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At high incidence, low-aspect-ratio wings present a unique set of aerodynamic
characteristics, including flow separation, vortex shedding and unsteady force production.
Furthermore, low-aspect-ratio wings exhibit a highly impactful tip vortex, which
introduces strong spanwise gradients into an already complex flow. In this work, we
explore the interaction between leading-edge flow separation and a strong, persistent tip
vortex over a Reynolds number range of 600 ≤ Re ≤ 10 000. In performing this study, we
aim to bridge the insight gained from existing low-Reynolds-number studies of separated
flow on finite wings (Re ≈ 102) and turbulent flows at higher Reynolds numbers (Re ≈
104). Our study suggests two primary effects of the Reynolds number. First, we observe a
break from periodicity, along with a dramatic increase in the intensity and concentration
of small-scale eddies, as we shift from Re = 600 to Re = 2500. Second, we observe that
many of our flow diagnostics, including the time-averaged aerodynamic force, exhibit
reduced sensitivity to Reynolds number beyond Re = 2500, an observation attributed to
the stabilising impact of the wing tip vortex. This latter point illustrates the manner by
which the tip vortex drives flow over low-aspect-ratio wings, and provides insight into how
our existing understanding of this flow field may be adjusted for higher-Reynolds-number
applications.
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1. Introduction

Low-aspect-ratio wings pose a unique aerodynamic challenge. Often employed in
small-scale flight applications, including package delivery (Golubev & Visbal 2012) and
disaster relief (Daud et al. 2022), low-aspect-ratio wings are expected to operate in
conditions that break the classical assumption of inviscid, attached flow. These wings are
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thus prone to a host of unsteady, often undesirable aerodynamic effects, including flow
separation, vortex shedding and nonlinear oscillations in aerodynamic force (Shyy et al.
2007). At the same time, the compact footprint of these vehicles augments the impact of
the wing tip vortex, imparting a large degree of downwash over a significant portion of the
wing span (Jian & Ke-Qin 2004). The resulting flow field is tangled and complex: flow
separation leads to the shedding of spanwise vortices, and these shed vortices undergo an
intricate interaction with the wing tip. Such a three-dimensional, vortex-dominated flow
field precludes accurate prediction with conventional aerodynamic theory (Bird & Ramesh
2021).

Partially because of this gap in understanding, there exists a growing body of literature
concerned with the separated flow over aerodynamic bodies, with particular attention paid
to the role of three-dimensionality. Many of these studies focus on spanwise periodic (or
nominally two-dimensional) wings, and have produced detailed descriptions of the airfoil
wake as a function of wing incidence, Reynolds number and planform geometry (Menon
& Mittal 2020; Kurtulus 2021; Ribeiro et al. 2022). Collectively, these studies suggest
that a separated wake exhibits a limit cycle oscillation up to a critical Reynolds number of
Re ≈ 1000, at which point spanwise instabilities initiate the route to chaos (Hoarau et al.
2003; Zhang & Lu 2009; He et al. 2017). While rich with fundamental insight, studies of
spanwise periodic wings necessarily lack the presence of a wing tip, and thus have limited
applicability to fully three-dimensional, low-aspect-ratio wings.

The simulation of finite wings, or those with a defined wing tip geometry, are more
directly relevant to modern, small-scale flight application. In turn, computational efforts
have begun to parse the interaction between a massively separated flow and a strong
tip vortex. Taira & Colonius (2009) were among the first to explore this phenomena in
the low-Reynolds-number regime, performing direct numerical simulation (DNS) over a
sweep of aspect ratios and incidence angles at Re = 300. The authors found that the tip
vortex, by virtue of its downwash, imparts a stabilising effect on leading-edge separation,
while simultaneously promoting complex linkages among wake vortices. Subsequent
studies would expand the parameter space significantly, partitioning the flow into steady,
periodic and aperiodic regimes (Zhang et al. 2020; Pandi & Mittal 2023), while also laying
the groundwork for control-oriented descriptions of the flow (Burtsev et al. 2022; Ribeiro,
Yeh & Taira 2023).

The current work aims to address a persistent limitation in the existing literature: each
study mentioned above was performed at a relatively low Reynolds number, with many
studies limited to Re < 1000. In this work, we aim to understand how a change in Reynolds
number affects the physical interplay between tip vortex and leading-edge separation.
We also aim to bridge the gap between studies of finite wings at low Reynolds number,
for which substantial progress has been made in the realm of stability and control, and
studies of finite wings at higher, more turbulent Reynolds numbers (Devenport et al.
1996; Garmann & Visbal 2017). We accomplish these goals by performing high-fidelity
computation over a sweep of Reynolds numbers in the range of 600 ≤ Re ≤ 10 000.
The following sections will address how these simulations were performed, and how the
resulting flow fields differ from their low-Reynolds-number counterparts.

2. Methodology

In this work, we consider high-fidelity numerical simulations of a finite, NACA 0012 wing
at five values of the chord-based Reynolds number, Re = U∞c/ν. Figure 1 provides an
isometric view of our computational domain and serves as a problem statement for the
current work. In this figure, we define the streamwise (x), vertical (y) and spanwise (z)
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Effect of Reynolds number on flow over low-aspect-ratio wing
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Figure 1. (a) The computational domain, (b) trailing-edge curvature and (c) wing tip geometry for the present
simulations.

directions using Cartesian coordinates, and we place the origin (0, 0, 0) at the leading
edge of the wing root. Figure 1 also highlights several features of the wing surface
geometry. For all simulations, we consider a semi-aspect-ratio sAR = 2 wing, outfitted
with a rounded wing tip and a rounded trailing edge, at an incidence of α = 14◦. We
choose this specific combination of incidence and aspect ratio as a way of ensuring that
both leading-edge separation and vertical downwash are present over a substantial portion
of the wing planform.

For all five Reynolds numbers, we perform computations using the compressible
flow solver CharLES, a finite-volume solver with second-order accuracy in space and
third-order accuracy in time (Brès et al. 2017). We formulate each simulation as either a
DNS (Re ≤ 2500) or a large-eddy simulation (LES; Re ≥ 5000), with the Vreman subgrid
scale model providing turbulent closure for our LES (Vreman 2004). In both formulations,
we prescribe a Dirchlet boundary condition (U∞/a∞ = 0.1) at the inlet and farfield
boundaries; a sponge boundary condition (with a spatial window of x/c ∈ [15, 25]) at
the outlet boundary; and an adiabatic wall boundary condition at the airfoil surface. We
impose a symmetry condition at the wing mid-span (z = 0) as a means of minimising our
cell count. When advancing the simulation in time, we select a time step such that the local
Courant number remains below U∞�t/�x = 1 throughout the entire domain.

Because we are interested in the separated flow regime, our flow field will exhibit
characteristics similar to bluff body vortex shedding, and we expect to observe an
increasingly broad spectrum of flow structures as we increase the Reynolds number. We
thus generated multiple volumetric grids for this study to ensure sufficient resolution
of the energy-containing scales. We build each mesh by first generating a structured
grid along the airfoil surface, extending this grid as a two-cell-thick block along the
streamwise extent of the wake, and space-marching the combined grid outward along the
surface normal. We choose the resolution of our surface mesh, along with the growth
rate of the space-marching procedure, such that each simulation is considered either a
DNS (Re ≤ 2500) or an LES (Re ≥ 5000). Additional details regarding our choice of grid
resolution, along with a quantification of the grid-dependence inherent to our results, can
be found in the Appendix.
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Figure 2. Instantaneous isocontours of Q-criterion, lift coefficient trace and lift spectra for (a) Re = 600,
(b) 1000, (c) 2500 and (d) 10 000.

3. Results

We now examine the flow field produced by a low-aspect-ratio wing (sAR = 2) at constant
incidence (α = 14◦) over a sweep of Reynolds numbers (600 ≤ Re ≤ 10 000). We begin
by considering a qualitative overview of the flow as a function of Reynolds number, before
focusing on the interaction between the tip vortex and shed wake. Figure 2 shows a series
of flow field metrics intended to capture the scale, character and intensity of unsteady
flow structures across our sweep of Reynolds numbers. Each subpanel of figure 2 includes
three representations of the unsteady flow field: an instantaneous snapshot of Q-criterion,
coloured by contours of spanwise vorticity (ωz); a time history of the lift coefficient,
integrated along the entire body of the wing; and a spectral description of the unsteady lift
coefficient, computed via Welch’s method. Note that when computing the lift spectra, we
only include measurements collected at least 45 convective times beyond the simulation’s
impulsive start.

Looking at figure 2, we observe several striking changes in the character of the flow
as we increase Reynolds number. We begin by noting that the Re = 600 case appears
organised and coherent: we can visually identify shed vortices, the lift coefficient evolves
periodically in time and the lift spectra is dominated by a single vortex shedding frequency
(the Strouhal number) and its harmonics. The flow behaves similarly at Re = 1000, with
only a slight increase in the magnitude of lift oscillations. As we move from Re = 1000 to
Re = 2500, the flow undergoes a notable change, losing much of its qualitative coherence.
While we can still identify shed vortices in the near-wing region, the wake at Re = 2500
is interspersed with small-scale shear linkages, and the lift spectra transitions to a more
broadband distribution (while still exhibiting a minor peak at the Strouhal shedding
frequency). This breakdown of the wake is intensified at Re = 10 000, at which point shed
vortices are almost entirely obscured by small-scale eddies.
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Figure 3. The pressure spectra (left) and instantaneous pressure (right) at (x/c, y/c) = (3.0, −0.25) for
(a) Re = 600, (b) 1000, (c) 2500 and (d) 10 000.

Figure 3 offers an alternate view of the airfoil at multiple Reynolds numbers. In this
figure, we plot the signal from a pressure rake positioned downstream of the airfoil surface;
the rake consists of 50 spanwise-aligned pressure probes at (x/c, y/c) = (3.0, −0.24). The
right column of figure 3 shows the temporal evolution of this pressure signal, while the left
column describes its spectral composition as a function of spanwise position (z/c).

Echoing the flow field snapshots of figure 2, we observe a growing incoherence in the
pressure signal as Reynolds number increases – an incoherence that appears to increase
sharply between Re = 1000 and 2500. Whereas figure 3(a,b) exhibit clear spikes that can
be linked to distinct flow structures (i.e. shed vortices, a tip vortex and a quasi-steady
region in which the two interact), the remaining rows of figure 3 suggest a breakdown of
these flow structures. Figure 3(c) shows the emergence of ‘choppiness’ in the structure
of each pressure band, pointing towards the irregular, three-dimensional nature of passing
vortices, whereas figure 3(d) sees this irregularity spread outboard, into the region of tip
vortex interaction. The spectral character of the wake is also impacted by the increase in
Reynolds number. The left column of figure 3 reveals that the wake’s frequency content
shifts to a higher frequency and dims in intensity, implying that the signal has drifted into
aperiodicity.

Altogether, figures 2 and 3 suggest the presence of two vortex shedding regimes.
In the first regime (600 ≤ Re ≤ 1000), the airfoil wake exhibits strong periodicity and
its spatial structure can be partitioned into distinct regions. In the second regime
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Figure 4. Slices of the spanwise vorticity field (ωz) for a sweep of Reynolds numbers (rows) and spanwise
locations (columns).

(2500 ≤ Re ≤ 10 000), these spatial regions break down, the structure of the wake
becomes disorganised and broadband unsteadiness spreads from wing root to wing tip.

We now focus our attention on a specific aspect of the flow over a finite wing: the
interplay between shed vortices, or those resulting from leading-edge separation, and the
tip vortex that forms at the rounded edge of our wing. This interaction is key to the onset of
wake disorganisation; while itself a quasi-steady flow feature, the tip vortex plays a crucial
role in the onset of shear instability and vortex rollup (Huang & Lin 1995; Ribeiro et al.
2022). We begin by visualising the effect of Reynolds number on the leading-edge shear
layer before reframing these effects in the context of the tip vortex.

Figure 4 shows instantaneous slices of the spanwise vorticity field (ωz) collected in
the near-wing portion of our computational domain. We organise this figure such that Re
increases along each row, while z/c moves outboard along each column. Let us begin by
considering the first row of figure 4, which shows the unsteady flow at z/c = 0.50. Looking
specifically at the flow near the leading edge, we observe a clear trend: as we increase the
Reynolds number, the leading-edge shear layer becomes thinner, and the onset of shear
layer instability moves upstream. The Re = 1000 case exhibits only a minor accumulation
of negative vorticity as it interacts with the trailing-edge vortex; by Re = 2500, the flow
exhibits a clear rollup in a region just downstream of the trailing edge; and by Re = 10 000,
small-scale vortex rollup is visible as early as the airfoil mid-chord. The first row of figure 4
suggests that an increase in Reynolds number promotes the upstream rollup of spanwise
vortices, which leaves the near-wing region prone to disorganisation.

Next, let us examine how these vortex structures change as we move closer to the wing
tip. Consider the second column of figure 4, which shows the vorticity field (ωz) at Re =
2500 over a sweep of spanwise locations. In the first row of this column, we observe the
expected instability of the leading-edge shear layer, with vortex rollup occurring near the
trailing edge. As we move down the column, we observe attenuation of this instability.
In fact, the flow field at z/c = 1.5 exhibits a relatively stable shear layer for Re = 2500,
with minimal indication of vortex rollup or complex unsteadiness. Moving to Re = 10 000,
vortex rollup is visible just beyond the midchord for all spanwise stations, but the degree
of disorganisation is substantially more mild at z/c = 1.5 compared with regions closer
to the root. In this sense, figure 4 suggests that the tip vortex imparts a stabilising effect
on the leading-edge shear layer, an effect that grows more significant as we approach the
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Figure 5. Spatial evolution of the tip vortex in the time-averaged flow field for (a) Re = 600, (b) 2500 and
(c) 10 000.

wing tip. Such an observation can be attributed to the role of downwash in an aerodynamic
flow: as we move closer to the tip, downwash becomes more severe and local incidence
becomes more mild, ultimately leading to an attenuation of instability in the separated
shear layer.

Broadly, figure 4 demonstrates that the local structure of the shed wake is strongly
dependent on its proximity to the tip vortex, an observation that holds across all Reynolds
numbers in the current study. Figure 5 expands upon this idea by quantifying the strength
of the tip vortex. In this figure, we plot time-averaged isocontours of Q-criterion, along
with planar snapshots of the streamwise vorticity field (ωx), for a sweep of Reynolds
numbers over 600 ≤ Re ≤ 10 000. We also track the circulation and planar area associated
with a single isocontour; these two quantities are plotted on the right-hand side of figure 5.
For both methods of visualisation, we observe a similar trend: as we increase the Reynolds
number, the tip vortex grows in intensity and persistence, exhibiting reduced spatial
dissipation beyond Re = 1000. This observation is supported by the left-hand side of
figure 5, which exhibits more concentrated, higher intensity contours as the Reynolds
number increases, and by the right-hand side of figure 5, which shows that the tip vortex
maintains its strength and size for a substantially longer streamwise extent at Reynolds
numbers beyond Re = 1000.

We thus arrive at one of the main conclusions of this work. That is, an increase
in Reynolds number produces two seemingly opposing effects: (1) an increase in the
likelihood of shear layer rollup for inboard regions of the wing; and (2) an increase in
the strength and persistence of the tip vortex, which attenuates vortex rollup in outboard
regions of the wing. This dichotomy provides a simple explanation for the regime changes
observed in figure 2. At low Reynolds number (Re ≤ 1000), the degree of shear instability
is mild, and the strength of the tip vortex is enough to suppress vortex breakdown across the
entirety of the wing span. Between Re = 1000 and 2500, the degree of instability grows to
the point that inboard portions of the wing (0 ≤ z/c ≤ 1.5) transition to irregular, unsteady
shedding, while outboard portions of the wing (0.50 ≤ z/c ≤ 0.0) remain quasi-steady.
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Figure 6. Spanwise distribution of the time-averaged lift coefficient (cl) and pressure drag coefficient (cd,p) for
a sweep of Reynolds numbers. The insets show the mean spanwise vorticity field at specific spanwise locations.

By Re = 10 000, the degree of shear instability outpaces the growing strength of the
tip vortex, and small-scale vortex structures begin to emerge near the tip vortex, albeit
gradually. Note that while outboard unsteadiness has just begun to emerge by Re = 10 000,
we expect the general structure of figure 2 to persist beyond Re = 10 000. Previous studies
(Garmann & Visbal 2017; Toosi et al. 2023) have reported a quasi-steady tip vortex,
coupled with the widespread entrainment of small-scale vortex structures, at Reynolds
numbers O(105), suggesting that the gradual outboard spread of unsteadiness continues to
higher Re.

The trend described above, wherein the tip vortex stabilises outboard portions of the
wing, is particularly relevant to wings with a short span and has important implications
on the production of aerodynamic force. Figure 6 plots the time-averaged lift and
pressure-drag coefficients as a function of span for a sweep of Reynolds numbers, with
insets showing the time-averaged vorticity field (ωz) at select locations. In this figure,
we observe a large, outboard spike in sectional lift coefficient for Reynolds numbers
beyond Re = 600. While tip vortices are conventionally associated with a reduction in
sectional lift, the presence of this spike is consistent with many of our observations thus
far. For example, if we move along the bottom row of figure 6, we observe that vorticity
is pulled closer to the airfoil surface with increasing Reynolds number, thus strengthening
its contribution to vortex lift (Lee et al. 2012). We can, in turn, view the spanwise lift
distribution as a reflection of the interplay between vortex rollup and local downwash; that
is, shear instabilities concentrate vorticity into discrete structures, while downwash draws
these structures closer to the wing surface.

Up to this point, we have limited our discussion of low-aspect-ratio wings to the
interaction between the tip vortex and the leading-edge shear layer. While critical to the
production of aerodynamic force, this interaction is constrained to the near-wing portion
of the domain, and is only implicitly related to the behaviour of vortices as they move
downstream. Thus, we next consider the three-dimensional structure of shed vortices over
many convective times, augmenting our portrait of the airfoil wake with the details of its
downstream structure.

Because our parameter space includes higher Reynolds numbers (Re > 1000), it can
be difficult to visualise the structure of wake vortices via traditional techniques. We
must instead rely upon some means of temporal, conditional averaging in order to parse
the complex interactions that characterise the downstream wake. Here, we employ the
dynamic mode decomposition (DMD) to accomplish this task. DMD operates by finding
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Figure 7. The three-dimensional DMD mode associated with the dominant vortex shedding frequency for
(a) Re = 600, (b) Re = 1000 and (c) Re = 2500.

the best-fit linear operator for the discrete dynamical system governing the evolution of
the flow; the eigenvectors of this linear operator are called ‘modes’ and represent recurrent
spatial patterns in a time series of flow field snapshots (Kutz et al. 2016). Because DMD
assumes a linear system, each of these modes can be linked to a discrete frequency.

With this in mind, figure 7 shows the dominant DMD mode for three representative
Reynolds numbers, computed using streamwise velocity (ux) as the state variable. For
each case in this figure, we select the appropriate eigenvector by extracting a dominant
vortex shedding frequency from the unsteady lift spectra (see figure 2) and matching this
frequency with the nearest (purely imaginary) eigenvalue from DMD. Note that because
the flow’s aperiodicity grows with Reynolds number, we require an increasing number of
snapshots to ensure convergence at higher Reynolds numbers. We thus incorporate 200
snapshots in the computation of the Re = 600 mode; 300 snapshots in the computation of
the Re = 1000 mode; and 2000 snapshots for the computation of the Re = 2500 mode.

Let us begin by considering the DMD mode associated with our lowest Reynolds
number. In figure 7(a), we observe a sequence of tube-like structures cascading through
the wake of the airfoil, a common modal pattern associated with periodic vortex shedding
and convection. Each of these tube-like structures resembles an arch in three-dimensional
space. If we shift our attention downstream, these arches undergo substantial tilting and
distortion over time, with outboard regions transitioning from a spanwise (z) alignment to
more of a streamwise (x) alignment. The timing, behaviour and distortion of these tubes is
closely linked to the impact of the tip vortex on the shed wake. Specifically, the arch-like
structure of each tube is indicative of a strong spanwise gradient in downwash velocity,
as outboard regions of each tube are subject to intense downwash from the tip vortex.
Meanwhile, the streamwise tilting of each tube is indicative of a strong spanwise gradient
in streamwise velocity, as outboard regions of each tube are disrupted by the axial velocity
of the tip vortex.
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We now examine how this arch structure changes with an increase in Reynolds number.
Looking at figures 7(b,c), we still observe the familiar chain of arch-like modal structures,
but with two primary differences compared with Re = 600. First, we note that the degree
of streamwise vortex tilting (i.e. the rate at which each ‘tube’ is reoriented towards the
x-axis) appears to increase as we increase the Reynolds number. This observation can be
linked to the behaviour of the tip vortex described in figure 5. Because the strength and
persistence of the tip vortex increases directly with the Reynolds number, each tube is
subject to a sharper, more intense spanwise gradient, which persists over an increasingly
large streamwise portion of the wake. In turn, the modal structures of figure 7(b,c)
shows signs of streamwise tilting at significantly more upstream locations compared with
figure 7(a).

Second, we note that the ‘legs’ of each tube, or the outboard regions in which each
tube tilts rapidly toward the tip vortex, appear increasingly distinct as we move from
figure 7(a,b). This observation implies that the ‘interaction’ region, over which shed
vortices merge with the tip vortex, becomes increasingly compressed as we increase the
Reynolds number. Such an observation aligns with the physics of the airfoil wake; in
figure 3, we observed that the bounds of the ‘interaction’ region are pushed outboard as
wake disorganisation casts a wider breadth.

All in all, the DMD modes of figure 7 indicate that an increase in Reynolds number
produces two primary changes to the downstream structure of shed vortices: (1) an increase
in the intensity of streamwise vortex tilting; and (2) an outboard shift in the region where
this tilting is concentrated. These trends are consistent with our physical observations
regarding the strength and persistence of the tip vortex, and demonstrate the close coupling
between shed vortices and tip vortices observed across the current Reynolds number range.

4. Concluding remarks

In this work, we investigated the unsteady flow over a low-aspect-ratio (sAR = 2) wing
at multiple values of the freestream Reynolds number (600 ≤ Re ≤ 10 000). Our broad
goal was to characterise the airfoil wake as it transitions from large-scale, periodic vortex
shedding (Re ≈ 102) to disorganisation and three-dimensionality (Re ≈ 104), with an
emphasis on the role of the wing tip vortex. Using a combination of DNS (Re ≤ 2500)
and LES (Re ≥ 5000), we identified a regime change near Re = 1000, in which wake
vortices break down, aerodynamic force becomes aperiodic, and disorganisation overtakes
inboard portions of the airfoil wake. For Re > 1000, we find that an increase in Reynolds
number promotes instability in the leading-edge shear layer, while also strengthening
the wing tip vortex, which implicitly suppresses instability in outboard regions of the
wing. The result is a gradual spread of fine-scale structures from the inboard, nominally
two-dimensional portion of the wing, towards the outboard, tip-vortex-influenced portions
of the wing. Collectively, these observations illuminate how a strong, persistent tip vortex
impacts the structure of a transitioning shear wake, and lay the groundwork for a physical
understanding of low-aspect-ratio wings in realistic, high-Reynolds-number conditions.
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Effect of Reynolds number on flow over low-aspect-ratio wing

Re nairfoil ny nz nw y+
0 Cell count (106)

600 80 160 50 170 0.17 4.0
1000 120 200 75 260 0.14 11.4
2500 120 200 75 260 0.33 11.4
5000 160 250 105 345 0.31 26.5
10 000 160 250 105 345 0.59 26.5

Table 1. Geometric resolution parameters for each of the five Reynolds number cases.

Author ORCIDs.
Luke Smith https://orcid.org/0000-0002-3215-8422;
Kunihiko Taira https://orcid.org/0000-0002-3762-8075.

Appendix

In this appendix, we provide additional details regarding the set-up of our computational
domain. We begin by noting that for all Reynolds numbers considered here, the resolution
of our computational domain is governed by the following geometric parameters: the
number of grid points allocated to the wing tangent (nairfoil); the number of grid points
allocated to the wing span (nz); the number of grid points allocated to the wing normal
(ny); and the number of streamwise grid points allocated to the airfoil wake (nw). Table 1
assigns values to these parameters for each of our five Reynolds number cases; this table
also reports the value of our initial off-wall spacing (y+

0 ) in viscous wall units. We choose
the value of each parameter such that the average edge length within the near-wing mesh
(i.e. the region corresponding to −2.0 ≤ x/c, y/c, z/c ≤ 2.0) roughly conforms to a set
of grid spacing limitations. For Re ≤ 2500, these limitations correspond to a DNS, i.e.
(�x+, �y+, �z+) ≤ (2.5, 2.5, 5.0), while for Re ≥ 5000, these limitations correspond to
an LES, i.e. (�x+, �y+, �z+) ≤ (5.0, 5.0, 10.0). Note that for both DNS and LES cases,
we select an initial off-wall spacing such that the innermost region near the wall (y+ < 5)
contains a minimum of six grid points.

Figure 8 collects the results of a grid-independence study undertaken to assess the
accuracy of the mesh parameters reported above. In figure 8, each subplot corresponds to
a separate Reynolds number, and shows isocontours of streamwise velocity, averaged over
a temporal window of >50 convective time units. Each subplot also includes a running
average of the lift coefficient, CL = 2Fy/ρU2∞S, as a means of visualising the flow’s global
convergence behaviour. For each Reynolds number, the label ‘regular’ corresponds to the
level of grid refinement reported in table 1. When evaluating the grid independence of a
given Reynolds number, we generate a new ‘fine’ and ‘finer’ grid by applying refinement
uniformly across our four governing geometric parameters. Each subsequent level of grid
refinement roughly doubles the total cell count of the mesh. Note that because of a
prohibitively high cell count, we limit the Re = 10 000 case to a single iteration of grid
refinement.

Figure 8 reveals that our time-averaged solution exhibits minimal sensitivity to
successive levels of grid refinement. The isocontour lines of figure 8(a,b) are nearly
identical to one another, suggesting that a ‘regular’ grid provides sufficient resolution for
the Re = 600 and Re = 2500 cases. The downstream isocontour lines begin to deviate
from one another at Re = 10 000, likely owing to the flow’s increasing spatiotemporal
irregularity, but the differences are slight, and even for Re = 10 000, the aerodynamic force
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Figure 8. The effect of grid resolution on the time-averaged, streamwise velocity field (left and centre
columns) and the time-averaged lift coefficient (right column). (a) Re = 600, (b) Re = 2500 and (c) Re =
10 000.

appears to converge after a few dozen convective times. We thus consider our solution
spatially converged; the results presented throughout this work correspond to the ‘regular’
grids outlined in table 1.
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