Canad. Math. Bull. Vol. **67** (3), 2024, pp. 633–647 <http://dx.doi.org/10.4153/S000843952400002X>

© The Author(s), 2024. Published by Cambridge University Press on behalf of

Canadian Mathematical Society. This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence (https://creativecommons.org/licenses/ by-nc-sa/4.0/[\), which permits non-commercial re-use, distribution, and reproduction in any medium,](https://creativecommons.org/licenses/by-nc-sa/4.0/) provided the same Creative Commons licence is included and the original work is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use.

How to determine a curve singularity

J. Elia[s](https://orcid.org/0000-0003-3053-1542)

Abstract. We characterize the finite codimension sub-**k**-algebras of **k**[[*t*]] as the solutions of a computable finite family of higher differential operators. For this end, we establish a duality between such a sub-algebras and the finite codimension **k**-vector spaces of $\mathbf{k}[u]$, this ring acts on $\mathbf{k}[[t]]$ by differentiation.

1 Introduction

It is well-known that the normalization of a curve *X* is a non-singular curve *Y*. Serre considers in [\[26,](#page-14-0) Chapter IV] the opposite direction, he showed how to construct a curve *X* from a given non-singular curve *Y* such that this curve is the normalization of *X*.This idea appears in several different contexts. For instance, in [\[17,](#page-14-1) [18,](#page-14-2) [23\]](#page-14-3) and the references therein, is studied how to determine the finite codimension sub-**k**-algebras *B* of **k**[t]. Notice that, in this case, $X = \text{Spec}(B)$ is an algebraic curve and the affine line $Y = \text{Spec}(\mathbf{k}[t])$ is its normalization. These sub-algebras are defined recursively on the codimension by linear and higher differential conditions. Only for low codimensions, explicit conditions are known. Since not all higher differential conditions define subalgebras of $\mathbf{k}[t]$, it is an open problem for the characterization of families of linear higher differential operators defining finite codimension sub-**k**-algebras of **k**[*t*] (see [\[18\]](#page-14-2)).

In the search of one-dimensional reduced local rings with locally decreasing Hilbert function, Roberts constructed such a local rings as connex, finite codimension sub-**k**-algebras of $\prod_{i=1}^r \mathbf{k}[t_i]$ defined by linear and first-order differentials conditions (see [\[19\]](#page-14-4)). See [\[11\]](#page-13-0) for the proof of Sally's conjecture on the monotony of Hilbert functions of one-dimensional Cohen–Macaulay local rings.

In this paper, we consider the local complete case. We characterize the finite codimension sub-**k**-algebras *B* of $\Gamma = \mathbf{k}[[t]]$ as the solutions of a computable finite codimension **k**-vector space $B^{\perp} \subset \Delta = \mathbf{k}[u]$ of higher differential operators (see Theorem [3.9\)](#page-6-0). For this purpose, we establish a Macaulay-like duality between finite codimension sub-k-algebras *B* of Γ and finite codimension **k**-vector subspaces B^{\perp} , so-called algebra-forming vector spaces, of the polynomial ring Δ. The polynomial ring Δ acts on Γ by differentiation as in Macaulay's duality (see [\[14](#page-14-5)[–16,](#page-14-6) [20\]](#page-14-7)). At the end

Received by the editors June 7, 2023; revised December 17, 2023; accepted January 2, 2024.

Published online on Cambridge Core January 9, 2024.

This work was partially supported by PID2022-137283NB-C22.

AMS subject classification: **13H10**, **14B05**, **13H15**.

Keywords: Curve singularity, Matlis duality, differential operator.

of Section [3,](#page-2-0) we describe the linear maps $B_2^{\perp} \to B_1^{\perp}$ induced by **k**-algebra morphisms $B_1 \rightarrow B_2$ between two finite codimension **k**-algebras B_1 , B_2 .

In Section [4,](#page-8-0) we study the algebra-forming vector spaces, showing that such a condition can be checked effectively (see Proposition [4.1\)](#page-8-1). After this, we prove that for any finite codimension *δ* **k**-algebra *B* there exist a finite filtration of **k**-algebras, socalled standard filtration of *B*, $B = B_0 \subset B_1 \subset \cdots \subset B_\delta = \Gamma$ such that $\dim_k(B_{i+1}/B_i) =$ 1 for $i = 0, \ldots, \delta - 1$. As corollary of this construction, we get that we only need to consider algebra-forming single elements in order to define recursively a finite codimension **k**-algebras. Moreover, we show how to recover the standard filtration by considering recursively derivations of the local rings appearing in the filtration (see Corollary [4.6\)](#page-9-0).

Section [5](#page-10-0) is devoted to study the inverse system of monomial **k**-algebras and the special case of monomial Gorenstein algebras. We end the section relating the inverse system of a curve singularity with its generic plane projection and its saturation.

In the last section, we link B^{\perp} with the canonical module of *B* (see Proposition [6.1\)](#page-12-0).

The computations of this paper are performed by using the computer algebra system singular (see [\[8\]](#page-13-1)).

2 Preliminaries

Let *R* denote the power series ring $\mathbf{k}[[x_1,\ldots,x_n]]$ over an algebraically closed characteristic zero field **k** and we denote by max = (x_1, \ldots, x_n) its maximal ideal.

Let *A* be a one-dimensional local ring with maximal ideal max. We denote by HF*^A* the Hilbert function of *A*, i.e., $HF_A(i) = \text{Length}_A(\text{max}^i / \text{max}^{i+1}), i \ge 0$. It is wellknown that $HF_A^0(i) = e_0(A)$, $i \gg 0$, where $e_0(A)$ is the multiplicity of *A*. The first integral of HF_A is defined by, $i \ge 0$,

$$
\mathrm{HF}_A^1(i) = \sum_{j=0}^i \mathrm{HF}_A(j) = \mathrm{Length}_A(A/\mathrm{max}^{i+1}).
$$

We write HF_A^0 = HF_A . There exists an integer $e_1(A)$ such that $HF_A^1(i) = e_0(A)(i+1)$ – $e_1(A)$ for $i \gg 0$; the (first) Hilbert polynomial is HP¹_{*A*}(*T*) = $e_0(A)(T+1) - e_1(A)$. See [\[22,](#page-14-8) Chapter XII] for the basic properties of the Hilbert functions of one-dimensional Cohen–Macaulay local rings.

A branch *X* is an irreducible curve singularity of $(\mathbf{k}^n, 0) = \text{Spec}(R)$, i.e., *X* is a onedimensional, integral scheme *X* = Spec(*R*/*I*); we write $\mathcal{O}_X = R/I$ and $I(X) = I$.

Let $v : \overline{X} = \text{Spec}(\mathcal{O}_X) \longrightarrow (X, 0)$ be the normalization of $(X, 0)$, where $\mathcal{O}_X \cong$ $\mathbf{k}[[t]]$ is the integral closure of \mathcal{O}_X on its full field of fractions tot(\mathcal{O}_X). The singularity order of *X* is $\delta(X) = \dim_k(\mathcal{O}_{\overline{X}}/\mathcal{O}_X)$. We denote by C the conductor of the finite extension v^* : $\mathcal{O}_X \hookrightarrow \overline{\mathcal{O}_X}$ and by $c(X)$ the dimension of $\overline{\mathcal{O}_X}/\mathcal{C}$.

Given a set of nonnegative integers $1 \le a_1 < \cdots < a_n$, we consider the monomial curve singularity $X(a_1, \ldots, a_n)$ defined by the parameterization

$$
\begin{array}{cccc}\n\gamma: & R & \longrightarrow & \mathbf{k}[[t]] \\
x_i & \mapsto & t^{a_i},\n\end{array}
$$

How to determine a curve singularity 635

i.e.,
$$
I(X(a_1,..., a_n)) = \ker(\gamma)
$$
. If $gcd(a_1,..., a_n) = 1$, then the induced map
 $\gamma : R/I(X(a_1,..., a_n)) \longrightarrow \mathbf{k}[[t]]$

is the normalization map of $O_{X(a_1,...,a_n)} = R/I(X(a_1,...,a_n)) = k[[t^{a_1},..., t^{a_n}]]$.

We denote by D_X the semigroup of values of *X*: the set of integers $v_t(f)$ = *ord*_t(*t*) where $f \in \mathcal{O}_X \setminus \{0\}$. It is easy to see that $\delta(X) = \#(\mathbb{N} \setminus D_X)$. If *B* is a finite codimension sub-**k**-algebra of Γ then $X = \text{Spec}(B)$ is branch. We write $D_B = D_X$.

Let ω_X be the dualizing module of *X*; we can consider the composition of \mathcal{O}_X module morphisms

$$
\gamma_X : \Omega_X \longrightarrow \nu_* \Omega_{\overline{X}} \cong \nu_* \omega_{\overline{X}} \longrightarrow \omega_X.
$$

Let $d: O_X \longrightarrow \Omega_X$ the universal derivation, then we have a **k**-linear map $\gamma_X d$ that we also denote by $d: \mathcal{O}_X \longrightarrow \omega_X$. Recall that the Milnor number of *X* is $\mu(X) =$ $\dim_k(\omega_X/d\mathcal{O}_X)$, [\[5\]](#page-13-2). Since we only consider branches we have that $\mu(X) = 2\delta(X)$ (see [\[5,](#page-13-2) Proposition 1.2.1]). Notice that *X* is non-singular iff $\mu(X) = 0$ iff $\delta(X) = 0$ iff $c(X) = 0.$

We denote by $\pi : Bl(X) \longrightarrow X$ the blowing-up of *X* on its closed point. The fiber of the closed point of *X* has a finite number of closed points: the so-called points of the first neighborhood of *X*. We can iterate the process of blowing-up until we get the normalization of *X* (see [\[7,](#page-13-3) [24\]](#page-14-9)). We denote by $\text{Inf}(X)$ the set of infinitely near points of *X*. The curve singularity defined by an infinitely point *p* of *X* will be denote by (X, p) ; we set $(X, 0) = X$.

Proposition 2.1 *Let X be a branch. Then* (i)

$$
\delta(X) = \sum_{p \in \text{Inf}(X)} e_i(X, p).
$$

(ii) *It holds*

$$
e_0(X)-1\leq e_1(X)\leq \delta(X)\leq \mu(X)
$$

and $e_1(X) \leq {e_0(X) \choose 2} - {n-1 \choose 2}$ *.*

(iii) *If X is singular, then* $\delta(X) + 1 \le c(X) \le 2\delta(X)$ *, and* $c(X) = 2\delta(X)$ *if and only if* O*^X is a Gorenstein ring.*

Proof (i) [\[25\]](#page-14-10). (ii) [\[5,](#page-13-2) Proposition 1.2.4(i)] and [\[10,](#page-13-4) [12,](#page-13-5) [25\]](#page-14-10). (iii) [\[26,](#page-14-0) Proposition 7, page 80] and $[2]$.

3 Macaulay-like duality

In this section, we establish a Macaulay-like duality for the family of sub-**k**-algebras *B* of Γ = **k**[[t]] of finite codimension. For the classical Macaulay's duality, see [\[20\]](#page-14-7), [\[14\]](#page-14-5), and for the generalization to higher dimension of Macaulay's duality, see [\[15\]](#page-14-11). Recall that Macaulay's duality is a particular case of Matlis' duality (see [\[4\]](#page-13-7)).

 \forall e write Δ = **k**[*u*]; Γ is a Δ-module with Δ acting on Γ by derivation. This action denoted by \circ is defined by

$$
\circ : \Delta \times \Gamma \longrightarrow \Gamma
$$

(g, f) \rightarrow $g \circ f = g(\partial_t)(f),$

where *∂^t* denotes the derivative with respect to *t*. This action induces a non-singular **k**-bilinear perfect pairing:

(1)
$$
\qquad \qquad \perp : \Delta \times \Gamma \longrightarrow \qquad \qquad \mathbf{k}
$$

\n $(g, f) \rightarrow g \perp f = (g \circ f)(0).$

Definition 3.1 Given a sub-**k**-algebra *B* of $\Gamma = \mathbf{k}[[t]]$ we define B^{\perp} as the set of $g \in \Delta$ such that $g \perp f = 0$ for all $f \in B$. Notice that B^{\perp} is a **k**-vector subspace of Δ , this is, following the classic Macaulay's duality terminology, the inverse system of *B*. Given a **k**-vector subspace $V \subset \Delta$ we consider $Ann(V) \subset \Gamma$ as the set of power series $f \in \Gamma$ such that $g \perp f = 0$ for all $g \in V$.

Let *B* be a finite codimension sub-**k**-algebra of Γ . Then we have a non-singular **k**-bilinear perfect pairing:

(2)
$$
\begin{array}{cccc}\n\perp: & B^{\perp} \times \frac{\Gamma}{B} & \longrightarrow & \mathbf{k} \\
(g, \overline{f}) & \mapsto & g \perp f.\n\end{array}
$$

We denote by $Perp(B)$, the **k**-vector space of maps

$$
\begin{array}{cccc} g^{\perp} : & B & \longrightarrow & \mathbf{k} \\ & f & \mapsto & g \perp f \end{array}
$$

for all *g* ∈ Δ. These maps are the elements of the dual space of *B* with finite support: $g^{\perp}(\max_B^d) = 0$ for $d > \deg(g)$. We denote by $Der_k(B)$ the **k**-vector space of **k**-derivations of *B*. Since $Der_{\mathbf{k}}(B) \cong (\max_B / \max_B^2)^*$, we can identify $Der_{\mathbf{k}}(B)$ with the **k**-vector space of elements *σ* of the dual space of *B* such that $σ(max²_B) = 0$.

We have $Der_{\mathbf{k}}(B) \subset Perp(B)$, this inclusion is strict. Let us consider the codimension 8 algebra $B = \mathbf{k}[[t^4, t^7, t^{17}]]$. The linear map $(u^{11})^{\perp} : B \longrightarrow \mathbf{k}$ is not a derivation since t^{11} ∈ max_B² and $(u^{11}) \perp (t^{11}) = 11! \neq 0$.

Next step is to characterize the vector **k**-vector subspaces *B*[⊥] of Δ, where *B* ranges the family of finite codimension sub-**k**-algebras of Γ . First, we give some properties of B^{\perp} that we will use along the paper.

Given a polynomial $g = \sum_{i=0}^{d} a_i u^i \in \Delta$ we denote by $\text{Supp}(g)$ the support of g : the finite set of integers *i* such that $a_i \neq 0$.

Proposition 3.2 Let $B \subset \Gamma$ *be a codimension* δ *sub-k-algebra B of* Γ *, and let* $C = (t^c)$ *be the conductor of the extension B* \subset Γ *. Then*:

- (1) dim_k $(B^{\perp}) = \delta$.
- (2) *For all* $g ∈ B[⊥]$ *, we have* Supp(g) ⊂ [1*, c* − 1]*, and*

$$
u^{[1,e_0(B)-1]} = \{u^i; i \in [1,e_0(B)-1]\} \subset B^{\perp} \subset \langle u, u^2, \ldots, u^{c-1} \rangle.
$$

(3) *The following conditions are equivalent:*

Downloaded from<https://www.cambridge.org/core>. 03 Oct 2024 at 05:21:13, subject to the Cambridge Core terms of use.

How to determine a curve singularity 637

\n- (i)
$$
\delta = 0
$$
,
\n- (ii) $B = \Gamma$,
\n- (iii) $B^{\perp} = 0$,
\n- (iv) $B^{\perp} \subset \{u^2, u^3, \ldots\}$.
\n

Proof (1) Since \perp is a **k**-bilinear perfect pairing, we get dim_k(B^{\perp}) = δ , see the equation [\(2\)](#page-3-0).

(2) Since *B* is a **k**-algebra, we have $1 \in B$, so if $g = \sum_{i>0} a_i u^i \in B^\perp$, then $0 = g \perp 1 =$ *a*₀. Hence *B*[⊥] ⊂ $\langle u, u^2, \dots \rangle$. We know that (t^c) ⊂ *B* so for all *g* = $\sum_{j\geq 0} a_i u^i \in B^{\perp}$, we have

$$
0=g\perp t^{c+i}=(c+i)!a_{c+i}
$$

i ≥ 0. Hence, if $g \in B^{\perp}$, then $deg(g) \leq c - 1$. From this, we deduce that $B^{\perp} \subset$ $\langle u, u^2, \ldots, u^{c-1} \rangle$.

Notice that $v_t(f) \ge e_0(B)$ for all $f \in B \setminus \{1\}$, so given $i \in [1, e_0(B) - 1]$ we have *u^{<i>i*}</sup> ⊥ *f* = 0. Hence *u^{<i>i*} ∈ *B*[⊥] and then *u*^{[1,*e*₀(*B*)−1] ⊂ *B*[⊥].}

(3) The condition of (*i*) is equivalent to (*ii*). (*ii*) trivially implies (*iii*) and this implies (*iv*). If $B^{\perp} \subset \{u^2, u^3, \ldots\}$, then $t \in B$, since *B* is a **k**-algebra, we get (*ii*).

For all power series $f = \sum_{i \ge 0} b_i t^i \in \Gamma$ and given a nonnegative integer $s \in \mathbb{N}$, we denote by $[f]_{\leq s}$ the truncated polynomial $[f]_{\leq s} = \sum_{i\geq 0}^{s} b_i t^i$.

Let *B* be a finite codimension sub-**k**-algebra of Γ with conductor c . Then *B* is a finitely generated **k**-algebra; let f_1, \ldots, f_r be a system of generators of *B* as **k**-algebra. We denote by $\natural_{B,d}$, $d \ge c - 1$, the finite set of polynomials $[f_1^{l_1} \dots f_r^{l_r}]_{\le d}$ with $l_i \ge 0$, $i = 1, \ldots, r$, and $l_1 + \cdots + l_r \leq d$. We denote by $W(\{f_1, \ldots, f_r\}, d) \subset \Delta$ the **k**-vector space generated by the polynomials of $\natural_{B,d}$. Notice that $W(\{f_1,\ldots,f_r\},d) + \langle t^{d+1} \rangle =$ $W(\{f_1,\ldots,f_r\},d+1).$

Proposition 3.3 *Let B be a finite codimension sub-***k***-algebra of - with conductor c.* Then B^{\perp} *is the set of g* ∈ Δ *of degree at most c* − 1 *and such that g* \perp *h* = 0 *for all* $h ∈ \nparallel_{B, c-1}$.

Proof Let f_1, \ldots, f_r be a system of generators of *B* as **k**-algebra, and let $g_{B,c-1}$ be the associated set of polynomials.

If *g* ∈ *B*[⊥], then deg(*g*) ≤ *c* − 1, Proposition [3.2\(](#page-3-1)2), so

$$
0 = g \perp (f_1^{l_1} \dots f_r^{l_r}) = g \perp [f_1^{l_1} \dots f_r^{l_r}]_{\leq c-1}.
$$

Hence, $g \perp h = 0$ for all $h \in \mathcal{b}_{B,c-1}$.

Let $g \in \Delta$ be a polynomial with $deg(g) \leq c - 1$ and such that $g \perp h = 0$ for all $h \in$ ♮*B*,*c*−1. Any *f* ∈ *B* can be written as

$$
f = \sum_{l_1,\ldots,l_r \in \mathbb{N}} c_{l_1,\ldots,l_r} f_1^{l_1} \ldots f_r^{l_r}
$$

with c ^{*l*}₁,...,*l*^{*r*} ∈ **k**. Since deg(*g*) ≤ *c* − 1, we have

$$
g \perp f = \sum_{l_1, ..., l_r \in \mathbb{N}} c_{l_1, ..., l_r} (g \perp f_1^{l_1} ... f_r^{l_r}) = \sum_{l_1, ..., l_r \in \mathbb{N}} c_{l_1, ..., l_r} (g \perp [f_1^{l_1} ... f_r^{l_r}]_{\leq c-1}) = 0,
$$

so $g \in B^{\perp}.$

so
$$
g \in B^{\perp}
$$

Remark 3.4 Notice that Proposition [3.3](#page-4-0) shows that the computation of B^{\perp} is effective. In fact, in the set $\natural_{B,c-1}$, there are involved a finite number of monomials and we only have to consider polynomials *g* of degree at most *c* − 1.

Remark 3.5 Although B^{\perp} is a **k**-vector subspace of Δ for any sub-**k**-algebra *B* of *-*, not all Ann(*V*) is a **k**-algebra for a given **k**-vector subspace *V* ⊂ Δ. In fact, let us consider the **k**-vector subspace $V \subset \Delta$ generated by u^2 . Then Ann(*V*) is the set of $f = \sum_{i \ge 0} a_i t^i \in \Gamma$ such that $a_2 = 0$. This is not a **k**-algebra because $u^2 \perp t = 0$, so *t* ∈ Ann(*V*) and u^2 ⊥ t^2 = 2 ≠ 0, so t^2 ∉ Ann(*V*).

Definition 3.6 A finite dimensional **k**-vector subspace $V \subset \Delta$ is so-called algebraforming with respect to a \mathbf{k} -algebra $B \subset \Gamma$ iff the following conditions hold:

(a) $g(0) = 0$ for all $g \in V$ and,

(b) for all $f \in B$ such that $g \perp f = 0$ for all $g \in V$ it holds $g \perp f^2 = 0$ for all $g \in V$.

An element $g \in \Delta$ is so-called algebra-forming with respect to *B* if $V = \langle g \rangle$ is algebraforming with respect to *B*.

Example 3.7 Let us consider the codimension $\delta = 4$ algebra $B = \mathbf{k}[[t^3 + t^4, t^5]]$ of Γ . The conductor of *B* is $c = 8$. Then B^{\perp} is the set of polynomials $g \in \Delta$ of degree at most 7 such that *g* ⊥ *f* = 0 for *f* ∈ $\natural_{B,c-1}$ = {*t*³ + *t*⁴, *t*⁵, *t*⁶ + 2*t*⁷}. A simple computation shows that B^{\perp} is the **k**-vector space generated by the four linear independent polynomials *u*, u^2 , $u^3 - \frac{1}{4}u^4$, $u^6 - \frac{1}{2.7}u^7$. Let us consider

$$
B_2 = \mathbf{k}[[t^3, t^4, t^5]] \subset B_3 = \mathbf{k}[[t^2, t^3]],
$$

then we have $B_2 = Ann(u^2) \cap B_3$, i.e., u^2 is an algebra-forming element with respect to B_2 .

In the following result, we prove that, in fact, if $V \subset \Delta$ is algebra-forming with respect to a \bf{k} algebra $B \subset \Gamma$, then $\text{Ann}(V) \cap B$ is a sub- \bf{k} -algebra of Γ .

Proposition 3.8 *Let V* ⊂ Δ *be an algebra-forming* **k***-vector subspace with respect to a* **k**-algebra B ⊂ Γ . Then $\text{Ann}(V) \cap B$ is a sub- \mathbf{k} -algebra of Γ .

Proof Clearly $C = Ann(V) \cap B$ is a **k**-vector subspace of Γ . Given $f_1, f_2 \in C$ we have that $f_1 + f_2 \in C$ and from

$$
f_1f_2=\frac{1}{2}((f_1+f_2)^2-f_1^2-f_2^2),
$$

we deduce that *g* ⊥ $(f_1 f_2) = 0$, i.e., $f_1 f_2 \in C$. Since $g(0) = 0$ for all $g \in V$ we get 1 $\in C$, so C is a sub-**k**-algebra of Γ . . ∎

The following result is an extension of Macaulay's duality to finite codimension sub-**k**-algebras *B* ⊂ Γ .

Theorem 3.9 *Given a nonnegative integers* $\delta > 0$ *and* $c \ge \delta + 1$ *, there is a one-to-one correspondence* ⊥ *between the following sets:*

- (1) *sub-***k***-algebras B of - of codimension δ as* **k***-vector spaces such that the conductor of B* ⊂ Γ *is* (t^c),
- (2) *algebra forming, with respect to -,* **k***-vector subspace V* ⊂ Δ *of dimension δ, generated by polynomials of degree at most c* − 1 *and such that there is a polynomial* $g \in V$ *with* deg(g) = $c - 1$ *.*

This correspondence is inclusion reversing: given two sub- ${\bf k}$ *-algebras* B_1 *and* B_2 *of* $\Gamma,$ $B_1 \subset B_2$ *if and only if* $B_2^{\perp} \subset B_1^{\perp}$ *.*

Proof Let *B* be a sub-**k**-algebra *B* of Γ . Since we have a non-singular **k**-bilinear pairing:

$$
\perp: B^{\perp} \times \frac{\Gamma}{B} \longrightarrow \mathbf{k} (g, \overline{f}) \mapsto g \perp f,
$$

we get that B^{\perp} is a **k**-vector subspace of dimension δ of Δ . By definition B^{\perp} is algebraforming with respect to Γ . Being *c* the conductor we have $(t^c) \subset B$, so $\deg(g) \leq c - 1$ for all *g* ∈ *B*[⊥] and there exist *g* ∈ *B*[⊥] of degree *c* − 1.

Let V be an algebra forming, with respect to Γ , **k**-vector subspace satisfying the conditions of (2). Let us consider the **k**-algebra $B = Ann(V)$. From the perfect pairing [\(1\)](#page-3-2), we get that the codimension of *B* in Γ is *δ*. Since *V* is generated by polynomials of degree at most *c* − 1 we have that (*t c*) ⊂ *B*, so the conductor of *B* is at most *c*. Furthermore, since there is $g \in V$ with $deg(g) = c - 1$ we deduce that *c* is the conductor of *B*.

It is straightforward to prove the inclusion reversing from the definition of the inverse system B^{\perp} .

We end this section by describing the **k**-linear maps $B_2^{\perp} \longrightarrow B_1^{\perp}$ induced by **k**-algebra isomorphisms $B_1 \longrightarrow B_2$ between two finite codimension **k**-algebras B_1 and B_2 of Γ . Let *c* be an integer bigger than the conductors of B_1 and B_2 .

The perfect pairing [\(1\)](#page-3-2) induce a perfect pairing

$$
\perp: \Delta_{\leq c-1} \times \frac{\Gamma}{(t^c)} \longrightarrow \textbf{k}
$$

$$
(g, \overline{f}) \longrightarrow g \perp f = (g \circ f)(0),
$$

where Δ[≤]*c*−¹ is the **k**-vector space of polynomials of degree at most *c* − 1. We consider the usual **k**-vector basis of $\Gamma/(t^c)$ of the cosets of t^i , $i = 0, \ldots, c-1$. Its dual basis is $\frac{1}{2}u^i$, $i = 0, \ldots, c-1$ since $\frac{1}{i!}u^i$, $i = 0, \ldots, c-1$, since

$$
\left(\frac{1}{i!}u^i\right)\perp t^j=\delta_{i,j}
$$

 $1 ≤ i, j ≤ c - 1.$

The **k**-algebra B_i has conductor at most *c* so we can consider that $B_i \subset \Gamma/(t^c)$, *i* = 1, 2. On the other hand, from Proposition [3.2,](#page-3-1) we have that $B_i^{\perp} \subset \Delta_{\leq c-1}$, *i* = 1, 2.

If B_1 is isomorphic to B_2 by ϕ , then their normalizations are isomorphic:

$$
\Gamma = \overline{B_1} \stackrel{\overline{\phi}}{\cong} \overline{B_2} = \Gamma.
$$

This automorphism is determined by a power series $h(t) \in (t)$ such that $u \perp h \neq 0$ and

$$
\overline{\phi}: \begin{array}{ccc} \Gamma & \longrightarrow & \Gamma \\ f & \mapsto & f(h). \end{array}
$$

Then we have an isomorphism of **k**-vector spaces

$$
\frac{\Gamma}{B_1} \xrightarrow{\overline{\phi}} \frac{\Gamma}{B_2}
$$

and the perfect pairing induces a **k**-vector isomorphism

$$
\phi^*: B_2^{\perp} \longrightarrow B_1^{\perp}.
$$

The matrix M_{ϕ} associated with ϕ in the basis t^i , $i = 0, \ldots, c - 1$, is the $c \times c$ matrix whose columns are the coefficients of $\phi(t^i) = h^i$, $i = 0, \ldots, c-1$, with respect to this basis. Hence, the matrix of $\phi^* : B_2^* = B_2^{\perp} \longrightarrow B_1^* = B_1^{\perp}$ with respect to the basis $\frac{1}{i!}u^i$, $i = 0, \ldots, c - 1$, is the transpose matrix ${}^{\tau}M_{\phi}$ of M_{ϕ} .

Example 3.10 Let $B_2 \subset \Gamma$ be a **k**-algebra generated by two elements f_1 , f_2 with $v_t(f_1) = 2$ and $v_t(f_2) = 7$. We may assume that $f_1 = t^2$ +monomials of higher degree. Then B_2 is of finite codimension $\delta = 3$ and conductor $c = 6$.

Since Γ is complete there exist a power series $h \in (t)$ such that $h^2 = f_1$; we write $h = t + h_2 t^2 + \dots + h_5 t^5 + \dots$. Notice that $\Gamma = \mathbf{k}[[h]].$

Let ϕ the automorphism of Γ defined by *h*, i.e., $\phi(f) = f(h)$. Then $\phi^{-1}(B_2)$ is a **k**-algebra B_1 generated by $f'_1 = t^2$ and $f'_2(h)$ such that $v_h(f'_2) = 7$. After a change of generators B_1 is generated by $f'_1 = t^2$ and $f'_2 = t^7$.

The induced isomorphism $\phi : B_1 \longrightarrow B_2$ has the following 6 × 6 associated matrix with respect the basis t^i , $i = 0, \ldots, 5$,

$$
M_{\phi} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & h_2 & 1 & 0 & 0 & 0 \\ 0 & h_3 & 2h_2 & 1 & 0 & 0 \\ 0 & h_4 & 2h_3 + h_2^2 & 3h_2 & 1 & 0 \\ 0 & h_5 & 2b_4 + 2h_2h_3 & 3h_3 + 3h_2^2 & 4h_2 & 1 \end{pmatrix}.
$$

Then the matrix of the isomorphism $\phi^* : B_2^{\perp} \longrightarrow B_1^{\perp}$ with respect to $\frac{1}{i!}u^i$, $i = 0, \ldots, 5$, is M_{ϕ}^{τ} . Since B_1 is the monomial **k**-algebra $\mathbf{k}[[t^2, t^7]]$, the **k**-vector space B_1^{\perp} is generated by *u*, u^3 , u^5 . From this, we can compute B_2^{\perp} by considering $({}^{\tau}M_{\phi})^{-1}$.

4 Algebra-forming vector spaces

The first goal of this section is to characterize the algebra-forming **k**-vector spaces.

Proposition 4.1 $\;$ Let B be a **k**-sub-algebra of finite codimension of Γ with conductor c, *and let* f_1 ,..., f_s *be a system of generators of B. Given an integer* d *≥* c *− 1, <i>let* h_1 ,..., h_m *be a system of generators of* $W(\lbrace f_1,\ldots,f_s \rbrace,d)$ *.*

Let V be a dimension δ **k***-vector subspace of* (*u*) ⊂ Δ *generated by polynomials of degree at most d* − 1*. Let* $g_1, \ldots, g_\delta \in V$ *be a basis of V.*

Then V is algebra-forming with respect to B iff for all r-upla $(\lambda_1, \ldots, \lambda_m) \in \mathbf{k}^m$ *such that*

(3)
$$
\sum_{j=1}^{m} \lambda_j (g_i \perp h_j) = 0
$$

for all i = $1, \ldots, \delta$ *, then*

(4)
$$
\sum_{j=1}^{m} \lambda_j^2 (g_i \perp h_j^2) + 2 \sum_{j=1, l=1, j \neq l}^{m} \lambda_j \lambda_j (g_i \perp h_j h_l) = 0
$$

for all i = $1, \ldots, \delta$.

Proof From Proposition [3.2,](#page-3-1) we have to prove that for all $f \in B$ such that $g \perp f = 0$ for all *g* ∈ *V* we have that *g* ⊥ *f*² = 0 for all *g* ∈ *V*. Since the polynomials of *V* are of degree at most *d* − 1 we only have to prove that for all $f \in W = W(\{f_1, \ldots, f_s\}, d)$ such that $g \perp f = 0$ for all $g \in V$, we have that $g \perp f^2 = 0$ for all $g \in V$.

A general element of *W* can be written as $f = \sum_{j=1}^{m} \lambda_j h_j$. Hence the condition $g_i \perp$ $f = 0$ is equivalent to

$$
\sum_{j=1}^m \lambda_j (g_i \perp h_j) = 0
$$

for all *i* = 1, ..., δ . Similarly, the condition $g_i \perp f^2 = 0$ is equivalent to

$$
\sum_{j=1}^m \lambda_j^2 \big(g_i \perp h_j^2\big) + 2 \sum_{j=1, l=1, j\neq l}^m \lambda_j \lambda_j \big(g_i \perp h_j h_l\big) = 0
$$

for all $i = 1, \ldots, \delta$.

Remark 4.2 The set of points $(\lambda_1, \ldots, \lambda_m) \in \mathbb{P}_{k}^{m-1}$ satisfying the identities of [\(3\)](#page-8-2) form a linear subvariety *L*, and the points satisfying the identities of [\(4\)](#page-8-3) defines a subvariety $Q \subset \mathbb{P}^{m-1}_k$ intersection of δ quadrics. Hence, *V* is algebra forming with respect to *B* iff $L \subset Q$. This is a computable condition.

Definition 4.3 Let *B* be a sub-**k**-algebra of finite codimension δ of Γ and conductor *c*. Let *D* be the semigroup of *B*; we write the set $t^{N \setminus D_B} = \{t^i; i \in \mathbb{N} \setminus D_B\}$ as $g_1 =$ $t^{c-1}, \ldots, g_{\delta} = t$. Then we define the so-called standard filtration of *B* as follows: *B*^{*i*} is the **k**-algebra generated by B and g_1, \ldots, g_i for $i = 1, \ldots, \delta$; we set $B_0 = B$. Notice that $B_{\delta} = \Gamma$ and that we have

$$
B=B_0\subset B_1\subset\cdots\subset B_\delta=\Gamma
$$

and $\dim_k(B_{i+1}/B_i) = 1, i = 0, \ldots, \delta - 1$.

After the definition of standard filtration, we only have to consider algebra-forming elements *g* ∈ Δ, with respect a suitable sub-**k**-algebras of *-*, in order to define a **k**algebra recursively. The algebra-forming elements are not unique as the following example shows.

Example 4.4 Let us consider the Example [3.7.](#page-5-0) The standard filtration of *B* is

$$
B = \mathbf{k}[[t^3 + t^4, t^5]] \subset B_1 = \mathbf{k}[[t^3 + t^4, t^5, t^7]] \subset B_2 = \mathbf{k}[[t^3, t^4, t^5]] \subset B_3 = \mathbf{k}[[t^2, t^3]] \subset \Gamma.
$$

The chain of **k**-algebras is defined as follows. The cosets of *t*, t^2 , t^4 , t^7 in Γ/B form a basis of Γ/B as **k**-vector space. Then B_1 is the **k**-algebra generated by B and t^7 , B_2 is the **k**-algebra generated by B_1 and t^4 , B_3 is the **k**-algebra generated by B and t^2 , and finally Γ is the **k**-algebra generated by B and t .

We know that *B*[⊥] is a four-dimensional **k**-vector space generated by *u*, u^2 , u^3 – $\frac{1}{4}u^4$, $u^6 - \frac{1}{27}u^7$; we have $B_3 = \text{Ann}(u)$, $B_2 = \text{Ann}(u^2) \cap B_3$, $B_1 = \text{Ann}(u^3 - \frac{1}{4}u^4) \cap B_2$ $B_2, B = \text{Ann}(u^6 - \frac{1}{2.7}u^7) \cap B_1$. On the other hand, the **k**-algebra $C_1 = \mathbf{k}[[t^3 + t^5, t^4]] \subset$ *B*¹ can be obtained as

$$
C_1 = \text{Ann}\langle u^3 - \frac{1}{4.5}u^5 \rangle \cap B_2,
$$

i.e., $u^3 - \frac{1}{4.5}u^5$ is an algebra-forming element with respect to B_2 . Notice that B_1 and *C*¹ are non analytically isomorphic codimension one **k**-algebras of *B*² .

Next, we show how to build the standard filtration by using derivations.

Proposition 4.5 $Let C ⊂ B be two sub-**k**-algebras of Γ such that $\dim_{\mathbf{k}}(B/C) = 1$. There$ *exist* $\alpha \in Der_{\mathbf{k}}(B)$ *such that* $\text{ker}(\alpha) = C$.

Proof If we denote by max_{*B*}, the maximal ideal of *B* then max_{*C*} ⊂ max_{*B*}, $\dim_{\mathbf{k}}(\max_B/\max_C) = 1$ and $\max_B^2 \subset \max_C$. Since we have

$$
\frac{\max_C}{\max_B^2} \subset \frac{\max_B}{\max_B^2},
$$

we deduce that there exists a linear form $\alpha : \frac{\max_B}{\max_B^2} \longrightarrow \mathbf{k}$ such that ker(α) = $\frac{\max_C}{\max_B^2}$. From this, we get the claim.

Corollary 4.6 *Let B be a sub-***k***-algebra of finite codimension δ of -. Let us consider the standard filtration of B:*

$$
B=B_0\subset B_1\subset\cdots\subset B_\delta=\Gamma.
$$

For all i = 1, ..., δ , *there exists a derivation* ∂_l ∈ *Der*_{**k**}(B ^{*i*})*,* l _{*i*} ∈ max_{*B*^{*i*}, *such that*} $\text{ker}(\partial_L) = B_i$.

Example 4.7 Let us consider the Example [4.4.](#page-9-1) The element u^{\perp} corresponds to the derivation ∂_t of Γ defined by *t*, so $B_3 = \text{ker}(\partial_t)$. The maximal ideal of B_3 is minimally generated by t^2 , t^3 , the element $(u^2)^\perp$ is the derivation $\partial_{t^2} \in Der_k(B_3)$, so $B_2 = \text{ker}(\partial_t^2)$. The maximal ideal of B_2 is minimally generated by t^3 , t^4 , t^5 . The element $(u^3 - \frac{1}{4}u^4)^{\perp}$ is the derivation $\partial_{t^3 - \frac{1}{4}t^4} \in Der_k(B_2)$, so $B_1 = \ker(\partial_{t^3 - \frac{1}{4}t^4})$. Finally, ∂_{t} ⁷ ∈ *Der*_k(*B*₁) and *B* = ker(∂_{t} ⁷).

5 Monomial algebras

In this section, we first compute the inverse system of a monomial **k**-algebra. After this, we characterize monomial Gorenstein curve singularities in terms of its inverse system. We end the section relating the inverse system of a curve singularity with its generic plane projection and its saturation.

The following result it is easy to deduce from the proof of the second part of Proposition [3.2\(](#page-3-1)2).

Proposition 5.1 *Let D be an additive sub-semigroup of* N *with finite complement.Then B*[⊥] *is the* **k***-vector space generated by:* $g_i = u^i$ *for* $i \in \mathbb{N} \setminus D$.

Example 5.2 Let *B* be a sub-**k**-algebra of **k**[[t]] of codimension $\delta = 1$. Then *B* is the **k**algebra $B = \mathbf{k}[[D]]$, where *D* is the sub-semigroup of N generated by 2, 3. Hence, B^{\perp} is the **k**-vector space generated by *u*, i.e., *B* is the set of power series $f = \sum_{i>0} b_i t^i \in \mathbf{k}[[t]]$ with $u \perp f = b_1 = 0$ (see [\[26,](#page-14-0) Example b, Section 4 of Chapter IV] and [\[18,](#page-14-2) Section 22]).

Example 5.3 Assume now that *B* is sub-**k**-algebra of **k**[$\lceil t \rceil$] of codimension $\delta = 2$. Then its semi-group D_B is $D_1 = \langle 2, 5 \rangle$ or $D_2 = \langle 3, 4 \rangle$. In the first case, *B* is generated as **k**-algebra by $f_1 = t^2 + b_3 t^3$ and $f_2 = t^5$. The conductor is $c = 4$. Then B^{\perp} is generated by $g_1 = u$, $g_2 = 6b_3u^2 + u^3$. In the second case, *B* is the monomial **k**-algebra $B = \mathbf{k}[[D_2]]$ so B^{\perp} is the sub-**k**-algebra generated by $g_1 = u$ and $g_2 = u^2$. The conductor is $c = 5$ (see [\[18,](#page-14-2) Section 23]). It is known that the algebras of the first case are all analytically isomorphic to $\mathbf{k}[[D_1]]$.

The inverse system of a monomial Gorenstein **k**-algebra case can be handled. Let us recall the definition of symmetric semi-group and the celebrate result of Kunz.

Definition 5.4 We say that a sub-semigroup *D* of N such that $\#(\mathbb{N} \setminus D) < \infty$ and with conductor *c* is symmetric if the condition $t \in D$ is equivalent to $c - 1 - t \notin D$.

Kunz proved that the ring $\mathbf{k}[[D]]$ is Gorenstein ring if and only if *D* is a symmetric semigroup,[\[21\]](#page-14-12). This symmetry is inherited by B^{\perp} .

Proposition 5.5 Let D be a sub-semigroup of $\mathbb N$ such that $\#(\mathbb N \setminus D) < \infty$ and conduc*tor c. The following conditions are equivalent:*

- (1) **k**[[*D*]] *is Gorenstein,*
- (2) *for all* $g \in \mathbf{k}[[D]]^{\perp}$ *it holds* $t^{c-1}g(1/t) \in \mathbf{k}[[D]].$

Proof Since $B = \mathbf{k}[[D]]$ is a monomial **k**-algebra we know that B^{\perp} is generated by $g = \sum_{i=1}^{c-1} a_i u^i$ such that $a_i = 0$ for $i \in D$ (see Proposition [5.1\)](#page-10-1). Then the exponents of the nonzero terms of $t^{c-1}g(1/t)$ are $c - 1 - i$ with $i \notin D$. Then the claim is equivalent to the symmetry of *D*, i.e., the Gorensteinness of *B*.

Example 5.6 Let *D* be the semigroup generated by 4, 6, and 9. This is a symmetric semigroup with conductor $c = 12$. The algebra $B = \mathbf{k}[[D]]$ is Gorenstein and isomorphic to $\mathbf{k}[[x, y, z]]/I$, where $I = (x^3 - y^2, y^3 - z^2)$. Then B^{\perp} is generated by the polynomials $g = a_1u + a_2u^2 + a_3u^3 + a_5u^5 + a_7u^7$, $a_i \in \mathbf{k}$. The polynomials $t^{11}g(1/t) =$ $a_1 t^{10} + a_2 t^9 + a_3 u^8 + a_4 u^6 + a_5 u^4$ have all exponents in *D*. The **k**-vector space B^{\perp} is generated by the following elements $g_1 = u$, $g_2 = u^2$, $g_3 = u^3$, $g_4 = u^5$, $g_5 = u^7$.

Given a finite codimension subalgebra *B* of Γ , we consider the curve singularity $X = \text{Spec}(B)$ defined by *B*. Let X' be the generic plane projection of *X*, [\[3\]](#page-13-8), and let \overline{X} be the saturation of *X*, [\[28\]](#page-14-13) and the references therein. We have

$$
\mathcal{O}_{X'}\subset \mathcal{O}_X=B\subset \mathcal{O}_{\widetilde{X}}\subset \Gamma,
$$

and then

$$
\mathcal{O}_{\widetilde{X}}^{\perp} \subset B^{\perp} \subset \mathcal{O}_{X'}^{\perp}.
$$

We have, [\[9\]](#page-13-9),

$$
\delta(\widetilde{X}) \leq \delta(X) \leq \delta(X') \leq (e_0(X)-1)\delta(\widetilde{X}) - {e_0(X)-1 \choose 2}.
$$

From [\[27,](#page-14-14) Proposition 1.6, page 971], we know that \widetilde{X} is also the saturation of $X'.$

On the other hand, \overline{X} is a monomial curve singularity. Assume that the coset of x_1 in *B* is t^{e_0} with e_0 the multiplicity of *B*. Since the rings are complete and the ground field is algebraically closed, we can assumed it after a suitable election of the uniformization parameter of Γ . Let $\{e_0; \beta_1, \ldots, \beta_g\}$ be the characteristic of *X'*, [\[28,](#page-14-13) Section 3, page 993], then $\mathcal{O}_{\widetilde X}$ is the monomial subalgebra with generators:

$$
\begin{cases}\n t^{e_0}, \\
 t^{s_v n_{v+1} \dots n_g}, \quad m_v \le s_v \le [m_{v+1}/n_{v+1}], v = 1, \dots, g-1, \\
 t^{m_g+i}, \quad 0 \le i \le e_0 - 1,\n\end{cases}
$$

where $\beta_v/e_0 = m_v/n_1 \dots n_v$ is the *v*th characteristic exponent of *X'*, $v = 1, \dots, g - 1$, and $gcd(m_i, n_i) = 1$ for all $i = 1, ..., g$ (see [\[28,](#page-14-13) Section 3, page 995]).

The facts $\mathbb{O}_{\tilde{X}}^{\perp} \subset B^{\perp}$ and Proposition [5.2](#page-10-2) can be useful in order to simplify the computation of B^{\perp} as the next example shows.

Example 5.7 Let us consider the **k**-algebra $B = \mathbf{k}[[t^6, t^8 + t^{11}, t^{10} + t^{13}]]$; its saturation is $\widetilde{B} = \mathbf{k}[[t^6, t^8, t^{10}, t^{11}, t^{13}, t^{15}]]$ (see [\[6,](#page-13-10) Example 2.5.1]). The sequence of multiplicities of the resolution of $X = \text{Spec}(B)$ is $\{6, 2, 2, 2, 2, 1, \dots\}$. We can compute $\delta(X)$ by computing $e_1(C)$, where *C* ranges the local rings of the resolution process, in this case, we get $\{8, 1, 1, 1, 1, 0, \ldots\}$, so $\delta(X) = 12$. The semigroup of *B* is *D* = $\{0, 6, 8, 10, 12, 14, 16, 18, 19, 20, 22 \rightarrow\}$, i.e., the conductor of *D* is 22.

On the other hand, the semigroup of $\mathcal{O}_{\widetilde{X}}$ is $\{0, 6, 8, 10 \longrightarrow\}$, its conductor is 10. Hence, $\mathbb{O}^{\perp}_{\widetilde{X}}$ is generated by u^i with $i \in \{1, 2, 3, 4, 5, 7, 9\}$, and B^{\perp} is the set of polynomials $g = \sum_{i=0}^{21} a_i u^i$ such that $a_6 = 0$, $990a_{11} - a_8 = 0$, $a_{12} = 0$, $1716a_{13} - a_{10} =$ 0, $a_{16} = 0$, $4080a_{17} - a_{14} = 0$, $a_{18} = a_{19} = a_{20} = a_{21} = 0$.

6 The canonical module

As in the Artin case, we can relate the canonical module with the inverse system. In that case, we have that if *I* is an Artinian ideal, then $I^{\perp} \cong E_{R/I}(\mathbf{k}) \cong \omega_{R/I}$ (see [\[4,](#page-13-7) [14\]](#page-14-5)). In the case of branches, we can determine the "negative" part of the canonical module.

Let *X* be a branch of $(k^n, 0)$ and \overline{X} its normalization. We first describe the canonical module *ω^X* by using Rosenlicht's regular differential forms (see [\[26,](#page-14-0) Chapter IV 9], [\[5,](#page-13-2) Section 1], see also [\[13\]](#page-13-11)). We denote by $\Omega_{\overline{X}}(p)$, the set of meromorphic forms in \overline{X} with a pole at most in $p = \nu^{-1}(0).$ Then Rosenlicht's differential forms are defined as follows: ω_X^R is the set of $\nu_*(\alpha)$, $\alpha \in \Omega_{\overline{X}}(p)$, such that for all $F \in \mathcal{O}_X$,

$$
\operatorname{res}_p\bigl(F\alpha\bigr)=0.
$$

Notice that we have a mapping that we also denote by

$$
d_R: \mathcal{O}_X \longrightarrow \Omega_X \longrightarrow \nu_*\Omega_{\overline{X}} \hookrightarrow \omega_X^R.
$$

In [\[1,](#page-13-12) Chapter VIII], it is proved that $\omega_X \stackrel{\phi}{\cong} \omega_X^R$ and $d_R = \phi d$, where $d: \mathcal{O}_X \longrightarrow \omega_X$ is the map defined in the Section [1.](#page-0-1) Since \mathcal{O}_X is a one-dimensional reduced ring, we know that $\omega_{(X,0)}$ is a sub- \mathcal{O}_X -module of tot(\mathcal{O}_X) (see [\[4,](#page-13-7) Proposition 3.3.18]). There is a perfect pairing, [\[26,](#page-14-0) Chapter IV],

$$
\frac{\frac{\nu_*(\mathcal{O}_{\overline{X}})}{\mathcal{O}_X}}{F} \times \frac{\omega_{(X,0)}}{\nu_*(\Omega_{\overline{X}})} \xrightarrow{\eta} \mathcal{C}
$$
\n
$$
F \times \alpha \longrightarrow \text{res}_p(F\alpha)
$$

notice that for all *λ* ∈ *R* it holds *η*(*λF*, *α*) = res*p*(*λFα*) = *η*(*F*, *λα*).

Proposition 6.1 Let X be a branch of $(\mathbf{k}^n, 0)$ and \overline{X} its normalization. Then we have *an isomorphism of the δ*(*X*) *dimensional* **k***-vector spaces:*

$$
B^{\perp} \stackrel{\varepsilon}{\cong} \frac{\omega_X}{v_* \Omega_{\overline{X}}}
$$

such that $\varepsilon(g)$ is the coset defined by $\alpha = \sum_{i=0}^{c-1} i!c_i t^{-i-1}$, for all $g = \sum_{i=0}^{c-1} c_i u^i \in B^{\perp}$.

Proof We write $B = \mathcal{O}_X$, $\Gamma = \nu_* \mathcal{O}_{\overline{X}}$, and $\Omega_{\overline{X}} = \Gamma dt$. Then ε is the composition of the isomorphisms induced by the above two perfect pairings

$$
B^{\perp} \stackrel{\varepsilon_1}{\cong} \left(\frac{\Gamma}{B}\right)^* \stackrel{\varepsilon_2}{\cong} \frac{\omega_X}{\nu_* \Omega_{\overline{X}}}.
$$

Next, we describe both morphisms ε_1 , ε_2 . Given $g \in B^{\perp}$, we can write it as

$$
g = c_0 + c_1 u + \dots, c_{c-1} u^{c-1},
$$

so $\varepsilon_1(g)$ is the linear form induced by $\xi : \Gamma^* \longrightarrow \mathbf{k}$ defined by: if $f = \sum_{i \geq 0} a_i t^i \in \Gamma$, then

$$
\xi(f)=\sum_{i=0}^{c-1}i!a_ic_i.
$$

On the other hand, every *α* ∈ *ωx* can be written as *α* = *t*^{*n*} *h*(*t*)*dt* with *n* ∈ *Z* and *h*(*t*) ∈ Γ an invertible series. From [\[13,](#page-13-11) Proposition 2.6], we get that $\alpha = \sum_{i \ge -c} e_i t^i$ such that $res_0(\alpha F) = 0$ for all $f \in B$. Given $f = \sum_{i \geq 0} a_i t^i \in \Gamma$, we have

$$
res_0(f\alpha) = \sum_{i=0}^{c-1} a_i e_{-i-1}
$$

so $\varepsilon_2^{-1}(\alpha)$ is the linear form induced by $\xi' : \Gamma^* \longrightarrow \mathbf{k}$ defined by

$$
\xi'(f) = \sum_{i=0}^{c-1} a_i e_{-i-1}.
$$

From this, we deduce that $e_{-i-1} = i!c_i$ for $i = 0, \ldots, c-1$.

Example 6.2 [\[13,](#page-13-11) Example 2.7] Let us consider the monomial curve *X* with parameterization $x_1 = t^4$, $x_2 = t^7$, $x_3 = t^9$. We have $c = 11$, $\delta = 6$. Then ω_X is the **k**-vector space spanned by t^{-11} , t^{-7} , t^{-6} , t^{-4} , t^{-3} , t^{-2} , t^n , $n \ge 0$, and the quotient $\omega_X/v_*\Omega_{\overline{X}}$ admits as **k**-vector space base the cosets of t^{-11} , t^{-7} , t^{-6} , t^{-4} , t^{-3} , t^{-2} , and \mathcal{O}_X^{\perp} is the **k**-vector space with basis $u, u^2, u^3, u^5, u^6, u^{10}$.

References

- [1] A. Altman and S. Kleiman, *Introduction to Grothendieck duality theory*, Lecture Notes in Mathematics, 146, Springer, Berlin, 1970.
- [2] J. Bertin and P. Carbonne, *Semi-groupes d'entiers et application aux branches*. J. Algebra **49**(1977), no. 1, 81–95.
- [3] J. Briançon, A. Galligo, and M. Granger, *Deformations equisingulieres des germes de courbes gauches reduïtes*. Mem. Soc. Math. Fr. **1**(1980), 1–69.
- [4] W. Bruns and J. Herzog, *Cohen–Macaulay rings*, revised edition, Cambridge Studies in Advanced Mathematics, 39, Cambridge University Press, Cambridge, 1997.
- [5] R. O. Buchweitz and G. M. Greuel, *The Milnor number and deformations of complex curve singularities*. Invent. Math. **58**(1980), 241–281.
- [6] A. Campillo and J. Castellanos, *Curve singularities. An algebraic and geometric approach*, Actualités Mathématiques, Hermann, Paris, 2005.
- [7] S. D. Cutkosky, *Resolution of singularities*, Graduate Studies in Mathematics, 63, American Mathematical Society, Providence, RI, 2004.
- [8] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, *Singular 4-3-0–A computer algebra system for polynomial computations.* 2022. <http://www.singular.uni-kl.de>.
- [9] J. Elias, *An upper bound of the singularity order for the generic projection*. J. Pure Appl. Math. **53**(1988), 267–270.
- [10] J. Elias, *Characterization of the Hilbert–Samuel polynomials of curve singularities*. Compos. Math. **74**(1990), 135–155.
- [11] J. Elias, *The conjecture of Sally on the Hilbert function for curve singularities*. J. Algebra **160**(1993), no. 1, 42–49.
- [12] J. Elias, *On the deep structure of the blowing-up of curve singularities*. Math. Proc. Cambridge Philos. Soc. **131**(2001), 227–240.
- [13] J. Elias, *On the canonical ideals of one-dimensional Cohen–Macaulay local rings*. Proc. Edinb. Math. Soc. (2) **59**(2016), no. 1, 77–90.

- [14] J. Elias, *Inverse systems of local rings*. In: N. T. Cuong, L. T. Hoa, N. V. Trung (eds.), Commutative algebra and its interactions to algebraic geometry, VIASM 2013–2014, Lecture Notes in Mathematics, 2210, Springer, Cham, 2018, pp. 119–164.
- [15] J. Elias and M. E. Rossi, *The structure of the inverse system of Gorenstein K-algebras*. Adv. Math. **314**(2017), 306–327.
- [16] J. Elias and M. E. Rossi, *A constructive approach to one-dimensional Gorenstein* **k***-algebras*. Trans. Amer. Math. Soc. **374**(2021), no. 7, 4953–4971.
- [17] E. A. Gorin, *Subalgebras of finite codimension*. Mat. Zametki **6**(1969), 321–328.
- [18] R. Grönkvist, E. Leffler, A. Torstensson, and V. Ufnarovski, *Subalgebras in K[x] of small codimension*. Appl. Algebra Engrg. Comm. Comput. **33**(2022), no. 6, 751–789.
- [19] S. K. Gupta and L. G. Roberts, *Cartesian squares and ordinary singularities of curves*. Comm. Algebra **11**(1983), no. 2, 127–182.
- [20] A. Iarrobino and V. Kanev, *Power sums, Gorenstein algebras, and determinantal loci*, Lecture Notes in Mathematics, 1721, Springer, Berlin, 1999, Appendix C by Iarrobino and Steven L. Kleiman.
- [21] E. Kunz, *The value semigroup of a one-dimensional Gorenstein ring*. Proc. Amer. Math. Soc. **25**(1970), 748–751.
- [22] E. Matlis, 1 -*dimensional Cohen–Macaulay rings*, Lecture Notes in Mathematics, 327, Springer, Berlin–New York, 1973.
- [23] D. J. Newman, *Point separating algebras of polynomials*. Amer. Math. Monthly **81**(1974), 496–498.
- [24] D. G. Northcott, *The neighbourhoods of a local ring*. J. London Math. Soc. **30**(1955), 360–375. [25] D. G. Northcott, *The reduction number of a one-dimensional local ring*. Mathematika **6**(1959),
- 87–90. [26] J. P. Serre, *Groupes algébriques et corps de classes*, Publications de l'institut de mathématique de
- l'université de Nancago, VII, Hermann, Paris, 1959.
- [27] O. Zariski, *Studies in equisingularities III*. Amer. J. Math. **90**(1965), 961–1023.
- [28] O. Zariski, *General theory of saturation and of saturated local rings. III. Saturation in arbitrary dimension and, in particular, saturation of algebroid hypersurfaces*. Amer. J. Math. **97**(1975), 415–502.

Departament de Matemàtiques i Informàtica, Universitat de Barcelona (UB), Gran Via 585, 08007 Barcelona, Spain

e-mail: elias@ub.edu