that both Elkies” and our approaches have an advantage over other
methods in that we can determine the coordinates of CM points on Shimura curves, although
Elkies’ approach sometimes involves exhaustive search and it is not clear whether the method is
always guaranteed to work. In the arXiv version of the present paper, we also list the coordinates
of the CM points used in determining our equations of Shimura curves.

The rest of the paper is organized as follows. In § 2, we give a quick overview of the theory of
Borcherds forms and explain the idea of realizing modular forms on Shimura curves in terms of
Borcherds forms. The exposition of this section follows [Yan15]. In § 3, we discuss how to construct
Borcherds forms by solving certain integer programming problems. For our purpose, the case of
odd D needs special attention. As a byproduct, we find that for (D, N) in Theorem 1 with even
D, all meromorphic modular forms with divisors supported on CM divisors (Definition 21) can
be realized as Borcherds forms. (We believe that this is also true for odd D, but since it is not
the main problem we are concerned with, we will not prove this assertion here.) In §4, we will
give several examples illustrating how to obtain equations of Shimura curves using Borcherds
forms we constructed in §3 and Schofer’s formula for values of Borcherds forms at CM points.
In §4.3, we give additional examples where the genus of XOD (N)/Wp n is not zero. Specifically,
we determine equations of X 142( )/Wia21 and X3°%(1)/Wso2.1, under Assumption 40.

2. Borcherds forms

2.1 Basic theory
We give a quick introduction to Borcherds forms. For details, see [Bor98, Bor00, Bru02] for the
classical setting and [Errll, Kud03, Sch09] for the adelic setting.

Let L be an even lattice with symmetric bilinear form (-, -) of signature (n,2) and let L" be
the dual lattice of L. We assume that L is nondegenerate and denote by

{e, :meLY/L}

the standard basis for the group algebra C[L" /L]. Associated to the lattice L, we have a unitary
Weil representation pr, of the metaplectic group

SL(2,Z) = {((‘; Z) ,m) : <‘c‘ Z) € SL(2,Z)}

on the group algebra C[LY /L] defined by

pr(T)e, = e~ 2mi(n, 77)/2677

e2mi(n—2)/8
27mn5

S)e, = ,
pr(S)ey %ILV/L 56%;/L €5

o () (1))

which generate §f4(2, Z).

where

DEFINITION 1. A holomorphic function F': §§ — C[LY /L] is called a weakly holomorphic vector-
valued modular form of weight k € %Z and type pr on SL(2,7Z) if it satisfies

F(‘”*Z) — (et +d)p ((i z> ,m) F(r)

cT +
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for all 7 € $ and all (¢%) € SL(2,Z) and F is meromorphic at the cusp oo. The last condition
means that the Fourier expansion of F' is of the form

F(r) = ). > e(m)gey, g =¥,
neLY/L meZ—(nn)/2, m>—mo
for some rational number my.

For k=Q, Ror C, let V(k) = L ® k and extend the definition of (-,-) to V (k) by linearity.
Define Oy (R) to be the orthogonal group of the bilinear form (-,-) and its subgroup

O} (R) := {0 € Oy(R) : spino = sgndet o},

where if ¢ is equal to the product of n reflections with respect to the vectors vy, ..., v,, then its
spinor norm is defined by spino = (—1)" []7; sgn(v;, v;). We also define

0} ={0c € O{(R):0(L) =L}

to be the orthogonal group of the lattice L. As the orthogonal group OZ acts on the dual lattice
LY, there is an induced operation on C[L" /L] given by

+
E Cpen —> g Cneon, 0 €07,

neLV/L neLY /L

DEFINITION 2. Suppose that F' = ZneLV/L F,e, is a vector-valued modular form. We define the
automorphism group Oj{ p of F' by

O;F ={0c€Of :F,,=F,forallnin LY/L}.
Consider the subset
K ={[z] e P(V(C)) : (2,2) = 0,(z,2) <0}

of the projective space P(V(C)). This set K consists of two connected components and the
orthogonal group O‘t(R) preserves the components. Pick one of them to be K. Then it can be
checked that Of;(R) acts transitively on K.

DEFINITION 3. Let KT = {z € V(C) : [z] € K*}. For each subgroup of I of finite index of O},
we call a meromorphic function ¥ : K™ — P(C) a modular form of weight k£ and character x on
I if U satisfies:

(i) W(cz) =c*U(2) for all c € C* and z € K;

(i) W(hz) = x(h)U(z) for all h € T and z € K.

THEOREM A [Bor98, Theorem 13.3]. Let L be an even lattice of signature (n,2) and F(r) be

a weakly holomorphic vector-valued modular forms of weigh 1 —n/2 and type py, with Fourier
expansion F(1) = 3 (3, ¢;(n)q")e,. Suppose that c,;(n) € Z for any n € LY/L and n < 0.

Then there corresponds a meromorphic function ¥ p(z), z € K+ with the following properties.

(i) Here ¥p(z) is a meromorphic modular forms of weight ¢y(0)/2 for the group Oj{’F with
respect to some unitary character x of Oz o
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(ii) The only zeros or poles of WV (z) lie on the rational quadratic divisor
M ={zeK":(z,)) =0}

for A in L, (A\,\) > 0, and are of order

Z Cr)\(_'r2<)‘7)‘>/2)‘

0<reQraeLY
DEFINITION 4. We call the function Ur(z) the Borcherds form associated to F'.

2.2 Borcherds forms on Shimura curves
We now explain how to realize modular forms on Shimura curves as Borcherds forms. We follow
the exposition in [Yanl15]. See also [Errll].
Let B be an indefinite quaternion algebra of discriminant D over QQ. Consider the vector
space
V=V(Q) ={zeB:tr(x) =0}

over Q with the natural bilinear form (z,y) = tr(zy) = —tr(zy). Then V has signature (1,2)
and the associated quadratic form is nrd(z) = —22, where nrd(z) denotes the reduced norm of
x € B. Given an Eichler order O of level IV in B, we let L be the lattice

L=0nV={ze0O:tr(z)=0}.

For an invertible element 8 in B ® R, define o5 : V(R) — V(R) by o5(y) = fy87L. Then, we
can show that
OF(R) = {05 : B € (B@R)* /R, nrd(8) > 0} x {£1}

and
Op ={op: B € NG(0)/Q"} x {£1}.

If we assume that the quaternion algebra is represented by B = (“@b) with @ > 0 and b > 0, that
is, B = Q+Qi+Qj+Qij with i2 = a, j2 = b, and ij = —ji, and fix an embedding + : B — M (2,R)

by
(G ) (8 2

then each class in K = {z € P(V(C)) : (2,2) =0, (z,z) < 0} contains a unique representative of
the form

1—72,+ T 1472
i+ — i
2\/a \/Bj 2vab J
for some 7 € HT, the union of upper and lower half-plane. The mapping 7 — z(7) mod C* is a
bijection of between H* and K.

Let K+ be the image of HT = § under the mapping. Then we obtain compatible actions of
N (0)/Q* on K* and $ with the action on K by conjugation and the action on $ by linear

fraction transformation. More precisely, this means that for o € N1 (0), if we write ¢(a) = (& €2),
then )
1 (374 ) ar+e\ .
az(T)a wrd(a) z <03T o z(t(a)T) mo (1)
5
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LEMMA 5 [Yanl5, Lemma 6]. Let F(1) = >_, (3, ¢5(n)q")ey be a weakly holomorphic vector-

valued modular form of weight 1/2 and type pr such that Of , = O} and c¢,(n) € Z
whenever n € LV/L and n < 0. Then the function ¥p(T) deﬁned by 1/JF( ) = VYr(2(7)) is a
meromorphic modular forms of weight ¢o(0) with certain unitary character x on the Shimura
curve XP (N)/Wp.n.

DEFINITION 6. With assumptions given as in the lemma, the function ¢ (7) defined by

Yp(T) = Up(z(7))

is called the Borcherds forms on the Shimura curve X% (N)/Wp y associated to F.

The next lemma gives us the criterion when the character of a Borcherds form ¢p(7) is
trivial, under the assumption that the genus of N3 (0)\$ is zero.

LEMMA 7 [Yanl5, Lemma 8]. Assume that the genus of X = N£(O)\$ is zero. Let 1,...,7;
be the elliptic points of X and assume that their orders are by,...,b,, respectively. Assume
further that, as CM points, the discriminant of 11, ..., 7, are dy,...,d,, respectively. Let F(T) =
> (2 en(n)g™)ey be a weakly holomorphic vector-valued modular form of weight 1/2 and
type pr, such that OZL,F = O} and c,(m) € Z whenever n € LV /L and m < 0. Assume that co(0)
is even. Then the Borcherds form ¢ p(7) is a modular form with trivial character on X if and
only if for j such that b; # 3, the order of W (z) at z(7;) has the same parity as co(0)/2.

We now state Schofer’s formula [Sch09, Corollaries 1.2 and 3.5] in the setting of Shimura
curves as follows.

THEOREM B [Sch09, Corollaries 1.2 and 3.5]. Let F(r) = > (3, cy(n)g™)ey be a weakly

holomorphic vector-valued modular form of weight 1/2 and type pj, for éi(Z,Z) such that
O} » = O}, ¢o(0) = 0 and ¢, (m) € Z whenever n € LY /L and n < 0. Let d < 0 be a fundamental

discriminant such that the set CM(d) of CM points of discriminant d on N7 (O)\$ is not empty
and that the support of div (1) does not intersect CM(d). Then we have

> togle(r) = — oSS e sy (m),

TeCM(d) ~ELY /L m=0

where k. (m) are certain sums involving derivatives of Fourier coefficients of some incoherent
Eisenstein series.

We refer the reader to [Errll, Yanl5] for strategies to compute - (m) explicitly.

3. Construction of Borcherds forms

3.1 Errthum’s method
In this section, we will review Errthum’s method [Err11] for constructing vector-valued modular
forms out of scalar-valued modular forms. Here the notation D, N, O, L, etc. has the same
meaning as in §2.2. The level N is always assumed to be squarefree.

Let us first describe the structure of the lattice L.
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LEMMA 8. Assume that N is squarefree. Let q be a prime number such that ¢ = 1 mod 4 and
~ )= . (2)
D 1 if p|N.

Then B = (%) is a quaternion algebra of discriminant D over Q. Moreover, let a be an integer
such that a?DN = 1 mod q. Then the Z-module O generated by

] 1+ 1+1j aDNj +ij (3)
e1 = ) = — €eq = ey = — =
1 , €2 5 0 @ 5 v 7
is an Eichler order of level N in B. Also, let L be the set of elements of trace zero in O and let
. i1+ 17 aDNj +ij
h=j ="t =S )
q
Then ’ ’ ’
L =170 + %y +Zls, LV =Z— +Z—> +7Z—>.
1+ &b+ Lo, 2 VDN T EDN

Proof. The conditions in (2) imply that B is ramified at prime divisors of D and unramified
at prime divisors of N. Also, by the quadratic reciprocity law, we have (%) = 1. Thus, the

discriminant of B is D.
We check that

-1
6% =1 e1 + e,
DN(qg—1 DN(1 — 1-— -1
€9€3 = A\ S Elq )61 + a4 (2 q> €2 + 5 q63 + q(q4 )64,
1
eses = aDNei —aDNey — eg + q—; eq,
DN(1 —
e% _ (4 Q)el’
DN(a?DN(q—1)+q+1) DN(a?DN(q—1)+1)
e3eq4 = — €1 + €
2q q
DN(1—
4+aDNes + a(2Q)64,
so that Zei + Zes + Zeg + Zey is an order in B. Also, the Gram matrix
2 1 0 0
w1 (g—=1)/2 0 —aDN
(trle)) =10 = o DN(g—1)/2 DN
0 —aDN DN 2DN(1—a%’DN)/q

has determinant (DN)2. Thus, it is an Eichler order of level N.
Moreover, it is clear that £1, ¢5 and ¢3 span L. Also, the Gram matrix of L with respect to
this basis is

—2q 0 —2aDN
0 DN(q—1)/2 DN , (5)
—2aDN DN 2DN(1 —a®’DN)/q
and its determinant is 2D2N?. From the Gram matrix of L, it is easy to check that LV is spanned
by ¢1/2, ¢3/DN and ¢3/DN. This proves the lemma. O
7
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COROLLARY 9. Assume that N is squarefree. The discriminant of the lattice L is
ILY/L| = 2(DN)?

and the level of L is

4DN if DN is odd,
2DN if DN is even.

Proof. The result follows directly from the proof of the previous lemma since the determinant
of the Gram matrix in (5) is 2(DN)? and LV /L ~ (Z/2) x (Z/DN)?. 0

We now recall Errthum’s method [Errll] for constructing weakly holomorphic vector-
valued modular forms. Let xy denote the character associated to the Jacobi theta function
0(T) => ez ¢"°. That is, yg is defined by

0(r7) = Xo(1)(eT + d)'/20(7)
for all v = (25) € To(4) and all T € §.
LEMMA 10 [Bar03, Theorem 4.2.9]. Let M be the level of the lattice L. Suppose that f(T) is a
weakly holomorphic scalar-valued modular form of weight 1/2 such that

F(rm) = xo()(er +d)' 2 f(7)
for all v = (24) € To(M). Then the function Fy(t) defined by

Fy(r) = > Flr(m)pr(vHen (6)
V€T (M)\SL(2,2)

is a weakly holomorphic vector-valued modular form of weight 1/2 and type py.
LEMMA 11 [Errll, Theorem 5.8]. Let f(7) and F¢(7) be given as in the previous lemma. Then

for n and o' € LY /L with (n,n) = (',n'), the e, component and e,y component of Fy(T) are
equal. Consequently, we have OZF Py = OZ’.

LEMMA 12 [Bor00, Theorem 6.2]. Let M be the level of the lattice L. Suppose that rq, d|M, are
integers satisfying the conditions:

() Xaprra=1;

(ii) [LY/L|[T4pr d™ is a square in Q*;
(il) > g4as dra = 0 mod 24; and
(iv) > g (M/d)rq = 0 mod 24.
Then Hd| p n(dr)"e is a weakly holomorphic scalar-valued modular form satisfying the
condition for f(7) in Lemma 10.

DEFINITION 13. If an eta product satisfies the conditions in Lemma 12, then we say it is
admissible.

To have a better control over the divisors of Borcherds forms constructed, we will use certain
special admissible eta products.
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DEFINITION 14. Let M be the level of the lattice L and let S be a subset of the cusps of I'o(M).
If f is a weakly holomorphic modular form of weight 1/2 on I'g(M) whose only poles are at the

cusps in S, then we say f is a S-weakly holomorphic scalar-valued modular form of weight 1/2
on Fo(M)

Later on, we will use {oo}-weakly holomorphic modular forms to construct Borcherds forms
for the case of even D and {oo,0}-weakly holomorphic modular forms for the case of odd D.
Therefore, let us introduce the following definitions.

DEFINITION 15. Let Dy be the odd part of DN. We let M'(4Dg) denote the space of all {co}-
weakly holomorphic modular forms of weight 1/2 on I'g(4Dy). Also, for a nonnegative integer
n, let M} (4Dg) be the subspace of M'(4Dy) consisting of modular forms with a pole of order at
most n at co. If j is a positive integer such that there does not exist a modular form in M'(4Dg)
with a pole of order j at oo, then we say j is a gap of M'(4Dy).

Similarly, we let M*"(4Dg) be the space of all {co, 0}-weakly holomorphic modular forms of
weight 1/2 on I'g(4Dp). For nonnegative integers m and n, let Mr!ﬁ!,n(élDo) be the subspace of
M*"(4Dy) consisting of modular forms with a pole of order at most m at oo and a pole of order
at most n at zero.

Remark 16. Note that the space M(!] (4Dy) is simply the space of holomorphic modular forms of
weight 1/2 on I'g(4Dy). Since Dy is assumed to be squarefree, by [SS77, Theorem A], the space
M§(4Dy) is one-dimensional and spanned by (7).

3.2 Case of even D
In this section, we assume that D is even and N is squarefree. In Proposition 18, we will see
how the problem of constructing Borcherds forms becomes the problem of solving certain integer
programming problem. Ultimately, in Proposition 23, we will show that for (D, N) in Theorem 1
with 2|D, every meromorphic modular form of even weight on X (N)/Wp n with divisor
supported on CM divisors (see Definition 21) can be realized as a Borcherds form. Note that
Bruinier [Brul4] and Heim and Murase [HM15] studied when a modular form on an orthogonal
group O(n,2) can be realized as a Borcherds form, but as the integer n is assumed to be at
least two, their results do not apply to the case of Shimura curves. In fact, it is pointed out
in [Brul4, §1] that counterexamples exist in the case n = 1 (see also [BO10, §8.3]). It will be a
very interesting problem to characterize those modular forms on Shimura curves X (N)/Wp y
that can be realized as Borcherds forms.

Let Dy be the odd part of DN. Then according to Corollary 9, the level of the lattice under
consideration is 4Dy. Let us first determine the dimensions of M,,(4Dy).

LEMMA 17. Let Dgy be the odd part of DN and g be the genus of the modular curve X(4Dy).
Then for a nonnegative integer n with

n>2g-2-Y |d/4],
d| Dy

we have
dime My, (4Dg) =n+ Y _|d/4] +1—g.
d|Do

Moreover, the number of gaps of M'(4Dyg) is g — 2_d|po L4/4]-
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Proof. Let 0(1) =3, ¢ be the Jacobi theta function. For a divisor d of 4Dy, let Cy represent
the cusp 1/d. As a modular form on I'g(4Dg), we have

, d
dive =) 1(Caa)-

d| Do

A modular form f is contained in M} (4Dy) if and only if the modular function g = f/6 on
['o(4Dy) satisfies
divg > —n(00) = > |d/4)(Caa).
d| Do
Then by the Riemann-Roch theorem, when n is a nonnegative integer such that n > 2g — 2 —
>_d|p, [d/4], the dimension of the space M}, (4Dy) is

n+ Y [d/4]+1—g.

d| Do

Now since Dy is squarefree, by [SS77, Theorem A], the space M(!)(4Do) is one-dimensional and
spanned by @, which implies that there is no modular form in M'(4Dg) having a zero at oc.
Therefore, from the dimension formula for M}, (4Dg), we see that the number of gaps is n 4+ 1 —
dim M} (4Do) = g — >y, [d/4]. 0

PROPOSITION 18. For (D, N) in Theorem 1 with even D, the space M'(4Dy) is spanned by
admissible eta products. Moreover, there exists a positive integer m such that, for each positive
integer j > m, there exists a modular form f; in M*(4Dy) N Z((q)) whose order of pole at oo is
j and whose leading coefficient is one.

Proof. Let g be the genus of the modular curve X((4D) and set

no :max<2g—2— th/q,o).

d| Do
According to Lemma 17, if n is an integer such that n > ng, then there exists a modular form in
M'(4Dg) with a pole of order n at co. Now suppose that we can find an eta product ¢(7) such
that ¢ is a modular function on I'g(4Dp) with a unique pole at co. Let k be the order of the
pole of t at co. Now Lemma 17 implies that for each integer j > ng, there is a modular form in
M'(4Dy) with a pole of order j at co. Thus, for all n > ng, we have

M, (Do) = M, (4Dg) + tM,,(4Dyp).

n

Therefore, to prove the assertion about M’ (4Dy), it suffices to find such a modular function ¢
and show that the space Mfm +k(ZJLDo) can be spanned by eta products and that there exists a
positive integer m > ng such that for each integer j with m < j < m + k — 1, there exists a
modular form in M ]' (4Dg) N Z((q)) whose order of pole at oo is j and whose leading coefficient
is one.

Consider the case of a maximal order first. Assume that D = 2p for some odd prime p. By

Lemma 12, for an eta product Hd| ap n(dr)" to be admissible, the integers r4 must satisfy

mo+ T2+ ra + oy + oty + gy =1
79 + T2p = 1420
rp + rop  + Ty, = 20, (7)
rt +  2rg + dry + prp + 2prop, + dpry, = 24
dpri + 2pro + prg + 4rp + 279 + ry = 24de
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for some integers d2, 0p, €1 and €. Moreover, the congruence subgroup I'g(4p) has six cusps,
represented by 1/c¢ with ¢|4p. The orders of the eta function 7(dr) at these cusps, multiplied by
24, are given by the following.

1 1/2 1/4 1/p 1/2p 1/4p
n(r) 4p p p 4 1 1
(2r) 2p 2p 2p 2 2 2
ndr) p p 4dp 1 1 4
(p7)

n(pr) 4 1 4 p D
n(2pT) 2 2 2 2p 2p 2p
ndpr) 1 1 4 p P 4p

Thus, in order for an eta product to be in M,!l(4p), the exponents r4 should satisfy

rt +  2ro 4+ dry +  pry, + 2prop + dprsypy = —24n
r 4+ 2re + ra + prp + 2pro, +  pray = 0
ry +  2rp + ry + 4dprp, + 2prop, +  prgy = 0
(8)
pr1 + 2pre + 4dpry + rp 4+ 2ry 4+ 4rgy = 0
pr1 + 2pro 4+ prg + T, + 2ro + ryp = 0
dpri + 2pro + pra +  4rp, +  2rg + T4y = 0

In literature, problems of solving a set of equalities and inequalities in integers are called integer
programming problems. Solving (7) and (8) using the AMPL modeling language (http://www.
ampl.com) and the gurobi solver (http://www.gurobi.com), we can produce many admissible eta
products.

To find ¢, we replace the first two equations in (7) by 71 + ro + r4 + rp + 72, + 74, = 0 and
T2 + 125 = 202 and solve the integer programming problem. We find that we can choose

n(47)*n(2pr)?

) = S @n)n(apr)?

with &k = (p —1)/2.

In the other cases when N > 1, N is always a prime. The modular curve Xy(4Dp) has
12 cusps and there are more inequalities and equalities in the integer programming problem.
Nevertheless, we can easily find ¢ and many admissible eta products by solving the integer
programming problem.

Having found ¢(7) and many admissible eta products, we check case by case that eta products
do span Mflo ++(4p) and that there exists positive integer m > ng such that for each integer j
with m < j < m 4+ k — 1, there exists a modular form f; € M1!10+k(4D0) NZ((q)) whose order of
pole at oo is j and whose leading coefficient is one. (Sometimes, f; will be a linear combination
of eta products with rational coefficients. To show that all Fourier coefficients are integers, we
use Sturm’s theorem.) Here we omit the details, providing only one example as below. O

Ezample 19. Consider the case D = 26 and N = 1. The modular curve X((52) has genus five.
Thus, by Lemma 17, the number of gaps of M'(52) is 5 — >_dj13d/4] = 2. The modular function

11
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has a unique pole of order six at co. According to the proof of Proposition 18, we need to show
that the space M{1(52) can be spanned by eta products. Using the gurobi solver, we find the
following solutions (r1,r9,74,713,726,752) to the integer programming problem in (7) and (8)
with n =11

(—3,6,0,—3,11,-10), (-1,3,1,3,2,-7), (3,-3,3,-1,8,-9), (1,1,1,1,4,-7),
(-1,1,1,3,4,-7), (0,—3,6,-2,8,—8), (3,-1,1,—1,6,-7), (—5,12,—4,—1,5, —6),
(-1,2,0,-5,15,—10), (1,—1,1,1,6,-7), (1,3,—1,1,2,—5), (-1,3,-1,3,2, —5),

(3,1,—1,-1,4,—5), (—2,3,2,0,2,—4), (0,—1,2,-2,6,—4), (—2,5,—2,0,0,0).

Suitable linear combinations of these eta products [ ;50 1(d7)" yield a basis consisting of

fo=1+42¢+2¢"+2¢° +-,  fa=q ¢+’ +"+ -,
fi=qat—q ' g+ @+, fi=a a2+ +
fo=a+a?-20+2¢°+--, fr=q "¢ +2¢-¢++,
fe=a+a P+ 20+, fo=q+2¢7" +3¢+2¢7+ -,
fo=a""+3¢ " +q-+-, fu=a"+2*+¢" +4¢"+ -,

for the space M{;(52). In fact, since all of these modular forms have integral coefficients,
multiplying these f; by powers of ¢, we find that for each non-gap positive integer j, there
exists a modular form f; in M'(52) NZ((q)) with a pole of order j at co and a leading coefficient
of one.

Remark 20. Quite curiously, our computation shows that whenever N = 1, i.e. whenever Dy = p
is an odd prime, the space M !(4D0) has the property that for each non-gap positive integer j,
there exists a modular form f in M'(4Dg) NZ((q)) such that f has a pole of order j at oo with
leading coefficient one.

The smallest Dy such that M !(4D0) does not have this property is Dy = 51. We can show that
the gaps of M'(204) are 1, ..., 14, and 20 and there exists a modular form f in M*(204) NZ((q))
with a Fourier expansion 2¢=22 — ¢=20 — 2¢71 4 2¢7!2 ... . As 20 is a gap, there cannot exist
g € M'(204) N Z((q)) with a Fourier expansion ¢~ 22 + - - .

We now show that for (D, N) in Theorem 1 with even D, all meromorphic modular forms of
even weights on X (N)/Wp n with divisors supported on CM divisors, which we define below,
can be realized as Borcherds forms.

DEFINITION 21. For a negative discriminant d, we let CM(d) denote the set of CM points of
discriminant d on XP(N)/Wp n, hqg = |CM(d)|, and P, be the divisor

Pd: Z T.

T€CM(d)

(If hg = 0, then P, simply means zero.) We call P; the CM divisor of discriminant d. Note that
sometimes we wish to keep track the degree of the divisor P;. In such as a case, we will write
Pdth instead of Py.

LEMMA 22. Let f be an element in M'(4Dg) N Z((q)), Fy be the vector-valued modular form
constructed using f as given by (6), and vr,(7) be the Borcherds form on XP(N)/Wp N
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corresponding to Fy as defined in Definition 6. Suppose that the Fourier expansion of f is
Y m mq™. Then

div 1/1Ff = Z Cm Z #P4m/r27

m<0  reZ+*,4m/r? is a discriminant C4m/r?
where eq is the cardinality of the stabilizer subgroup of T € CM(d) in N (0)/Q*.

Proof. This follows from [Errll, Proposition 5.4] and [Yanl5, Lemma 7). O

PROPOSITION 23. For (D, N) in Theorem 1 with 2|D, all meromorphic modular forms of even
weights on X (N)/Wp y with a divisor supported on CM divisors can be realized as Borcherds
forms.

Proof. We will prove only the case (D, N) = (26,1). The proof of the other cases is similar.
We claim that:

(i) there is a Borcherds form v of weight two with a trivial character; and

(ii) every modular function on X3%(1)/Wae1 with divisor supported on CM divisors can be
realized as a Borcherds form.

Then observe that if ¢ is a modular form of even weight k, then ¢/ ¥¥/2 has weight zero. The
two claims imply that ¢ can be realized as a Borcherds form.

The Shimura curve X2%(1)/Wag1 has genus zero and precisely five elliptic points of order
two. Among the five elliptic points, one is a CM point of discriminant —8, one is a CM point of
discriminant —52 and the remaining three are CM points of discriminant —104. Also, if 9 is a
meromorphic modular form of even weight k on X3%(1)/Wag 1, then the degree of dive is k/4.
Thus, by Lemmas 7 and 22, for f =" cng™ € M'(52) N Z((q)), the Borcherds form Yr, has
even weight k and a trivial character if and only if

e > |CM(4m/r?)| = k/4 )

(& 2
m<0 r€Z*,4m/r? is a discriminant 4m/r

Z Cm = Z Cm Z e¢m =k/2 mod 2. (10)

m=—2n? m=—13n2 m=—26n2

and

Now from Example 19, we know that for each j > 3, there exists a unique element f; in
M'(52)NZ((g)) such that its Fourier expansion is of the form f; = ¢/ +c_aq 2 +c 17 +--- .
In particular, we find

fr=a a2+
fa=a P —q? =2 +q+--,
foo=q 0 +q =g+

The modular form
f=fws—fis+2fr=qa—¢P+2¢"—qg?+3¢ " +2¢+,

satisfies the conditions in (9) and (10) with k& = 2. (Note that no CM points of discriminants —4
and —7 exist on the Shimura curve X25(1), so the presence of the terms ¢~7 and ¢~! will not
contribute anything to the divisor of the Borcherds form.) This proves claim (i).
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To prove claim (ii), it suffices to show that for each discriminant d < 0, there ex1sts a modular
form f in M'(52)NZ((q)) satisfying (9) and (10) with k& = 0 such that div Vr, = —hqP_g. For
the special cases d = —52 and d = —104, we may choose f to be 2f13 and 2 fog +6f7, respectively.
If d # —52,-104 and d is a fundamental discriminant, we choose f to be fig +af7 with a proper
integer a such that the coefficient of g2 is —2hy. (If 4|d, we may choose fia/a+0bf7 instead.) Now
assume that d is not a fundamental discriminant, say, d = don? for some fundamental discriminant
do. We let a be the integer such that the coefficient of ¢=2 in f = Zr‘n (1) fia) 2 +afr is —2hg,
where p(r) is the Mébius function. Then divyr, = Pth — hgP_g. (The case dy = —8 needs
a special treatment, but it is completely analogous.) Thls proves claim (ii) and, hence, the
proposition for the case (D, N) = (26, 1). O

3.3 Case of odd D

The construction of Borcherds forms in the case of odd D is a little more complicated than
the case of even D. The idea of using {oo}-weakly holomorphic modular forms to construct
Borcherds forms is no longer sufficient for our purpose. The reason is that if the divisor of a
Borcherds form arising from a {oo}-weakly holomorphic modular form is supported at a CM
point of discriminant d, d = 1 mod 4, then it also is supported at CM points of discriminant
4d. However, in practice, we are often required to construct Borcherds forms whose divisors are
supported at CM points of discriminant d, but not at CM points of discriminant 4d. Thus, in
the case of odd D, we will need to use {00, 0}-weakly holomorphic modular forms to construct
desired Borcherds forms.

Assume that D is odd and N is squarefree. As usual, we let O be an Eichler order of level NV
in the quaternion algebra B of discriminant D, and L be the lattice formed by elements of trace
0 in O. For convenience, for a modular form f, we let P(f) denote the principal part of f at oo,
i.e. the sums of the terms with negative exponents in the Fourier expansion of f. Similarly, for
a vector-valued modular form F = Zne v/ Fney, we let

= ZP(Fn)en
n

LEMMA 24. Let M be the level of L. Suppose that f is a {oo,0}-weakly holomorphic scalar-
valued modular of weight 1/2 on I'o(M) and Fy was given in Lemma 10. Assume that P(f|,/5S) =

Y >0 bng ™M . Then

M e2mi/8
P(Ff) Z ann/M Z €n-
|LV/L n>0 neLY /Lrd(n)en/M+Z

Proof. Since f is of {00, 0}-weakly holomorphic, if  is an element of SL(2,Z) such that yoo is
not equivalent to the cusp oo or zero, then we have P(f[/27) = 0. Now v = I is the only right
coset representative of I'g(M) in SL(2,Z) with yoo ~ oo and v = ST7, j =0,...,M — 1, are the
only right coset representatives with yoo ~ 0. Thus,

P(Ff) fleo+ Z f|1/2ST'] pr(T™ I8~ )

Since
e2mi/8

e )
v |LV/L nELZV/L !

pr(S Nes =
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we find
e2mi/8 —
P(Fy) = L Z (fl1/28T7)prL(T~7) Z en
L /L neLV /L
emi/® /M 2 /M-nrd(n))
-n wig(—n nrd(n
|LV/L| Z Z Z €n
n>0 j=0 neLV/L
Me2mi/8 o
m 2 b > €n-
‘ / n>0 neLY /Lnrd(n)en/M+Z
This proves the lemma. O

In general, the principal part eQm/g|LV/L|_1/2P(f|1/25) in the lemma lie in Clg~'/M].
For our purpose, we will only consider those f such that

M€27ri/8
VILY/L|

LEMMA 25. Let f be as in the lemma above. Suppose that P(f) and P(f|,/2S) are of the form

P(f) ez, P(f128) € Z[g~ /1.

P(fy= Y ang™" MLWS P(f] = > bug !
= nd T, e 1/29
n>0,n€Z ‘LV/L‘ n>0,n€Z

for some integers a,, and b,. Then

div wFf = Zan Z ! ‘P—4n/r2

e_ 2
r€Z+t,—4n/r? is a discriminant dn/r

+ an Z L P7N2n/r27

€_N2p/r2
r€Z*,—N2n/r? is a discriminant Nen/r

where ey is the cardinality of the stabilizer subgroup of a CM point of discriminant d in

NA(0)/Q.

Proof. Let q be a prime satisfying the condition in Lemma 8 so that B = is a quaternion
algebra of discriminant D. Let O be the Eichler order of level N spanned by eq,...,e4 given
in (3) and {/1, s, 3} be given as in (4). The contribution from P(f)eg to the divisor of ¢, is
described in Lemma 22. Here we are mainly concerned with the contribution from P(f|S).

Consider the case of odd N first. Let A be an element in LV = Z{, /2 + Zl3/DN + Z{3/DN
satisfying nrd(\) = n/4 for some positive integer n. We need to determine the discriminant of
the optimal embedding ¢ : Q(v/—n) — B that maps v/—n to 2.

Observe that 2DNX € O and nrd(2DN)) = —D?N?n. By [AB04, Proposition 1.53], we
must have 2N\ € O, i.e. A = c141/2 + cala/N + c3l3/N for some integers ¢, co and c3, and the
discriminant of the optimal embedding ¢ is —4N2n/r? for some integer 7.

From the Gram matrix in (5), we have

(252)

N2 2 —-1 1— 2D]V
q 461 _i_qTDNC%_i_aiDNcg—aDN2clcg+DN0203.
q

nrd(NA) = —

15

https://doi.org/10.1112/50010437X16007739 Published online by Cambridge University Press


https://doi.org/10.1112/S0010437X16007739

J.-W. Guo AND Y. YANG

As ¢ is congruent to 1 modulo 4, this shows that nrd(2N\) = 0,3 mod 4. Therefore, if n = 1,
2 mod 4, then there does not exist A € LY such that nrd(\) = n/4. Also, if n = 3 mod 4, then
c1 must be odd and

1+NX  1-Neg
2 2

e1 + Ncieg + coes + czeq € O.

In this case, the discriminant of the optimal embedding is —N?2n/r? for some r. If n = 0 mod 4,
then c; is even. It follows that NA € O and the optimal embedding has discriminant —N2n /r?
for some 7.

Conversely, given a CM point 7 of discriminant —N?2n/r?, there exists an element
A = dil1 4 dols 4 dsls € L fixing 7 and having norm

—N2n/4 if n =0 mod 4
d(\) = ’
nrd(A) {—N% if n =3 mod 4.

Note that if n is odd, then we must have (1 + \)/2 € O. In other words, ds and d3 are even and
dj is odd. On the other hand,

1—a?’DN

1
mamz—w%#%rDNﬁ+ DN — 2aDNdyds + DNdsds

Since N is squarefree, this implies that N|d;. Setting

Vo A/N if n =0 mod 4,
1 A/(2N) ifn =3 mod 4,

we find X € LY with nrd(\') = n/4. This proves the lemma for the case of odd N. The proof of
the case of even N is similar and is omitted. O

LEMMA 26. Let M be the level of the lattice L and let f(7) = [y, n(dr)" be an admissible
eta product. (See Definition 13.) Then we have

e2mi/8

|LV/L]

(11 2S)(7) = 1 (/) € Q™))

\/LV/L

Proof. The lemma follows immediately from the formula 7(—1/7) = e~27/8,/7(7) and the
assumptions that Y ry =1 and that |[LV/L| [L4a @ is a square in Q™. O

LEMMA 27. Let Dy be the odd part of DN and g be the genus of the modular curve Xo(4Dy).

(1) For nonnegative integers m and n with

m+n = Qg—Q—ZLd/élj,

d|Dg
we have
dime My, ,(4Dg) =m+n+ »_[d/4] +1—g.
d|Dg
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(2) Let m be a nonnegative integers such that m > 29 — 2 — >y |d/4]. Then for each

positive integer n, there exists a modular form f, in M%7n(4D0) with a pole of order n at 0.
Furthermore, the space M"'(4Dy) is spanned by M'(4Dg) and fi, fa,. ...

Proof. The proof of part (1) is similar to that of Lemma 17 and is omitted. To prove part (2),
we note that part (1) implies that when m > 2g —2 =3, |d/4], the space Mr!r’io(éng) has
co-dimension n in M;,’L!,n(éLDO). It follows that for each integer k with 1 < k < n, there exists

a modular form f; in M,!{f,n(éng) with a pole of order k at zero. Now if f is a modular form
in M"'(4Dy), then for some linear combination Y ¢, fn, we have f — 3 ¢, fn € M'(4Dg). This
proves part (2). O

PROPOSITION 28. For (D, N) in Theorem 1 with odd D and squarefree N, the space M"'(4Dy)
is spanned by admissible eta products. Moreover, if f(1) € M"(4Dg) N Q((q)), then
e27ri/8

et . 1/(4Do)yy
T haS)() € Qa4

Proof. Suppose that we can find an eta product ¢(7) such that ¢(7) is a modular function on
X0(4Dy) with a unique pole at co. Let k be the order of pole of ¢(7) at co. Then ¢(—1/(4DgT))
is a modular function on Xy(4Dp) with a unique pole of order k at zero. Let g be the genus of
Xo(4Dp) and m be an integer with m > 29 —2— 3,5, [d/4]. By Lemma 27, for each positive

integer j, there exist a modular form in M;n' ;(4Do) with a pole of order j at zero. It follows that

M

ik (4D0) = My, (4Do) + t(—1/4Do7) M, (4Dy).

Thus, to prove the proposition, it suffices to show that:
(i) there exists an eta product t(7) such that ¢(7) is a modular function on I'g(4Dp) with a
unique pole of at oo;
(ii) admissible eta products span M*(4Dy); and
iii) admissible eta products span M ! 4Dy), where k is the order of pole of ¢(7) at oc.
m,k
For conditions (i) and (ii), the integer programming problem involved in the construction of

t(7) and admissible eta products is the same as that in Proposition 18. For condition (iii), the
integer programming problem is slightly different. For the case Dy = p is a prime, instead of (8),

we have
ro +  2rg + dry +  prp, + 2prop, + dpryy = —24m
. +  2ry + re + prp + 2prop, + pray = 0
4ri +  2r9 + ry + 4dpr, + 2pro, + prap = 0
pr1 + 2pro + 4dprg + rp +  2r9 +  dry = 0
pr1 + 2pro +  prg + T, + 2r9 + T4y = 0
dpri + 2pro 4+ pra +  4r, + 219, + rap = —24k

where the last inequality corresponds to the condition that the order of the pole at zero is at
most k. After setting up the integer programming problems, we check case by case that admissible
eta products do expand M"'(4Dy).

Since every modular form f(7) in M"'(4Do) NQ((q)) is a Q-linear combination of admissible
eta products, the assertion about rationality of Fourier coefficients of f[,5S follows from
Lemma 26. O
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Example 29. Consider the Shimura curve X&

5(1)/Wis,1. We have |LV/L| = 450 and the level of

the lattice L is 60. By solving the relevant integer programming problem, we find that

n(27)n(127)57(207)%n(307

t

(r) =

3
) 78_q76_’_q74+q72+q4+'”

n(47)%n(67)°

n(107)n(607)6

is a modular function on I'4(60) with a unique pole of order eight at oo. Also, the genus of

XO(GO) is seven. By Lemma 17, the number

of gaps of M'(60) is three, and for n > 8, we have

dim M} (60) =n— 2. According to the proof of Proposition 18, we should find an integer ng such

that MnOJr8

(60) is spanned by eta products and for each integer j with ng < j < ng + 8, there

exists a modular form in M} 10+8(60) with a pole of order j at co. It turns out that we can choose

no = 3. (In other words, we will see that the
For convenience, we let (r1, 72,73, 74,75, r'6

Hd\e;o n(dr)"e.

gaps are 1,2,3.)
,T10, 712, 15, 720, T'30, T'60) Tepresents the eta product

By solving the integer programming program, we find that there are at least 96

eta products in M{;(60). Among them, we choose

f11—(0,1,0 -1,0,2,5,2,1,—7),  fio = (0,0,—1,0,2,1,0,1,1,1,2, —6),

fg—( ~1,2,-1,0,2,3,4,-7),  fs = (0, 1,1, -2,0,1,1,5,1,0,-5),
(0,1,1, -1,-2,1,-1,3,3,-5), fo = (o 1 0,-1,0,-1,0,2,2,1,1,—-4),
= (0, 1,1,2,1,200 —3), £ = (0, 1002 ~1,0,—1,2,4, —4),
(250 200000000)

They form a basis for Mj,(60). (The subscripts are the orders of poles at 0o.) Then multiplying

those modular forms by suitable powers of

t(1), we get, for each a non-gap integer j > 0, a

modular form in M'(60) NZ((¢)) with a unique pole of order j at co and a leading coefficient of

O:e.Furthermore, we find that there are at least 102 eta products in My5(60). Among them, we
o) = n(27)n (3;();7)(277() ()57()60(:)27) n(307) _ P S
)= oo oo =1 S
g3(7) = 737(5;7)2277"((2%?)2((16%?; —q 242 +5+10¢+18¢% + -+ -,
SRR
g5(r) = "(Q&E)ZS(ZLT)G%OSS ") 2 4 5qt 4154 80¢ + 904 +
go(r) = MCTASD OO _ o2 st rasah
AT
9s(r) = n(772@);677((34?)2:((657))371(11025)1%6(0175)7 R R
18
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of weight 1/2 on I'y(60). By Lemma 26,

60e27i/8 2 —2/60 —1/60 1/60 2/60
Tﬁ(glfs)(ﬂ:g(q 427 1/00 444 8g1/00 4 14¢2/60 4.,
60¢771/% —2/60 4 ,—1/60 1/60 2/60 3/60
Tﬁ(ngs)(ﬂ:q +q 124 4¢1/60 4 6¢2/60 4 8g3/60 4 ...
60e2m/* ~3/60 , —2/60 ~1/60 1/60

™G (g3]S) () = 2(q73/%0 4 ¢ %/60 4 2¢7 /60 1 4 4 64"/ 4 ..),
60e2m/* —4/60 | —3/60 | —2/60 | o —1/60

™G (9alS)(1) = 2(¢~ V0 + ¢ + 70 4 2¢7 0 34,
60672 —5/60 4 ,—4/60 —3/60 —2/60 ~1/60
W(%ls)(ﬂ:q +q + 2¢ + 3¢ 1 5q e
60e2mi/8 2

1;\@ (g6]S)(1) = g(q—ﬁ/(so + q—5/60 + 2q—4/60 + 3q—3/60 TS

2mi/8 )

O a)(r) = Ha T+ 4 2 ),
60 27i/8 2
;)7(98|S)(T) = ﬁ(qfs/ﬁo + ¢ T/60 4 9g6/60 1 3,=5/60 ),

Thus, letting
hi =3¢1/2— g2, hao=g2, h3=g93/2, ha=gs/2,
and
hs = g5, he =3g6/2, h7=>5g7, hg=15g3/2,

we get a sequence hj, j =1,...,8, of modular forms such that

60627ri/8

o7y ) = a0

Now we have

1(27)*n(37)%*n(57)%n(307)
n(7)5n(67)n(107)3n(157)2

which is a modular function on I'g(60) having a unique pole of order eight at the cusp zero.
Thus, by multiplying h; with suitable powers of ¢(—1/607), we get, for each positive integer m,
an {00, 0}-weakly holomorphic modular form h,, whose order of pole at co is bounded by three,
while

t(—=1/607) =5 = 54 30¢ + 1204 + 390¢° + - - - ,

606271'1'/8
152

Remark 30. We expect that, as in the case of even D, for (D, N) in Theorem 1 with odd D and
squarefree N, all meromorphic modular forms of even weights on X’ (N)/Wp y with a divisor
supported on CM divisors can be realized as a Borcherds form. However, a proof along the line
of that of Proposition 23 will be a little complicated because the Fourier expansions at zero of a
modular form in M"“'(4Dg) N Z((g)) may not be integral.

(hn|S)(7) = 4™/ + ...
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Example 31. Here we give an example showing how to construct a Borcherds form with a desired
divisor on X}°(1)/Wi5,1 using modular forms in M"*(60).

Suppose that we wish to construct a Borcherds form with a divisor P_12 — P_3. For a positive
integer j, we let h; be the modular form in M"*(60) constructed in Example 29 with the properties
that its order of pole at oo is bounded by three and

60627Ti/8
152

A suitable linear combination of these h,, will yield a function A with

(h18)(r) = g3/ + .

60627ri/8

e () () =207 £ 4gV P 4 agh P ()

h(r)=q¢ 2+ 11+,
By Lemma 25,
divyp, = %P_g,.

Let
f=fs=fs+ =0 +20" +q 7 +2¢ + -

where f; are as given in Example 29. By Lemma 25,
diV’l/)Ff =P 15+ %Pfg.

Therefore, we find that 1/)Ff7 . 18 a Borcherds form with a divisor P_1p — P_3.

4. Equations of hyperelliptic Shimura curves

Recall that a compact Riemann surface X of genus at least two is hyperelliptic if and only
if there exists a double covering m : X — P(C) or, equivalently, if there exists an involution
w : X — X such that X/w has genus zero. The involution w is unique and is called the
hyperelliptic involution.

TuEOREM C [Ogg83, Theorems 7 and 8]. Let g(D, N) denote the genus of X (N). Table 1 gives
the full list of hyperelliptic Shimura curves, D > 1, and their hyperelliptic involutions.

4.1 Method

Let us briefly explain our method to compute equations of these hyperelliptic Shimura curves.
Before doing that, we remark that in addition to Borcherds forms and Schofer’s formula,
arithmetic properties of CM points are also crucial in our computation. We refer the reader
to [GRO6, §5] for an explicit description of the Shimura reciprocity law.

Let XP(N) be one of the curves in Ogg’s list. Since the hyperelliptic involution of X (N) is
an Atkin-Lehner involution, the genus of X’ (N)/Wp y is necessarily zero. Moreover, it turns
out that any of these Xé) (N)/Wp n has at least three rational CM points 71, 7o and 73 of
discriminants dy, da and d3, respectively. Thus, there is a Hauptmodul s(7) on X (N)/Wp n
with s(71) = 00, s(m2) = 0 and s(73) € Q.

Let W be a subgroup of index two of Wp n. Suppose that w,, is an element of Wp n not
in W. Then X (N)/W — XP(N)/Wp_n is a double cover ramified at certain CM points that
are fixed points of the Atkin-Lehner involutions wy,, /gcd(m,n)2; wn € W. Thus, an equation of
XP(N)/W is

v =a 11 (s — (7)), (12)

7 ramified,s(7)7#o00
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TABLE 1. List of hyperelliptic Shimura curves and their hyperelliptic involutions.

D N  ¢g(D,N) w D N  g(D,N) w
26 1 2 Wag 6 11 3 We6
35 1 3 w3s 6 17 3 W34
38 1 2 w38 6 19 3 w114
39 1 3 w39 6 29 5 w174
51 1 3 W51 6 31 5 w186
55 1 3 Ws5 6 37 5 w222
57 1 3 w19 10 11 5 w110
58 1 2 w29 10 13 3 Wes
62 1 3 We2 10 19 5) w3
69 1 3 We9 10 23 9 w230
74 1 4 W74 14 3 3 W14
82 1 3 W41 14 5 3 w14
86 1 4 ws6 15 2 3 w15
87 1 5 ws7 15 4 5 w15
93 1 5) w31 21 2 3 wy
94 1 3 w94 22 3 3 We6
95 1 7 w95 22 5) 5) w110

111 1 7 w111 26 3 5) w6

119 1 9 w119 39 2 7 W39

134 1 6 w134

146 1 7 w146

159 1 9 w159

194 1 9 w194

206 1 9 w206

where a is a rational number depending on the arithmetic of X (IV)/W. Specifically, a must be
a rational number such that (a ], L.ueq(—5(7)))/? is in the field of definition of a CM point
of discriminant dy on X (N)/W. As an additional check, note that when 71 is not a ramified
point, the right-hand side of (12) is a polynomial of even degree and a must be a rational number
such that v/a is in the field of definition of a CM point of discriminant d; on XP(N)/W.

To determine the coefficients of the polynomial on the right-hand side of (12), we simply have
to know the values of s and y? at sufficiently many points. For this purpose, we observe that s
and y2 are both modular functions on XP(N)/Wp y with divisors supported on CM divisors.
Thus, they are both realizable as Borcherds forms. (This is proved in Proposition 23 for the case
of even D. We do not try to give a proof for the case of odd D, but, in practice, we are always
able to realize modular forms encountered as Borcherds forms.) Then Schofer’s formula gives us
the absolute values of norms of values of s and y? at CM points.

In order to obtain the actual values of s, not just the absolute values, we let s be another
Hauptmodul with s(71) = oo, s(13) = 0 and s(72) € Q. We may also realize s as a Borcherds
form. Then the absolute values of s(73) and s(72) obtained using Schofer’s formula determine
the relation s = bs 4+ ¢ between s and s. If d is a discriminant such that there is only one CM
point 74 of discriminant d, then knowing the values of |s(74)| and [s(7y)| = |bs(74) + ¢| from
Schofer’s formula is enough to determine the value of s(74). If there are two CM points 7; and
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7}, of discriminant d, then from the values of |s(74)s(7})| and |(bs(74) +¢)(bs(7))) +c)| we get four
possible candidates for the minimal polynomial of s(74). In almost all cases we consider, there is
precisely one of the four candidates that have roots in the correct field. This gives us the values
of s(r4) and s(7)). In practice, we do not need information from discriminants with more than
two CM points.

The determination of values of y? from absolute values is easier. For example, when d is a
discriminant such that there is only one CM point of discriminant d on X (N)/Wp v, y(r4) is
either v/|y(74)2| or \/—|y(7a)2|, but only one of them is in the correct field.

Having determined values of s and y? at sufficiently many CM points, it is straightforward
to determine the equation of X (N)/W. Then we will either work out equations of X (N)/W’
for various other subgroups W’ of Wp n of index two or use arithmetic properties of Xé) (N) to
determine equations of X’ (). We will give several examples in the next section.

4.2 Examples
Ezample 32. Consider X}5(1). In [Jor81, Proposition 3.2.1], it is shown that an equation of
X(1) is
3y + (2% + 3) (2% + 243) = 0.
In this example, we will use Borcherds forms and Schofer’s formula to obtain this result.

The curve X = X$?(1) and its various Atkin-Lehner quotients have the following geometric
information.

Curve Genus Elliptic points

X 1 CM(—3)*2

X/ws 0 CM(—3)*2,CM(—12)*2

X/ws 1 CM(-3)

X/wys 0 CM(—3),CM(—15)*2, CM(—60)*2
X/Wisa 0 CM(-3),CM(—12), CM(—15), CM(—60)

According to the method described in the previous section, we should first determine the equation
of X/W for some subgroup W of Wi5; of index two. Here we choose W = (ws). The double
cover X/ws — X /W5, is ramified at the CM points 7_15 and 7_gg of discriminants —15 and
—60. Let s(7) be a Hauptmodul on X /W5 taking values zero and oo at CM points 7_12 and
7_3 of discriminants —12 and —3, respectively, and satisfying s(7_49) € Q, where 7_49 is the
unique CM point of discriminant —40 on X/Wi5 1. Then an equation of X /w3 is

y? = al(s — s(1-15)) (s — s(7—e0))

where a = —3r? for some r € Q since a CM point of discriminant —3 on X /ws is defined over
Q(v/=3). The divisor of y?, as a function on X/Wis1, is P_15 + P_go — 2P_3. Let also 5 be
a Hauptmodul with s(7_15) = 00, 5(740) = 0, and 5(7_gpo) € Q. According to our method, we
should construct Borcherds forms with divisors P_19 — P_3, P_40 — P_3 and P_15+ P_go —2P_3.
A Borcherds form P_15 — P_3 is constructed in Example 31. Denote this Borcherds form by ;.
Here let us construct the other two Borcherds forms.

Using the notation in Example 29 and letting h be the modular form in (11), we find that

fo—frt+fs—2fa=3h=q"" =3¢ +q " =35+
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and
60e2mi/8

152

for some c;. Thus, by Lemma 25, the Borcherds form 15 associated to this modular form has a
divisor P_49 — P_3. Also, we have

(f1o = fr+ f5 — 2f4 — 3h)|S = 64734 + ¢ + c1¢M/0 + - .-

2f15 +4f13+2f12 — 2f10 —4fo — 7fs — 10f7 + 10f¢ + 3f5 — 23 f4 — 6h
=2 — ¢ 8 —5¢g2-2¢1 78+

and

60627ri/8
15v/2

(2f15 +4f13+2f12 — 2f10 —4f9 — Tfs — 10f7 + 10fs + 3 f5 — 23 f4 — 6h)|S

for some c}. Therefore, the Borcherds form 3 associated to this modular form has a divisor
P_ 15+ P_go — 2P_3. An application of Schofer’s formula yields the following values of Borcherds
forms at CM points.

-3 -7 —12 15  —40 —43 —60
[ o0 1 0 3 1/2 1/16 1/27
5732y oo 1/9  1/27 5/2T 0 1/24 25,36

ls| oo 35/36 5/2435 0 54/2636 4315172/21236 @

Observe that multiplying 1; by a scalar of absolute value 1 does not change the absolute value of
its value at a CM point. Thus, we may as well assume that 91 (7_15) = —3, 5_3/27/’2(7'—15) =5/27
and 3(7_7) = —35/35. Also, we choose s, 5 and y such that s(7_15) = —243, 5(7_15) = 5 and
y(1_7)% = —243%7. Therefore, we have

9 24310

s=8ly1, §=27-5 %, ¢’ ="y

Then from the table above, we obtain
|s(t—12)| =0, [s(m—12)[ =1, [s(7—10)] = 81/2, [5(7—40)[ =0,

which implies that 5 is equal to one of +2s/81 4+ 1. As s(7_15) = —243 and $(7_15) = 5, we find
that § = —2s/81 — 1. Then the table above and the requirement that y(74) must lie in the correct
field yield the following.

-3 -7 —12 -15  —40 —43 —60
s oo 81 0 -243 —81/2 81/16 -3
5 oo -3 -1 5 0 —9/8  —25/27
y? oo 24347 35 0 —3%53/4 —3%7243/28 0

It follows that an equation of X /w3 is 3y? + (s + 243)(s + 3) = 0.
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Furthermore, the double cover X/wis — X /W51 is ramified at CM points of discriminants
—3 and —12. Thus, an equation of X /wis is #2 = bs for some b. As CM points of discriminant
—7 are rational points on X /w5, we find that b must be a square, which we may assume to be
one. That is, we have s = x2. Therefore, we have 3y* + (2% + 243)(2? + 3) = 0, which can be
taken to be an equation of X, agreeing with Jordan’s result.

We remark that Elkies [Elk98] has used Schwarzian differential equations to compute
numerically the values of s at many CM points. (His modular function differs from our s by
a factor of —3.) Using Borcherds forms, we verify that all of the entries in [Elk98, Table 6] are
correct.

Ezample 33. Consider the Shimura curve X = X3%(1). In [GRO04], Gonzélez and Rotger proved
that an equation of X is
y? = —22% 4+ 192* — 2422 — 169.

In this example, we will obtain this result using Borcherds forms.
We have the following information about X and its Atkin—Lehner quotients.

Curve Genus Elliptic points

X 2 None

X /wo 1 CM(—8)*?

X/wis 1 CM(—52)*2

X /wag 0 CM(—104)*¢

X/Wae 1 0 CM(-8),CM(—52), CM(—104)*3

The double cover X /w3 — X/Wo 1 is ramified at the CM point of discriminant —8 and the
three CM points of discriminant —104. Let s be a Hauptmodul on X/Wss 1 with s(7_g) = oo,
s(1—52) = 0, and s(7—11) € Q. Then an equation of X /w3 is

v =a II (s = 5(7))

7:CM points of discriminant—104

for some nonzero rational number a. As a modular function on X/Wo 1, we have div y? =
P_104 — 3P_g. Let s be another Hauptmodul on X/Wss 1 with s(7_g) = oo, s(7-11) = 0, and
5(7_52) € Q. We now realize s, 3, and 32 as Borcherds forms.

Let f; be modular forms in M'(52) N Z((g)) with a pole of order j at oo and a leading
coefficient of one constructed in Example 19. Using these f;, we find three modular forms

g1 =20 —-2¢%—4¢ " +2¢-2¢" —2¢° + -,
g2 =q " +2¢7" =27 +4g+4g" + -
93 =2q"° + 67" — 607 +2¢"" +10g — 8¢ + - -

in M'(52). Let Yj, 7 =1,2,3, be the Borcherds forms associated to g;. By Lemma 22,
divypy = P50 — P_g, divipp =P 11 — Pg, diveys =P 104 — 3P_3.

Thus, 1; are scalar multiples of s, 3 and y?, respectively. Applying Schofer’s formula, we obtain
the following result.
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8 —11 —19 -20 -24 -52 —67
1] oo 1 9 5 3 0 81/25
s o0 0 64 32 32 8 267 /52

1373¢3] oo 21011 21019 212 213 96135 21041267/56

Since multiplying v; by a suitable factor of absolute value one does not change the absolute
value of its value at a CM point, we may as well assume that ©;(7_11) = 1, ¥2(7_52) = 8 and
Y3(7_11) = —2'°111133. Also, we choose s, § and y in a way such that s(7_11) = 1, 3(7_52) = 1
and y(7_11)? = —2*11, i.e. s = 41, § = /8 and y? = 13/29133. Then we have 5 = 1 — s and
from the table above we obtain the following result.

-8 —11  —19 —-20 -24 -52 —67

s o0 1 9 5 -3 0 81/25

5=1-5 o0 0 -8 -4 4 1 —56/25
1> oo —2%11 —2%19 26 27 132 —2%41267/5°

(The signs of y(74)? are determined by the Shimura reciprocity law.) From the data, we easily
deduce that the relation between y and s is

y? = —25% +19s% — 245 — 169,

which is an equation for X3%(1)/wis.

On the other hand, the cover XZ%(1)/was — X30(1)/Wag 1 is ramified at the CM points of
discriminants —8 and —52. Thus, there is a modular function z on X3%(1)/wqs with 22 = cs for
some rational number c. Since CM points of discriminant —11 are rational points on X3%(1) /wag,
we conclude that ¢ can be chosen to be 1. Hence, 3% = —225 4+ 192* — 2422 — 169 is an equation
for X25(1) and the Atkin—Lehner involutions are given by

ws : (IE,y) = (_$7_y)7 W26 - (xvy) = (:Z:ﬂ _y)
Ezample 34. Consider X = X}!(1). We have the following information.

Curve Genus Elliptic points

X 7 None

X/ws 4 None

X /w3y 3 CM(—148)*4

X/wi11 0 CM(—111)*8 CM(—444)*8

X/Wiia 0 CM(—148)*2,CM(—111)**, CM(—444)*4

Let s and s be modular functions on X/Wi11 1 such that s(7_15) = 5(7_15) = 00, s(7—60) = 0,
$(7—24) =0, s(7—24) = 1 and $(7—gp) = 1, so that § =1 — s. Then an equation for X /ws7 is

v’ =a H (s — s(7)). (13)

TECM(—111),CM(—444)
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As CM points of discriminant —60 on X /w37 lie in Q(v/—3), we choose y such that y(7_g)? =
—27. Then realizing s, 5 and y? as Borcherds forms and using Schofer’s formula, we deduce the
following values of these modular functions at rational CM points.

—15 -19 —24 —43 -51 —60 —163 —267 —555

s oo 3 1 —3 -1 0 3/5 1/3 5
y? oo —283219 —283 283243 _283 _27 —2832132163/5% —28132/37 —2831372

As the right-hand side of (13) is a polynomial of degree eight, these CM values are not sufficient
to determine the equation and we will need values of s and 32 at some degree-two CM points.
Let 7_39 and 7/ 49 be the two CM points of discriminant —39 on X/Wii1 ;1. Schofer’s formula
yields
[s(r—30)s(ra0)l = 3, |(1 = s(rg9))(1 — 5(/30))| = 4.

From the Shimura reciprocity law, we know that s(7_39) € Q(+v/—3). Thus,

5(7-30)5(7739) =3, (1= s(7-30))(1 — 5(7]39)) = 4.

From these, we deduce that s(7_3g9) = £+/—3. Likewise, we find that the values of s at the two
CM points 7_52, 7’ 59 of discriminants —52 are 1 £ 21/—1. Also, we have

y(7-30)°y(7!39)* = 293°13,  y(7_52)°y(7 52)% = 2'013%.
These data are enough to determine the equation of X/ws7. We find that it is
y? = —(3s* — 65% + 2857 — 105 + 1)(s* — 25> + 45 + 185 + 27). (14)

Similarly, we can compute an equation for X /wj1; by observing that X /w11 — X/Wii1,1 is
ramified at the two CM points of discriminant —148, constructing a Borcherds form with divisor
P_148 — 2P_15, and evaluating at various CM points and obtain

t2 = 5s? — 18s + 45.

The conic has rational points (s,t) = (3,£6) corresponding the two CM points of discriminant
—19 on X/wi11, so it admits a rational parameterization. Specifically, let = be a Hauptmodul on
X/wi11 that has a pole and a zero at the two CM points of discriminant —19, respectively, and
takes rational values at CM points of discriminant —43. (In terms of (s, t), the coordinates are
(—3,+£12).) Then
c(s —3)

s—t+3
for some rational number c¢. Choose ¢ = 2 so that it takes values +1 at the CM points of
discriminant —43. We have

322 -3x—3 62246
(S,t): 5 .
2+zr—1"224z—-1

Plugging in s = (322 — 3z — 3)/(2%2 + x — 1) in (14) and making a slight change of variables, we
find that an equation of X! (1) is
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22 = —(2® — 3% — 2 + 323 +1)
x (1928 — 4427 — 162° + 5525 + 3721 — 5523 — 162% + 442 + 19)

with the actions of the Atkin—Lehner involutions given by

1 =z

w3y : (z,2) = (—x, x8>’ wiy : (z,2) = (z,—2).

Ezample 35. Consider X = X$46(1). Let s be the Hauptmodul of X /W46 1 such that s(7_43) = 0,
s(1-11) = oo and s(7—90) = 1. Let y be a modular function on X /wr3 such that y? is a modular
function on X/Wige1 with div y? = P_sg4 — 8P_1;. Realizing s and y? as Borcherds forms and
suitably scaling 32, we find that an equation for X /wr3 is

y? = —11s°% + 8257 — 3095% 4 7885 — 1413s" + 18585 — 1803s% + 12405 — 688.  (15)

Similarly, we find that an equation for X /wy4e is t? = s +4, where the roots of s?+4 correspond
the to CM points of discriminant —292. We choose a rational parameterization of the conic to

be ) )
e —1 z¢+1
(Svt):< ; >7

x x

where z is actually a modular function on X/wi46 that has a pole and a zero at the two CM
points of discriminant —11 and is equal to £1 at the two CM points of discriminant —43 on
X /w146 Substituting s = (22 — 1)/x in (15) and making a change of variables, we find that an
equation for X is

22 = —112'6 4+ 822 — 2212™ + 2142 + 13322 — 3602 — 17020 + 6762
— 15028 — 67627 — 17025 + 3602° + 1332 — 2142 — 2212 — 822 — 11,

where the Atkin—Lehner involutions are given by

1
wrz : (z,y) = (—x, j&;)? wiae : (2, y) = (2, —Y)-
Ezample 36. Let X = X$4(5). Let s be the Hauptmodul of X/Wy45 such that s(7_4) = oo,
s(t—11) = 1 and s(7_35) = 0. We find that an equation for X/(ws,wr) is

y? = —1653 — 34752 + 2225 — 35,

which is isomorphic to the elliptic curve F1445 in Cremona’s table [Cre97]. (In fact, we can use
the Cerednik-Drinfeld theory of p-adic uniformization of Shimura curves [BC92] to determine
the singular fibers of X/(ws,w7) and conclude that it is isomorphic to Eq4a5.) The double cover
X/(ws, wia) — X/Wias is ramified at the CM point of discriminant —4 and the CM point of
discriminant —35, so that there is a Hauptmodul t of X/(ws,w14) such that t> = ¢s for some
rational number c. In addition, the CM points of discriminant —11 on X/(ws,w14) are rational
points. Thus, we may choose ¢ = 1 and find that an equation for X /ws is

y? = —16t5 — 347" + 222t — 35. (16)

We next determine an equation of X /wi4. The double cover X /w14 — X/(ws, w14) is ramified

at the two CM points of discriminant —280. Using Schofer’s formula, we find s(7_2580) = 5/16
and, thus, an equation for X /w14 is u? = d(16t> — 5) for some rational number. The point such
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that t = 0 is the CM point of discriminant —35. Therefore, we may choose d = —1 and find that
an equation for X /w4 is
u® + 16t = 5.

This is a conic with rational points and a rational parameterization is

22—r—1 2244z -1
(t,u) = , .
212 + 2 241

Substituting t = (22 —x — 1)/(22% + 2) into (16) and making a change of variables, we conclude
that an equation for X}*(5) is

2% = —232% — 1802”7 — 35825 — 1682° — 6772* + 1682 — 35822 + 180z — 23,

on which the actions of the Atkin—Lehner operators are given by

wy : (,2) > <—1 Z>, wis : (2,2) ~ (@, —2),

z xt

and

<x+2 25z >
wss : (z,2) — :

2r — 1" (22 — 1)*

Note that X}*(5)/w14 is an example of Shimura curves of genus zero that is isomorphic to
P! over Q but none of the rational points is a CM point.

Ezample 37. Let X = X}°(19). Let s be the Hauptmodul of X/Wig 19 such that s(1_g) = 0,
s(T—40) = 00, and s(7_3) = 1. We find that an equation for X/(wa, wes) is

y? = —8s% + 57s% — 40s + 16,

which is isomorphic to the elliptic curve Fjgpa; in Cremona’s table [Cre97]. Also, the double
cover X/(ws,wsg) — X/Wig19 is ramified at the CM point of discriminant —8 and the CM
point of discriminant —40. The CM points of discriminant —3 are rational points on X/(ws, wss).
Thus, arguing as before, we deduce that an equation for X /wygq is y? = —82% + 57z* — 4022 +
16. Moreover, the double cover X/wsg — X/(ws,wsg) is ramified at the two CM points of
discriminant —760. Since s(7760) = 32/5 and the point with s = 0 is a CM point of discriminant
—8, we see that an equation for X /wsg is 22 = 522 — 32. We conclude that an equation for X is

y? = —8x% + 57x* — 4022 + 16,
2% = 52 — 32,

with the actions of the Atkin—Lehner involutions given by
wa : (:L‘ayvz) = (793’:%2)7
Ws - ('Iayvz) = (:Eﬂ Y, _Z)a
w19 : (l‘ay7 Z) = (—I', _yaz)'

Note that as the conic 2?2 = 522 — 32 has only real points, but no rational points, the Shimura
curve X is hyperelliptic over R, but not over Q.
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Remark 38. In [Ogg83], Ogg mentioned that X}%(19) and X}4(5) are the only two hyperelliptic
curves that he could not determine whether they are hyperelliptic over Q. Our computation
shows that X}*(5) is hyperelliptic over Q because the curve X34(5) /w14 has rational points, but
X30(19) is not hyperelliptic over Q.

Remark 39. Note that there is a curve, namely, X = Xé5(4), whose equation is not obtained
using our method. This is because the normalizer of the Eichler order in this case is larger
than the Atkin-Lehner group. For this special curve, we use the result of Tu [Tul4]. In [Tul4,
Lemma 13], it is shown that there is a Hauptmodul t4 on X /(w3, ws) that takes values 4-1/1/=3,
+v/—15/5 and (+1 + +/—15)/8 at CM points of discriminants —12, —15 and —60, respectively.
Since the double cover X/ws — X/(ws,ws) ramifies at CM points of discriminants —15 and
—60, while the cover X /w5 — X/(ws, ws) ramifies at CM points of discriminant —12, we find
that there are rational numbers a and b such that the equations of X/ws and X /w5 are

y? = a(4t] —ty +1)(483 +t4 + 1)(5t3 +3), 22 =0b(3t2 +1),

respectively. To determine the constants a and b, we further recall that [Tul4, Lemma 13| shows
that there is a Hauptmodul t2 on X$?(2)/(ws, ws) with

_ Bti 42t +1

2T ot 13

From this, the CM values of t5 obtained using Schofer’s formula, and arithmetic properties of
CM points, we see that we can choose a = b = —1. Note that X}°(4) is one of the hyperelliptic
Shimura curves that are not hyperelliptic over R (see [Ogg83]).

4.3 Additional examples

In the previous section, we determine the equations of hyperelliptic Shimura curves XOD (N) whose
Atkin—Lehner involutions act as hyperelliptic involutions. In particular, the curves Xé) (N)/Wp n
are of genus zero, so that Lemma 7 applies and we have a simple criterion for a Borcherds form
to have a trivial character. Throughout this section, we make the following assumption.

Assumption 40. The criterion for a Borcherds form to have a trivial character is also valid for
the case when N (0)\$ has a positive genus.

Remark 41. Recall that a Fuchsian group of the first kind is generated by some elements aj,
ey g, B, By - - - Y With defining relations

[0417/81]---[04g759]’}’1--~7n = 17 ’Yfz = 17 = 17"'777”

where o, §; are hyperbolic elements, [a;, 3;] denotes the commutator, g is the genus and k; is
an integer at least two or co. (See, for instance, [Kat92].) Let x be the character of a Borcherds
form on N7 (O)\$. The proof of Lemma 7 given in [Yan15] shows that x(v;) = 1 for all 4 if and
only if the condition in Lemma 7 holds. Thus, what we really assume in Assumption 40 is that
for all hyperbolic elements «, we have y(a) = 1.

It turns out that sometimes our methods can also be used to determine equations of
Xé:) (N)/Wp n even when they have positive genera, under Assumption 40. However, the method
becomes less systematic and it is not clear whether our methods will always work in general, so
we will only give two examples in this section.
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Ezample 42. Let X = X}*2(1)/Wi421. It is of genus one and has rational points (for instance, the
CM point of discriminant —3). Thus, X is a rational elliptic curve. From the Jacquet—Langlands
correspondence, we know that it must lie in the isogeny class 142A in Cremona’s table [Cre97],
whose corresponding cusp form on I'g(142) has eigenvalues —1 for the Atkin-Lehner involutions
wy and wr1. Since the isogeny class contains only one curve, we immediately conclude that the
equation for X is Eigoa1 : Y2 +ay+y = 2® — 22 — 122+ 15. Here we will use our method to obtain
the same conclusion. An advantage of our method is that we can determine the coordinates of
all CM points on the curve. In the arXiv version of this paper, we discuss the heights of these
CM points and verify Zhang’s formula [Zha01] for heights of CM points in this particular case.

By finding many suitable eta products, we construct four modular forms fi, fo, f3, f1 in
M'*(284) with Fourier expansions

Fr= —2q8T — g Tl _9q 48 _9g36 | 916 _ 9415 _ 9,12 | 99
-2 " =20 +2¢7+2¢ " —4q- -,

f2 _ 2q—116 _ q—87 _ q—79 + 2q—71 + 2q—60 _ 2q—48 + q—43 _ 2q—29
b9 g2 g T 9g B dg g

f3 — q787 o 2q779 + q776 o 2q771 + 2(]748 o q740 + 3q732 . 2q720
I s (I e D e NIV P

f4 — _q—79 + q—76 + q—48 . q—40 + q—32 _ q—20 _ q—12 + q—10 + q—6
_q*5_q*2_q7+... .

Let v, j = 1,...,4, be the Borcherds form associated to f;. Under Assumption 40, these
Borcherds forms have trivial characters. We have

divyy = P4+ Pg —2P_3, divipy =P 19+ P43 —2P_3,
diveps = P_g + P_40 — 2P0, divtpy = P19+ P94 —2P_9.

It is easy to show that 19 is a polynomial of degree one in 7 and 4 is a polynomial of degree
one in 3. Thus, there are modular functions z and y on X such that x has a double pole at
T_g with z(7_4) = x(7—8) = 0 and x(7_19) = 2(7—43) = 1 and y has a double pole at 7_99 with
y(7—8) = y(7—20) = 0 and y(7_19) = y(7—24) = 1. Computing singular moduli using Schofer’s
formula and choosing proper scalars of modulus one for v;, we find

=210 1—z=1h, y=13/2, 1—y=1y/2

and the values of x and y at various CM points are given in the following table.

-3 -4 -8 —-19 -20 —-24 —-40 —-43 -—-148 -—232

z co 0 0 1 -1 1/2 -1/2 1 -1 -—1/2
y 2 12 0 1 oo 1 0 32 -2 -5

Since y(7—4) # y(7—8), y cannot lie in C(z). Therefore, x and y generate the field of modular
functions on X. From the table above, we determine that the relation between x and y is

2(x 4+ 1)%y* — (82 + 11z + 1)y + 4x(2x + 1) = 0.
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Set

2(x +1)%y — 52% — 3z — 1
xrp = — 2 )
X
7(4w3+6m2—2)y—5x3—61‘2+x—|—1

3

Yy =

We find y% + 1y +y1 = :L'i” — :U% — 1221 + 15, which is indeed the elliptic curve Ei49a1. The
coordinates of the CM points above on this model are given in the following table.

-3 -4 -8 -19 -20 —-24 —-40 —-43 -—-148 -232

-Q 20 0 Q@ 20 3Q 4Q -3Q —-4Q -6Q

Here Q@ = (1, 1) generates the group of rational points on Fy4oa1.

Ezample 43. We next consider X = X3"2(1)/Ws3g2.1, which has genus two. We can construct four
modular forms fi, ..., f4 in M'(604) whose associated Borcherds forms 1, . .., %4 have divisors

divepy = P43 + P70 — P_19 — P_ss,
divepg = P_go + P_36 — P_19 — P_ss,
divepg = P_g +2P 40 — P4 — 2P g3,
divepgy = P11 + P19 + P43 — P4 — 2P_gg,

respectively. In addition, under Assumption 40, they have trivial characters. Thus, 1, generates
the unique genus-zero subfield of degree two of the hyperelliptic function field, and 9 is a
polynomial of degree one in ;. Also, ¥4 must be a polynomial of degree one in 3. To see this,
we observe that there exists a suitable linear combination ais + b4 such that it is a function of
degree at most two on X and, hence, is contained in C(¢1). If this linear combination is not a
constant function, then it must have a pole at 7_gg; otherwise it will have only a pole of order one
at 7_4, which is impossible. It follows that 7_19 is also a pole of this linear combination. However,
T_19 can never be a pole of this function. Therefore, we conclude that this linear combination is
a constant function.

Let  be the unique function on X with diva = divy and z(7_99) = 2 and y be the unique
function with divy = divs and y(7—11) = 1. Computing using Schofer’s formula, we find the
following result.

d -4 -8 —-11 —-19 —-20 —-40 —-43 —-88 —148 -—-232

z -1 32 1 o 2 1 0 oo 5/3 53
y oo 0 1 1 -1 0 1 oo =1/9 —1/2
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From the coordinates at 7_4, 7_g, 7_19, T_40 and 7_gg, we see that the relation between = and y
is

alr +1)y* + (=22 + b2 +cx +d)y + 2z —3)(x —1)* =0

for some rational numbers a, b, ¢, and d. Then the information at the other CM points

yields
a=1, b=11, c=-13, d=2
Setting
3—= 4223 — 112% + 132 — 2 — 22y — 2y)
o = y Yo = 3 )
1—2z (1—x)

we obtain a Weierstrass model
ye = x5 — 182 + 11323 — 32
for X. Then letting
Ty =23, Y1 =yo, To=—32/x5, ys =320/,
we obtain modular parameterization of two elliptic curves
y? =2t — 1827 + 1131 — 32, 3 = x5 + 11323 + 57629 + 1024.
The minimal models of these two elliptic curves are Fspci : Y2+ XY +Y = X3 — X2+ 3

and Espoar : Y24+ XY +Y = X3 + X2 — 230X + 1251, respectively, in Cremona’s table. The
coordinates of the CM points on the two curves are as follows.

-4 -8 —-11 -19 —-20 -40 —43 —88  —148 —232

Espoa1 2P—Q 3P—-Q 2P 4P P 3P 3P-Q P 3P+Q 2P-Q
Espc1 5R R O 2R 2R O R —2R  5R —5R

Here P = (—32,256) generates the torsion subgroup of order five and @ = (—96, 320) generates
the free part of F30oa1(Q), and R = (9,16) generates the group of rational points on Es3p2ci. In
the arXiv version of the present paper, we also address the issue of heights of CM points on the
Jacobians of these elliptic curves.
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Appendix A. Tables for equations of hyperelliptic Shimura curves

We list defining equations of hyperelliptic Shimura curves in Tables A.1 and A.2.

TABLE A.1. Equations of level one.

Xg°(1)

y? = —225 + 192% — 2422 — 169

wQ(x’y) = (—.13, _y)7
’LUQ@(SC,y) = (937 72—/)

X5 (1)

y? = —(22 + 7)(72 + 51zt + 19722 + 1)

w5(x7y) = (—LC, _y)7
w35(x,y) = (z,—y)

X5°(1)

y? = —162° — 5924 — 8222 — 19

wQ(x’y) = (—$, _y)7
wss(z,y) = (z,—y)

X5°(1)

Y= (2t — 23 — 2% + 2+ 1)(T2* — 2323 + 522 + 232 + 7)

1y
wls(%y): T LA )

wgg(l', y) = (CC7 _y)

X5 (1)

y? = — (2% + 3)(24325 + 2352* — 3122 + 1)

’lU3(.I‘,y) = (_Iay)v
w51(x,y) = (Iv _y)

X5°(1)

yYr=—(at -3+ 22+ 2+ 1)B2t + 23 - 522 — 2 +3)

' zt)’
wss(z,y) = (z,—y)

wsten) = (-1, %)

X5(1)

y? = (35 +1)(3s3 + 1152 + 175 + 1),
22 =—-4s>+2s—1

w19(sa ‘T7y) = (vaa 7y)7
UJ57(S,(L', y) = (S, —$,y)

XG55 (1)

y? = —220 — 782% — 86222 — 1682

w2(£7y) = (—.Z‘, _y>7
wgg(ﬂf,y) = (l‘, _y)
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TABLE A.1l. Equations of level one (continued).

X8 (1) y? = —6428 — 992% — 902* — 4322 — 8

w2($7y) = (_$7y)v
wGQ(xvy) = (JJ, _y)

X8(1) y? = —24328 + 126825 — 6662 — 226822 — 2187

wg(lﬂ,y) = (7I’y)7
weo(z,y) = (z, —y)

X74(1) y? = =210 + 4728 — 3282° + 9462* — 415822 — 1369

w2(£>y) = (—x,—y),
w74(x,y) = (.73, _y)

y?=4s' +4s° + 52— 25+ 1

82
X" (1) 2?2 = —19s% + 185 — 11
U}Q(Z‘,y) = (_Z‘, _y)a
wyi(z,y) = (z, —y)
X80(1) y? = —16210 + 24528 — 7562° — 15062* — 74022 — 43

UJQ({E,y) = (—x,—y),
w86(x7y) = (l‘, _y)

X87(1) | y? = —(a8 — Tt + 4322 + 27)(24325 + 523z* + 36922 + 81)

wg(a:,y) = (—1'72-/),
w87(xvy) - (‘Ta 7y)

y?=(3s — 752 — 35— 1)(3s® + s — 35 — 9),

X5*(1) 22 =—-4s>—6s—9
’LU3(8, ﬂf,y) = (37 -, _y)a
w31 (s, 7,y) = (5,7, —y)
X§4(1) y? = —8x% 4 6925 — 2342* + 38122 — 256

wa(z,y) = (—,y),
w94(x,y) - (IIJ, _y)
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TABLE A.l. Equations of level one (continued).

= —(a8+ 2" — a8 —4a® + 2t +42% 22— +1)

95 1
Xo*(1) X (728 + 1927 + 2125 — 132* + 212% — 192 + 7)
Iy
wS(xay) - <_.T7 ;ﬂs),
wos(z,y) = (z,—y)
X1 (1) y? = —(192° — 4427 — 162° + 552° 4 37z* — 552° — 162* + 44x +-19)
0 x (28 — 32° — 2t + 323 + 1)
Ly
w37(.’£, y) - <_I, xS)’
1U111<$,y) = ($7 _y)
X19(1) y? = — (720 — 17128 4 75825 + 34182 + 485122 + 2401)
0

X (219 4 328 + 2625 + 278z + 37322 + 343)
U}7($, y) = (_(E, y)7
w119<$,y) = (aj? _y)

XE34(1) | 4?2 = 1621 — 347212 — 2518210 — 133412° — 9187625 + 328592 — 251822 — 67

’LUQ(.’L’, y) = (—ZE, _y)a

”LU134(1’, y) = ((E, 7y)
y? = —112'0 + 82215 — 221214 4 214213 + 13322 — 3602 — 170210
X245(1) + 6762 — 1502 — 67627 — 1702° + 3602° + 13324
— 21423 — 22122 — 822 — 11

Ly
U}73($,y): _Evﬁ B

wig6(z, y) = (z,—y)
y? = —(81x10 + 2072® + 8742° — 1302* — 1127 + 3)

X159 1
o (1) X (21873:10 + 838928 + 887826 4 4224 — 4122 + 1)
w3($7 y) = (_$7 y)a
wisg(z,y) = (7, —y)
y? = —19220 — 92219 — 2862'% — 592217 — 92126 — 10162!° — 87214
X194(1) + 460213 + 1545212 + 1752211 + 34210 — 17522° + 15452°
0 — 46027 — 8722% + 10162° — 9212 4 59223 — 28622
+ 92z — 19
1y
wg?(%.ﬂ) = <_$7 _z1()>’
w194(l', y) = (Z‘, _y)
X206(1) y? = —822Y + 132! + 42216 + 3312 4 22022 — 733210
0

— 664628 — 198832°% — 28840x* — 1822422 — 4096

w2(m7y) = (_aj’y)’
waos(2,y) = (v, —y)
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TABLE A.2. Equations of level greater than one.

X6(11) y? = —192% — 16627 — 43925 — 16625 + 6122*
0 +1662° — 43922 + 1662 — 19
(2,1) z+1 4y
wo (x = —
2 Y T — 1a (1’ — 1)4 )
([t _Y
’U_),?,(CC,y) - Z” 334 I
wee(z,y) = (z,—y)
22 = —32% — 16,
X5(17) y? =172* — 1022 + 9
’U)Q(LU, y>Z) = (_337.% Z>7
w3($a Y, Z) = (JZ‘, -Y, _Z)v
w34(x, Y, Z) = ('Tv —Y Z)

X8(19) y? = —1928 + 2102° — 6252* + 21022 — 19

’LU114(.I', y) = (.’17, _y)
X8(29) y? = —64x'2 + 81320 — 30662 + 459725 — 1226424
+13008z2 — 4096
'lUQ(l',ZJ) = (71‘7y)a
(2,1) 2 8y
ws(T = - B
3\T, Y T 1‘6
’LU174(.’L’, y) = (.’13, _y)
v = —2432'2 + 11882210 — 1777012 + 80394825

X§(31
6(31) —1599309x* + 96244222 — 177147
o) = (3.2
w2\ = - R
2T, Y 1_ 136

w3(9€7y) = (_-TL',y),
wise (7, y) = (2, —y)

y? = —409621% — 1848021 — 402002% — 5159526

6
X3(37) — 402002* — 1848022 — 4096
w2($7 y) = (—1'7 y)a
1y
’w3($, y) - ;a E )

wan(z,y) = (, —y)
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TABLE A.2. Equations of level greater than one (continued).

2 = —8¢12 — 35210 4 3028 + 27725 + 1202*

10 Yy
Xo"(1) — 56022 — 512

wio(x,y) = (-27—8y>,
was (7, y) = (2782)

wllO(Iay) = (177 *y)

22 = —222% — 25,

10
Xo"(13) y? = 5at — T4x® + 325

wZ(mayaz) = (.’E, -Y, _Z)7
w5<x7ya Z) = (—LU, -Y, _Z)7
wes(z,y,2) = (v, —y, 2)

2?2 = 5% — 32,

10
X, (19) y? = —82% + 572* — 4022 + 16

'lUQ(il,',y,Z) = (_x,yvz),
w5(m7yaz) = (.’E, —-Y, _Z)7
w38(xayaz) = (LIZ‘, —y,Z)

y? = —432%° + 3182'° — 107128 + 3014217 — 10540216
+ 28266215 — 72217214 + 81478213 — 62765212 — 68732211
+ 18840210 + 6873229 — 6276525 — 8147827 — 7221726
— 282662° — 105402* — 301423 — 107122 — 318z — 43

X4°(23)

20 +1 5%y
w2($7y): m72’_(x72)10 ?

Ly
w5(:17,y) = (.’I}’J}lO)’

w230(1’, y) = ((E, _y)

22 =922 -2

X14
0 (3) y2 — —7$4 + 221’2 +1

w2(xayaz) = (_Imyvz)v
w3(x7yaz) = (.13, Y, _Z)7
’LU14(SC,y,Z) = (‘Ta *y,Z)

y? = —2328 — 18027 — 3582% — 1682° — 6774

14
Xo"(5) + 16823 — 35822 4 180z — 23

Ly
wQ(J?,y) = <_.’E,‘T4)7
UJ14(I,y) = (I7_y)7
x+2 25y )

wss(2,y) = (23; 1 Qe—1)
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TABLE A.2. Equations of level greater than one (continued).

X3 (2) y? = —(22 4 3)(322 + 4)(z* — 2% + 4)

wa(z,y) = (23—4y>7

A
wg(x,y) = (_mvy)’
w;,(a:,y) = (—JE, _y)

2?2 =322 -1,

15
Xo?(4) y? = —(42% — 2 + 1)(42% + z + 1)(522 + 3)

w4($7y12) = (_x’ Y, _Z)v
wg(w,y,Z) = (.’L’,y7—2)7

’U}5(l’,y) = (.Z‘, Y, _Z)
22 = —2? -3,

XgH(2) Y2 =—(3z — 1)(3z +1)(2 + 7)(a* + 3)

IUQ(I’,y,Z) = (7‘r5 -Y, 72)7
wg(x,y,z) = (x,y,—z),
U}7($7y) = (SL', —y,Z)

X22(3) y? = —272% — 30825 — 21462* — 30822 — 27

I v
'UJQ(JU,y) = <_$’_IE4)7

’LU3(177y) = (7‘T7y)a
wes(z,y) = (z,—y)

X22(5) y? = —112'2 — 80210 — 24028 — 36225 — 240x* — 8022 — 11

wiio(7,y) = (v, —y)

2?2 = —8z2% -3,

2
X°(3) y? =28 — 22+ 922 + 8

wg(x,y, Z) = (—.’E, Y, _Z)v
w;;(x,y,z) = (.’E, —-Y, _2)7
w26(xayaz) = (J}, _yvz)

y? = — (28 + 1127 + 5225 + 14025 + 2432 4 28023 + 20822 + 88z + 16)

X392
0 (2) x (T2t + 2423 + 3222 + 242 4+ 16) (2?4 32° + 822 + 122+ 7)

2 16y
’IUQ(I',y,Z): T % |

[
x4+ 2 Y
wg(af,y,Z): _x+1’_(x+1)8 3
w3g(z,y) = (z, —y)
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