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Langlands-Shahidi Method and Poles of
Automorphic L-Functions: Application to
Exterior Square L-Functions
Henry H. Kim

Abstract. In this paper we use Langlands-Shahidi method and the result of Langlands which says that non self-
conjugate maximal parabolic subgroups do not contribute to the residual spectrum, to prove the holomorphy
of several completed automorphic L-functions on the whole complex plane which appear in constant terms
of the Eisenstein series. They include the exterior square L-functions of GLn, n odd, the Rankin-Selberg L-
functions of GLn×GLm, n 6= m, and L-functions L(s, σ, r), where σ is a generic cuspidal representation
of SO10 and r is the half-spin representation of GSpin(10,C). The main part is proving the holomorphy
and non-vanishing of the local normalized intertwining operators by reducing them to natural conjectures in
harmonic analysis, such as standard module conjecture.

Introduction

Langlands’ theory of Eisenstein series [La2] has been found very useful in the theory of au-
tomorphic L-functions. Langlands had the idea of studying automorphic L-functions using
Eisenstein series [La1]. This was further developed and refined by Shahidi [Sh1-5]. This
is known as Langlands-Shahidi method of studying automorphic L-functions (see [Ge-Sh]
or [Sh6] for an excellent survey). This theory has been found very powerful in establish-
ing functional equations and finiteness of poles of automorphic L-functions in the great
generality which appear in the constant terms of Eisenstein series. On the other hand, it
has been thought that the precise location of poles of L-functions is very hard to get by
this method. Of course, the result of Moeglin-Waldspurger [M-W2] is the first instance,
where they proved, using Eisenstein series, that the completed Rankin-Selberg L-function
for GLn×GLm is holomorphic for 0 < Re s < 1.

In this paper we use Langlands-Shahidi method [Sh4] and the following simple result
of Langlands [La] to prove the holomorphy of several completed automorphic L-functions
which appear in constant terms of the Eisenstein series. Because of the functional equation
L(s, σ, r) = ε(s, σ, r)L(1− s, σ̃, r), it is enough to establish the holomorphy for Re s ≥ 1

2 .
Let G be a quasi-split reductive connected algebraic groups over a number field F and

A is the ring of adeles of F. Let Zd be the maximal F-split torus of the center of G. Fix a
unitary character ξ of Zd(F) \ Zd(A). Let

L2
(
G(F) \ G(A), ξ

)
= { f ∈ L2

(
G(F)Zd(A) \ G(A)

)
| f (zg) = ξ(z) f (g),

for all z ∈ Zd(A), g ∈ G(A)}.
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If G is semi-simple, we do not have to consider the central characters. It is of great
importance to decompose L2

(
G(F) \ G(A), ξ

)
. Langlands’ theory tells us that it has an

orthogonal decomposition according to the conjugacy classes of (M, σ), where M is a Levi
subgroup of G and σ is a cuspidal representation of M. Its discrete part attached to (M, σ) is
called the residual spectrum, denoted by L2

dis

(
G(F)\G(A), ξ

)
(M,σ)

. It is spanned by residues

of Eisenstein series associated to (M, σ). Suppose P is a maximal parabolic subgroup gen-
erated by θ = ∆− {α}, where∆ is a set of simple roots. Then there exists a unique Weyl
group element w0 such that w0θ ⊂ ∆ and w0α < 0. If w0θ = θ, P is called self-conjugate.

Proposition 0.1 (Langlands [La2, Lemma 7.5]) Unless P = MN is self-conjugate and σ is
a cuspidal representation which satisfies w0σ = σ, L2

dis

(
G(F) \ G(A), ξ

)
(M,σ)

is zero.

We apply the above result to the following situation: We follow [Sh4] and use the same
notation. Let P = MN ⊂ G be a maximal parabolic subgroup and σ be a cuspidal repre-
sentation of M(A). We may and will assume that the poles of Eisenstein series may be on
the real axis by normalizing σ so that the action of the maximal split torus in the center
of M at the archimedean places is trivial (see Section 2). The poles of the Eisenstein series
attached to (M, σ) coincide with those of its constant term which consists of automorphic
L-functions and local normalized intertwining operators and the residue of the Eisenstein
series for s > 0 belongs to the residual spectrum. If P is not self-conjugate or w0σ 6= σ, then
the Eisenstein series does not have poles for s > 0. If we can show that the local normalized
intertwining operators are holomorphic and non-zero for Re s ≥ 1

2 , then the automorphic
L-functions do not have a pole for s ≥ 1

2 .
Up to isogeny or more generally central surjections, there are four non self-conjugate

maximal parabolic subgroups in split groups whose derived groups are almost simple: (1)
G = GLm+n and P = MN, M = GLm×GLn for m 6= n, (2) G = SO2n and P = MN,
M = GLn for n odd, (3) G is a simply-connected split group of type E6 and P = MN, the
derived group of M is SL2× SL5 and (4) G is a simply-connected split group of type E6 and
P = MN, M = GL1 ·D5 (almost direct product), which is GSpin(10).

By using the classification of unitary representations of GLn due to Tadic [Ta], we prove
the result on local normalized intertwining operators in cases (1), (2) and (3). We have the
following theorems. In the case of (1), it is a special case of [M-W2, Appendix] and [J-S1].

Theorem 0.2

1. Let σ1 (resp. σ2) be a cuspidal representation of GLm (resp. GLn), m 6= n. Then the
completed Rankin-Selberg L-function L(s, σ1 × σ̃2) is entire.

2. Let σ be a cuspidal representation of GLn, n odd. Then the completed exterior square L-
function L(s, σ,∧2) is entire.

3. Let σ1, σ2 be cuspidal representations of PGL2, PGL5, resp. Suppose Conjecture 7.1 of [Sh1]
holds for the exceptional group of type E6. Then the completed L-function L(s, σ1⊗σ̃2, ρ2⊗
∧2ρ5) is entire, where ρn is a standard representation of GLn(C).

Recall the definition of the above L-functions: Let S be a finite set of places, including all
the archimedean places, such that for every v /∈ S, σ1v, σ2v, are all unramified. For v /∈ S,
let A(σ1v) = {diag(α1v, . . . , αmv)} be the semisimple conjugacy classes attached to σ1v. Let
A(σ2v) = {diag(β1v, . . . , βnv)} be the one attached to σ2v. Then the local L-functions are
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given by

L(s, σ1v × σ̃2v) =
∏

1≤i≤m,1≤ j≤n

(1− αivβ
−1
jv q−s

v )−1

L(s, σv,∧
2) =

∏
1≤i< j≤n

(1− αivα jvq−s
v )−1

L(s, σ1v ⊗ σ̃2v, ρ2 ⊗ ∧
2ρ5) =

∏
1≤i≤2,1≤ j<k≤5

(1− αivβ
−1
jv β

−1
kv q−s

v )−1.

The local L-functions at ramified places v ∈ S are defined in [Sh1] in such a way that they
agree with the ones defined by parametrization.

Proposition 0.3

1. Let σ1, σ2 be cuspidal representations of GLn, where σ1 � σ2 ⊗ | det |t for t ∈ C. Then the
Rankin-Selberg L-function L(s, σ1 × σ2) is entire.

2. Let σ be a non self-dual cuspidal representation of GLn, n even. Then the exterior square
L-function L(s, σ,∧2) is entire.

F. Shahidi encouraged us to consider the case (4) after his work with Muić [Mu-Sh]:
we get an automorphic L-function L(s, σ, r) where σ is a generic cuspidal representation
of M(A) and r is a representation of LM0 = GSpin(10,C). Here r is one of the two 16-
dimensional irreducible half-spin representations of GSpin(10,C). However, we were not
able to prove that the local normalized intertwining operators are holomorphic and non-
zero for Re s ≥ 1

2 at ramified places. One serious obstacle is that we do not have the
standard module conjecture for SO(2n). Nevertheless, we obtain the result that the partial
L-function LS(s, σ, r) is holomorphic for Re s > 0. In the same way, we see that the partial
L-function LS(s, σ1 ⊗ σ̃2, ρ2 ⊗ ∧2ρ5) in Theorem 0.2 is holomorphic for Re s > 1

2 without
any assumption.

Acknowledgements We would like to thank Prof. F. Shahidi for his constant help in ex-
plaining his results and for many discussions and corrections on this work. He also encour-
aged us to consider the half-spin representations. Thanks are also due to the referee who
gave many comments and corrections.

1 Preliminaries

In this section, let F be a local field of characteristic zero. We follow the conventions of [C-
Sh] or [Sh4]. Let G be a quasi-split connected reductive algebraic group over F. Fix a Borel
subgroup B and write B = TU, where T is a maximal torus and U denotes the unipotent
radical of B.

Fix a F-parabolic subgroup P = MN with N ⊂ U and T ⊂ M, a Levi decomposition.
Let A0 be the maximal F-split torus of T and denote by W = W (A0) the Weyl group of
A0 in G. Let w̃0 be the longest element in W (A0) modulo that of the Weyl group of A0 in
M and w0 be a representative for w̃0. If P is a maximal parabolic subgroup generated by
θ = ∆− {α}, then w0 is the unique element in W such that w0(θ) ⊂ ∆ while w0(α) < 0.
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Set

a = X(M)F ⊗Z R

and

a∗C = a∗ ⊗R C,

where X(M)F is the group of F-rational characters of M. As usual, we let

I(ν, σ) = IndMN↑G σ ⊗ exp〈ν,Hp ( )〉⊗1,

where ν ∈ a∗C.
Suppose ν is in the positive Weyl chamber and σ is tempered. Then I(ν, σ) has a unique

irreducible quotient, denoted by J(ν, σ). Let A(ν, σ,w0) be the standard intertwining op-
erator from I(ν, σ) into I(w0ν,w0σ). Then J(ν, σ) is the image of A(ν, σ,w0).

Now assume P is maximal and let α be the unique simple root in N. As in [Sh1], let
α̃ = 〈ρ, α〉−1 · ρ, where ρ is half the sum of roots in N. We identify s ∈ C with sα̃ ∈ a∗C and
denote I(s, σ) = I(sα̃, σ).

Remark 1.1 We have to pay attention to the normalization of α̃ because it is crucial for
our purpose. For example, if G = Sp2n, P = MN,M = GLn, then I(s, σ) = I(sα̃, σ) =
IndG

P (σ ⊗ | det |s) ⊗ 1. But if G = SO2n or SO2n+1, P = MN, M = GLn, then I(s, σ) =
I(sα̃, σ) = IndG

P (σ ⊗ | det |
s
2 ) ⊗ 1. On the other hand, if G = SO2n or SO2n+1, P = MN,

M = GLk⊗Gl, where Gl = SO2l or SO2l+1, k < n, then I(s, σ) = I(sα̃, σ) = IndG
P (σ ⊗

| det |s ⊗ τ )⊗ 1 for σ (resp. τ ) tempered representation of GLk (resp. Gl).
Let A(sα̃, σ,w0) be the standard intertwining operator from I(sα̃, σ) into

I
(
w0(sα̃),w0(σ)

)
. Denote by LM, the L-group of M and let Ln be the Lie algebra of the

L-group of N. Let r be the adjoint action of LM on Ln and decompose r =
⊕m

i=1 ri , with
ordering as in [Sh1]. For each i, 1 ≤ i ≤ m, let L(s, σ, ri) be the local L-function de-
fined in [Sh1]. It is defined to agree completely with Langlands definition of L-functions
whenever there is a parametrization. In particular the L-function for arbitrary σ is just the
analytic continuation of the one attached to the tempered inducing data through the prod-
uct formula (cf. part 3 of Theorem 3.5 and equation 7.10 of [Sh1]). (See also Theorem 5.2
of [Sh2].)

Recall Conjecture 7.1 of [Sh1].

Conjecture Assume σ is tempered and generic. Then each L(s, σ, ri) is holomorphic for
Re s > 0.

Proposition 1.1 [Sh1] If m = 1 or (2) m = 2 and L(s, σ, r2) =
∏

j(1 − α jq−s)−1 for σ
tempered and generic, possibly an empty product where each α j ∈ C is of absolute value one
(in particular if r2 is one-dimensional, this holds), then the conjecture holds.

Proposition 1.2 [C-Sh] If G is a classical group, then the conjecture holds.
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2 Basic facts on Eisenstein series

From this section on, we work with a number field F. Let P = MN be a maximal parabolic
subgroup of G generated by θ = ∆−{α}. We follow the convention of [Sh4]. Let σ = ⊗σv

be a unitary cuspidal representation of M(A). We may and will assume that the poles of
Eisenstein series may be on the real axis by assuming that σ is trivial on A part of P(R),
where P(R) = M0AN is the Langlands decomposition. In the case of M = GLn, we can
identify the A part of P(R) with F+

∞, where A∗F = I1 ·F+
∞ with I1 ideles of norm 1. So in this

case the central character ωσ of σ is trivial on F+
∞. Given a K-finite function ϕ in the space

of σ, we shall extend ϕ to a function ϕ̃ on G(A) and set Φs(g) = ϕ̃(g) exp〈s + ρP,HP(g)〉,
where HP is the Harish-Chandra homomorphism. Define an Eisenstein series

E(s, ϕ̃, g, P) =
∑

γ∈P(F)\G(F)

Φs(γg).

It is known [La2] that E(s, ϕ̃, g, P) converges for Re s � 0 and extends to a meromorphic
function of s in C, with only a finite number of poles in the plane Re s ≥ 0, all simple and
on the real axis if we normalize σ as above.

We also know that the space of Φs is isomorphic to I(s, σ) = IndG(A)
P(A) σ ⊗

exp
(
〈sα̃,HP( )〉

)
, the global induced representation from P(A) to G(A). Let f ∈ I(s, σ).

If E(s, f , g, P) is defined by analytic continuation, then it is an automorphic form on G.
Recall that the residual spectrum attached to (M, σ), L2

dis

(
G(F) \ G(A), ξ

)
(M,σ)

is spanned

by the residues of the Eisenstein series E(s, f , g, P) for Re s > 0 and f ∈ I(s, σ).
We know that the poles of the Eisenstein series coincide with those of its constant terms.

Let M ′ be the subgroup of G generated by w0(θ) and P ′ be a maximal parabolic subgroup
which has M ′ as its Levi factor and N ′ ⊂ U as its unipotent radical. Recall the definition
of self-conjugate maximal parabolic subgroups [Sh3]: P is called self-conjugate if and only
if w0(θ) = θ. Given a parabolic subgroup Q = MQNQ, the constant term of E(s, f , g, P)
along NQ is zero if Q 6= P and Q 6= P ′. If P is not self-conjugate, then

EN(s, f , g, P) = f (g)

EN ′(s, f , g, P) = M(s, σ,w0) f (g).

If P is self-conjugate, then EN (s, f , g, P) is a sum of the above two terms. Here
M(s, σ,w0) is the standard intertwining operator from the global induced representation
I(s, σ) to I(w0s,w0σ). Let M(s, σ,w0) = ⊗vA(s, σv,w0). We normalize the intertwining
operator A(s, σv,w0) as follows:

A(s, σv,w0) = r(s, σv,w0)N(s, σv,w0),

r(s, σv,w0) =
m∏

i=1

L(is, σv, ri)

L(1 + is, σv, ri)ε(s, σv, ri, ψv)
,

(2.1)

where L(is, σv, ri) and ε(s, σv, ri, ψv) are defined in [Sh1]. Let N(s, σ,w0) = ⊗vN(s, σv,w0),
r(s, σ,w0) =

∏
v r(s, σv,w0) and ε(s, σ, ri) =

∏
v ε(s, σv, ri, ψv). Then we have, for f ∈
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I(s, σ),

M(s, σ,w0) f = r(s, σ,w0)N(s, σ,w0) f , r(s, σ,w0) =
m∏

i=1

L(is, σ, ri)

L(1 + is, σ, ri)ε(s, σ, ri)
.

(2.2)

Recall Langlands’ theory in this case: Let φ f =
1

2πi

∫
Re s=s0

E(s, f , g, P) ds. Then φ f spans

a dense subspace of L2
(
G(F) \ G(A), ξ

)
(M,σ)

. The L2-norm of φ f is given by

〈φ f , φ f 〉L2(G(F)\G(A),ξ) =

∫
Zd(A)G(F)\G(A)

|φ f |
2 dx

=
1

2πi

∫
Re s=s0

∑
w∈Ω(θ,θ)

(
M(s, σ,w) f (s), f (−ws̄)

)
ds,

whereΩ(θ, θ) = {id} if P is not self-conjugate andΩ(θ, θ) = {id,w0} if P is self-conjugate.
However, when P is self-conjugate and w0σ 6= σ,

(
M(s, σ,w0) f (s), f (−w0 s̄)

)
is identically

zero since M(s, σ,w0) f (s) ∈ I
(
−s,w0(σ)

)
and f (−w0 s̄) ∈ I(s̄, σ). Therefore we have

Proposition 2.1 (Langlands) Unless P = MN is self-conjugate and w0σ = σ, the residual
spectrum attached to (M, σ), L2

dis

(
G(F) \ G(A), ξ

)
(M,σ)

, is zero.

Proof Under the assumption, in the L2-norm formula, the integrand is holomorphic.
Therefore, we can move the contour to Re s = 0, i.e., φ f does not contribute to the dis-
crete spectrum.

Since the poles of Eisenstein series are contained in the constant terms, we have

Corollary 2.2 If P = MN is not self-conjugate or w0σ 6= σ, then the global intertwining
operator M(s, σ,w0) is holomorphic for Re s > 0.

We know that ε(s, σ, ri) is an exponential factor and so it has neither a zero nor a pole.
So in (2.2), we need to know that

∏m
i=1 L(1 + is, σ, ri) has no zeros for Re s > 0. However

this is an easy consequence of [Sh3]:

Lemma 2.3 If P = MN is not self-conjugate or w0σ 6= σ, then
∏m

i=1 L(1 + is, σ, ri) has no
zeros for Re s > 0.

Proof Consider χ-Fourier coefficient of E(s, f , g, P) [Sh3]: it is given by

Eχ(s, f , e, P) =
∏
v /∈S

W fv (s, ev)
m∏

i=1

LS(1 + is, σ, ri)
−1,

where W fv is the Whittaker model of I(s, σv). Then W fv is holomorphic for Re s > 0 and
non-vanishing. If P is not self-conjugate or w0σ 6= σ, then E(s, f , g, P) is holomorphic for
Re s > 0 and so

∏m
i=1 LS(1 + is, σ, ri) has no zero for Re s > 0.
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From (2.2), we have to analyze the local intertwining operators N(s, σv,w0). Suppose
we have the following:

Assumption (A) N(s, σv,w0) is holomorphic and non-zero for Re s ≥ 1
2 for any v.

Let σ = ⊗σv be a globally generic unitary cuspidal representation of M. Then for all
v, σv is generic and unitary. Suppose σv is non-tempered. The following standard mod-
ule conjecture is proved for various cases including GLn and also Sp2n, SO2n+1 [Mu2]. In
[C-Sh], it is proved when G is an arbitrary quasi-split classical group and π0 is supercuspi-
dal.

Standard module conjecture Given a non-tempered, generic σv, there is a tempered data
π0 and a complex parameter Λ0 which is in the corresponding positive Weyl chamber so that

σv = IM0 (Λ0, π0) = IndM
M0

(π0 ⊗ q〈Λ0,H
M
P0

( )〉).

Let σv be as above in the conjecture and let P0 = M0N0 ⊂ P be another parabolic
subgroup with M0 ⊂ M. Then I(s, σv) = I(sα̃ + Λ0, π0). By inducing in stages and the
factorization property of intertwining operators, we have

A(sα̃ + Λ0, π0, w̃) = AM0 (Λ0, π0,wP0 )A(s, σv,w0),

where w̃ = wP0 w0 and w0 is the longest element of the Weyl group of the split compo-
nent of M in G, w̃ is that of M0 in G and wP0 is the longest element of the Weyl group
of the split component of M0 in M. Here the operator AM0 (Λ0, π0,wP0 ) : IM0 (Λ0, π0) 7→
IM0 (w0Λ0,w0π0) establishes an isomorphism since IM0 (Λ0, π0) is irreducible, and is identi-
fied with its induced map.

Lemma 2.4 Suppose sα̃ + Λ0 is in the positive Weyl chamber for Re s ≥ 1
2 together with

standard module conjecture and Conjecture 7.1 of [Sh1], then Assumption (A) holds.

Proof By definition, the normalizing factor r(s, σv,w0) in (2.1) is the product of the nor-
malizing factors given by the rank-one intertwining operators attached to the positive roots
{β > 0, w̃β < 0} [Sh3]. However, 〈sα̃ + Λ0, β

∨〉 > 0 since sα̃ + Λ0 is in the positive Weyl
chamber for Re s ≥ 1

2 . So by Proposition 1.2, the normalizing factor r(s, σv,w0) is holo-
morphic and non-zero. Since π0 is tempered, A(sα̃ + Λ0, π0, w̃) is holomorphic and so
N(sα̃ + Λ0, π0, w̃) is holomorphic and non-zero. The image of N(sα̃ + Λ0, π0, w̃) is irre-
ducible by Langlands’ classification theorem. Therefore, N(s, σv,w0) is holomorphic and
the image of N(s, σv,w0) is irreducible.

We classify all non self-conjugate maximal parabolic subgroups of split groups whose
derived groups are almost simple. Let θ = ∆− {α}. Note that w0 = wlwl,θ and wl,θ(θ) =
−θ. Therefore, Pθ is self-conjugate if and only if wl(α) = −α. Note that w0 = −1 except
in the case of type An, Dn (n odd), E6. So in those cases all maximal parabolic subgroups
are self-conjugate. By checking case by case in the case of type An, Dn (n odd), E6, we see

Lemma 2.5 The only non self-conjugate maximal parabolic subgroups of split groups whose
derived groups are almost simple, are the following:
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1. Type An: n even, all maximal parabolic subgroups, or n odd, all except θ = ∆ −
{e n−1

2
− e n+1

2
}. This is the case GLn×GLm ⊂ GLn+m, where n 6= m.

2. Type Dn: n odd and θ = ∆− {αn}. This is the case GLn ⊂ SO2n.
3. Type E6: θ = ∆ − {α3}. This is the case P = MN, where the derived group of M is

SL2× SL5.
4. Type E6: θ = ∆− {α1}. This is the case GL1 ·D5 ⊂ E6 (almost direct product).

3 Main Theorems

We look at four cases in Lemma 2.5 separately. Due to Langlands’ result (Corollary 2.2)
and (2.2) and Lemma 2.3, we only have to establish Assumption (A).

3.1 G = SO2n, P = MN, M = GLn, n odd

Recall the following facts from [Sh4], [Sh5]. Let σ = ⊗vσv be a unitary cuspidal repre-
sentation of GLn. Then in (2.2), r = r1 = ∧2ρn, the irreducible 1

2 n(n − 1)-dimensional
representation of GLn(C) on the space ∧2Cn of alternating tensors of rank 2. Suppose σv

is unramified. Then there exists n unramified quasi-characters µ1, . . . , µn of F∗ such that
σv ⊂ IndGLn

B µ1 ⊗ · · · ⊗ µn (actually it is an equality since σv is generic). Let Aσv be the
(semisimple) conjugacy class of the matrix diag

(
µ1($), . . . , µn($)

)
in GLn(C) = LM.

Then the local Langlands’ L-function for the representations ∧2ρn and σv is given by

L(s, σv,∧
2ρn) = det

(
I − ∧2ρn(Aσv )q−s

v

)−1
=
∏

1≤i< j≤n

(
1− µi($)µ j($)q−s

v

)−1
.

We recall the following well-known facts.

Proposition 3.1

1. [Sh1] For each v, the local Langlands’ L-function L(s, σv,∧2ρn) can be defined. We use the
one in [Sh1] given inductively; For tempered σv, the L-function is well-defined and both
definitions in [Sh1] and [Sh4] agree. For a non-tempered σv, we find the Langlands’ data
and define the L-function inductively from the Langlands’ data.

2. [Sh4] The completed L-function L(s, σ,∧2ρn) =
∏

v L(s, σv,∧2ρn) can be continued mero-
morphically to all of C and satisfies the standard functional equation

L(s, σ,∧2ρn) = ε(s, σ,∧2ρn)L(1− s, σ̃,∧2ρn).

3. [J-S2] Let S be a finite set of places including archimedean places such that σv is unrami-
fied for v /∈ S. The partial L-function LS(s, σ,∧2ρn) =

∏
v /∈S L(s, σv,∧2ρn) is absolutely

convergent for Re s > 1 and hence has no zero there.
4. [J-S2], [Sh3] The completed L-function L(s, σ,∧2ρn) has no zeros and no poles on the line

Re s = 1.

We note that in [J-S2], [Sh3], it is proved that only the partial L-function LS(s, σ,∧2ρn)
is holomorphic for Re s ≥ 1. We prove in Proposition 3.4 that each of the local L-function
L(s, σv,∧2ρn) is holomorphic for Re s ≥ 1.
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Recall that any cuspidal representation σ of GLn is globally generic and therefore σv is
generic for all v. Recall the classification of unitary representations of GLn [Ta], [Vo]: Any
generic non-tempered representation σv of GLn, n odd, can be written as follows:

σv = IndGLn
M0

(
π1(x1)⊗ · · · ⊗ πm(xm)⊗ τ1 ⊗ · · · ⊗ τk ⊗ πm(−xm)⊗ · · · ⊗ π1(−x1)

)
,

where 1
2 > x1 ≥ · · · ≥ xm > 0 with π1, . . . , πm, τ1, . . . , τk discrete series representations.

Here πi(xi) = πi ⊗ | det |xi .
Recall that we are identifying s with sα̃, and α̃ = 1

2 (e1 + · · · + en), where e1 − e2, . . . ,

en−1−en, en−1+en are positive simple roots. Therefore I(s, σv) = IndG
GLn

(
σv⊗| det( )|

s
2

)
⊗1.

Notice s
2 instead of s. Then

I(s, σv) = IndG
M0
π1 ⊗ · · · ⊗ πm ⊗ τ1 ⊗ · · ·

⊗ τk ⊗ πm ⊗ · · · ⊗ π1 exp
(
〈sα̃ + Λ0,HM0 ( )〉

)
,

(3.1)

where Λ0 = (x1, . . . , xm, 0, . . . , 0,−xm, . . . ,−x1) and sα̃ = ( s
2 , . . . ,

s
2 ).

Lemma 3.2 Let π1v (resp. π2v) be a supercuspidal representation of GLk (resp. GLl). Then
the normalized rank-one intertwining operators N(s, π1v ⊗ π2v,w0) of GLk+l , N(s, π1v,w0) of
SO2k and N(s, π1v,w0) of SO2k+1 are holomorphic and non-zero except possibly at Re s = −1.

Proof By the general theory in [Sh1], for a supercuspidal representation πv, in (2.1),∏m
i=1 L(is, πv, ri)−1A(s, πv,w0) is entire and non-zero. Therefore the poles of N(s, πv,w0)

come from zeros of
∏m

i=1 L(1 + is, πv, ri)−1. However, by [Sh1, Proposition 7.3], each
L(s, πv, ri)−1 is a product (possibly empty) of (1 − αiq−s

v )−1 with |αi | = 1. From this,
our assertion follows since m = 1 in all of the above cases.

Lemma 3.3 Let v be any place, archimedean or non-archimedean.

1. For two discrete series representations πv (resp. π ′v) of GLk (resp. GLl), the normalized
rank-one intertwining operator N(s, πv ⊗ π ′v,w0) of GLk+l is holomorphic and non-zero
for Re s > − 1

2 .
2. For a discrete series representation πv of GLk, k odd or even, the normalized rank-one

intertwining operator N(s, πv,w0) of SO2k is holomorphic and non-zero for Re s > −1.

Proof Assume first that v is a non-archimedean place.
(1) If Re s > 0, then both A(s, πv ⊗ π ′v,w0) and L(s, πv × π ′v) are holomorphic and

non-zero. So N(s, πv ⊗ π ′v,w0) is holomorphic and non-zero for Re s > 0. If Re s = 0,
then this is well-known (see, for example, [Sh1]). Therefore we only need to consider for
− 1

2 < Re s < 0.
Note that any discrete series representation πv of GLk is the unique subrepresentation

of I(ν, τv) = | det |
a−1

2 ρv ⊗ | det |
a−3

2 ρv ⊗ · · · ⊗ | det |−
a−1

2 ρv with τv = ρv ⊗ · · · ⊗ ρv and
ν = ( a−1

2 , a−3
2 , . . . ,− a−1

2 ) and ρv a supercuspidal representation of GLb. Another dis-
crete series representation π ′v of GLl is the unique subrepresentation of I(ν ′, τ ′v ) with τ ′v =
ρ ′v ⊗ · · · ⊗ ρ

′
v and ν ′ = ( a ′−1

2 , a ′−3
2 , . . . ,− a ′−1

2 ). Then I(s, πv ⊗ π ′v) is a subrepresentation
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of I(λ, τv ⊗ τ ′v ), where λ = ( s
2 + a−1

2 , . . . , s
2 −

a−1
2 ,− s

2 + a ′−1
2 , . . . , s

2 −
a−1

2 ). Then by the
inductive property of intertwining operators, we have

N(s, πv ⊗ π
′
v,w0) = N(λ, τv ⊗ τ

′
v ,w0)|I(s,πv⊗π ′v ).

N(λ, τv ⊗ τ ′v ,w0) is a product of the rank-one operators associated to supercuspidal repre-
sentations (see [Sh3]) attached to the positive roots {β > 0 | w0β < 0}. For those positive
roots, 〈λ, β∨〉 = ( s

2 + a−1
2 − i) − (− s

2 + a ′−1
2 − j), i = 0, . . . , a, j = 0, . . . , a ′. But for

− 1
2 < Re s < 0, Re

(
( s

2 + a−1
2 − i) − (− s

2 + a ′−1
2 − j)

)
cannot be −1. So by Lemma 3.2,

each rank-one intertwining operators associated to supercuspidal representations are holo-
morphic and thus N(λ, τv ⊗ τ ′v ,w0) is holomorphic. Note that for− 1

2 < Re s < 0, w0(sα̃)
is in the positive Weyl chamber and id = N

(
w0(sα̃),w0(πv ⊗ π ′v),w0

)
N(s, πv ⊗ πv,w0).

We showed that N
(
w0(sα̃),w0(πv ⊗ π ′v),w0

)
and N(s, πv ⊗ πv,w0) are holomorphic and

therefore N(s, πv ⊗ πv,w0) cannot be zero.
(2) As in the above, we only need to consider the interval −1 < Re s < 0. A discrete

series representation πv of GLk is the unique subrepresentation of I(ν, σv) with σv = ρv ⊗
· · · ⊗ ρv and ν = ( a−1

2 , a−3
2 , . . . ,− a−1

2 ). Then I(s, πv) is a subrepresentation of I(λ, σv),
where λ = ( s

2 + a−1
2 , s

2 + a−3
2 , . . . , s

2−
a−1

2 ). Then by the inductive property of intertwining
operators, we have

N(s, πv,w0) = N(λ, σv,w0)|I(s,πv).

N(λ, σv,w0) is a product of rank-one operators associated to supercuspidal representations
attached to the positive roots {β > 0 | w0β < 0} (see [Sh3]). For those positive roots,
〈λ, β∨〉 = s

2 + a−1
2 − i, i = 0, . . . , a or ( s

2 + a−1
2 − i)± ( s

2 + a−1
2 − j), 0 ≤ i < j ≤ a. If

−1 < Re s < 0, Re( s
2 + a−1

2 −i), Re
(
( s

2 + a−1
2 −i)±( s

2 + a−1
2 − j)

)
cannot be−1. So the rank-

one operators are holomorphic and non-zero. Therefore, N(λ, σv,w0) is holomorphic and
so N(s, πv,w0) is holomorphic and non-zero by the same argument as in (1).

Now let v be an archimedean place. Then the discrete series exist only for GL1 or GL2

over a real place. Note that the discrete series for GL2 over a real place is given by the

subrepresentation σ(µ, ν) of the principal series π(µ, ν) when µ(x) = | |
p+it

2 sgn(x) and

ν(x) = | |
−p+it

2 , where p is a positive integer and t is a real number. We go exactly the same
way as non-archimedean places as above.

Remark 3.1 Moeglin-Waldspurger [M-W2, Proposition I.10] proved much stronger result
that the normalized rank-one intertwining operator N(s, πv ⊗ π ′v,w0) of GLk+l is holo-
morphic and non-zero for Re s > −1 for two discrete series representations πv (resp.
π ′v) of GLk (resp. GLl). It also follows from [C-Sh] by noting that N(s, πv ⊗ π ′v,w0) =
L(s+1,πv×π

′
v )

L(s,πv×π ′v ) A(s, πv⊗π ′v ,w0). By [C-Sh], L(s + 1, πv×π ′v) is holomorphic for Re s > −1 and
A(s,πv⊗π

′
v ,w0)

L(s,πv×π ′v ) is entire.

From Lemma 3.3, we have

Proposition 3.4

1. Each local L-function L(s, σv,∧2ρn) is holomorphic for Re s ≥ 1.
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2. Let Re s ≥ 1
2 . Assumption (A) holds in the case in consideration, i.e., N(s, σv,w0) is

holomorphic and non-zero for Re s ≥ 1
2 for all v.

Proof In (3.1), we identify N(s, σv,w0) with N(sα̃ + Λ0, π1 ⊗ · · · ⊗ πm ⊗ τ1 ⊗ · · · ⊗ τk ⊗
πm ⊗ · · · ⊗ π1,w0). sα̃ + Λ0 = ( s

2 + x1,
s
2 + x2, . . . ,

s
2 + xm,

s
2 , . . . ,

s
2 ,

s
2 − xm, . . . ,

s
2 −

x1). Note that if Re s ≥ 1, Re( s
2 − xi) > 0. Therefore, sα̃ + Λ0 is in the positive Weyl

chamber. Therefore, as in the proof of Lemma 2.4, the normalized intertwining operator
N(s, σv,w0) is holomorphic and non-zero for Re s ≥ 1. The holomorphy of L(s, σv,∧2ρn)
for Re s ≥ 1 follows from (2.2) by noting that L(s, σ,∧2ρn) has no zeros for Re s ≥ 1. (Since
L(s, σv,∧2ρn)−1 is a polynomial in q−s

v , if L(s, σv,∧2ρn) has a pole, it has infinitely many
poles.) This proves (1).

Note that for 1
2 ≤ Re s < 1,− 1

4 < Re( s
2 − xi) <

1
2 . Therefore the rank-one normalized

intertwining operators attached to permutations among { s
2 − x1, . . . ,

s
2 − xm} and the sign

changes s
2 − xi 7→ −

s
2 + xi , are holomorphic and non-zero due to Lemma 3.3. Actually

they are isomorphisms. So there is an isomorphism by a normalized intertwining operator
which sends (3.1) to I(Λ1, π ⊗ · · · ⊗ πm ⊗ τ1 ⊗ · · · ⊗ τk ⊗ πm ⊗ · · · ⊗ π1), where Λ1 is
in the positive Weyl chamber of the split component of a Levi subgroup. The normalized
intertwining operator attached to the latter induced representation is holomorphic and
non-zero by Proposition 1.2. So the same thing is true for N(s, σv,w0).

Therefore we obtain the following theorem.

Theorem 3.5 Let σ be a unitary cuspidal representation of GLn, where n is odd. Then the
exterior square L-function L(s, σ,∧2ρn) is entire.

Proof By (2.2), Corollary 2.2 and Proposition 3.4, L(s,σ,∧2ρn)
L(s+1,σ,∧2ρn) is holomorphic for s ≥ 1

2 .

However, L(s, σ,∧2ρn) does not have zeros for Re s ≥ 1 by Lemma 2.3. So L(s, σ,∧2ρn) is
holomorphic for s ≥ 1

2 . The functional equation of L(s, σ,∧2ρn) implies that it is entire.

In the same way, we have

Proposition 3.6 Let σ be a non self-dual cuspidal representation of GLn, n even. Then the
exterior square L-function L(s, σ,∧2) is entire.

Remark 3.2 According to Langlands’ functoriality, the self-dual cuspidal representations
of GLn, n even, are supposed to come from SOn (resp. SOn+1) if L(s, σ, Sym2) (resp.
L(s, σ,∧2)) has a pole at s = 1. See [Sh5].

3.2 G = GLn+m, P = MN, M = GLn×GLm, n 6= m

This is a special case of [M-W2, Appendix]. Let σ1 (resp. σ2) be a unitary cuspidal repre-
sentation of GLn (resp. GLm). Moeglin-Waldspurger [M-W2, Appendix] proved that the
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Rankin-Selberg L-function L(s, σ1 × σ̃2) is holomorphic for 0 < Re s ≤ 1
2 using a remark-

able method. The functional equation then implies that it is entire if m 6= n. Here we want
to give a different proof based on the fact that P is not self-conjugate.

Let σ = σ1⊗σ2 be a cuspidal representation of GLn×GLm. Then in (2.2), r = r1 = ρn⊗
ρ̃m, where ρn and ρm are standard representations of GLn(C) and GLm(C), resp. Suppose
σv is unramified. Then σ1v = IndGLn

B µ1 ⊗ · · · ⊗ µn and σ2v = IndGLm
B µ ′1 ⊗ · · · ⊗ µ ′m

for unramified quasi-characters µ1, . . . , µn, µ
′
1, . . . , µ

′
m of F∗. Then the local Langlands’

L-function for the representations ρn ⊗ ρ̃m and σv is given by

L(s, σv, ρn ⊗ ρ̃m) = L(s, σ1v × σ̃2v) =
∏

1≤i≤n,1≤ j≤m

(
1− µi($)µ ′j($)−1q−s

v

)−1
.

Recall the following well-known facts.

Proposition 3.7

1. [Sh1], [Sh4], [J-PS-S] For each v, the local Langlands’ L-function L(s, σ1v × σ2v) can be
defined and the completed L-function L(s, σ1× σ̃2) =

∏
v L(s, σ1v× σ̃2v) can be continued

meromorphically to all of C and satisfies the standard functional equation

L(s, σ1 × σ̃2) = ε(s, σ1 × σ̃2)L(1− s, σ̃1 × σ2).

2. [J-S1] Let S be a finite set of places including archimedean places such that σv is unramified
for v /∈ S. The partial L-function LS(s, σ1 × σ̃2) =

∏
v /∈S L(s, σ1v × σ̃2v) is absolutely

convergent for Re s > 1 and hence no zero there.
3. [J-S1], [Sh3] The completed L-function L(s, σ1 × σ̃2) has no zeros and no poles on the line

Re s = 1.

Lemma 3.8 For 1
2 ≤ Re s < 1, N(s, σv,w0) is holomorphic and non-zero.

Proof Since σ1v, σ2v are generic, they can be written as follows:

σ1v = IndGLn
M1

(
π1(x1)⊗ · · · ⊗ πk(xk)⊗ τ1 ⊗ · · · ⊗ τq ⊗ πk(−xk)⊗ · · · ⊗ π1(−x1)

)
,

σ2v = IndGLm
M2

(
π ′1(y1)⊗ · · · ⊗ π ′l (yl)⊗ τ

′
1 ⊗ · · · ⊗ τ

′
p ⊗ π

′
l (−yl)⊗ · · · ⊗ π

′
1(−y1)

)
,

where 1
2 > x1 ≥ · · · ≥ xk ≥ 0, 1

2 > y1 ≥ · · · ≥ yl ≥ 0 with π1, . . . , πk, π
′
1, . . . , π

′
l ,

τ1, . . . , τq, τ
′

1 , . . . , τ
′
p discrete series representations. Therefore,

I(s, σv) = I(sα̃ + Λ0, π1 ⊗ · · · ⊗ πk ⊗ τ1 ⊗ · · · ⊗ τq ⊗ πk ⊗ · · · ⊗ π1

⊗ π ′1 ⊗ · · · ⊗ π
′
l ⊗ τ

′
1 ⊗ · · · ⊗ τ

′
p ⊗ π

′
l ⊗ · · · ⊗ π

′
1).

(3.2)

where sα̃ + Λ0 = ( s
2 + x1, . . . ,

s
2 + xk,

s
2 , . . . ,

s
2 ,

s
2 − xk, . . . ,

s
2 − x1,−

s
2 + y1, . . . ,

− s
2 + yl,−

s
2 , . . . ,−

s
2 ,−

s
2 − yl, . . . ,−

s
2 − y1). We identify N(s, σv,w0) with N(Λ,Σv,w0),

whereΛ = sα̃+Λ0,Σv = π1⊗· · ·⊗πk⊗τ1⊗· · ·⊗τq⊗πk⊗· · ·⊗π1⊗π ′1⊗· · ·⊗π
′
l ⊗τ

′
1 ⊗

· · ·⊗τ ′p⊗π
′
l ⊗· · ·⊗π

′
1. We note that for 1

2 ≤ Re s < 1, Re
(

s
2 +xi−(− s

2 +y j)
)
> 0 and− 1

2 <
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Re
(

s
2 −xi− (− s

2 + y j )
)
< 1. Therefore by Lemma 3.3, the rank-one normalized intertwin-

ing operators attached to permutations among { s
2 − x1, . . . ,

s
2 − xk,−

s
2 + y1, . . . ,−

s
2 + yl}

are holomorphic. So N(Λ,Σv,w0) is holomorphic. If Λ is in the closure of the positive
Weyl chamber, it is non-zero. We argue as in [Zh, Theorem 3]. Suppose Λ is not in the
closure of the positive Weyl chamber. Choose w1 ∈ W so that w1Λ is in the closure of the
positive Weyl chamber. Then

N
(
w1Λ,w1(Σv),w0w−1

1

)
= N(Λ,Σv,w0)N

(
w1Λ,w1(Σv),w−1

1

)
.

By Proposition 1.2, N
(
w1Λ,w1(Σv),w0w−1

1

)
and N

(
w1Λ,w1(Σv),w−1

1

)
are holomorphic

and non-zero since w1Λ is in the closure of the positive Weyl chamber. Since N(Λ,Σv,w0)
is holomorphic, it is non-zero.

Remark 3.3 Moeglin-Waldspurger [M-W2, Appendix] proved much stronger result that
N(s, σv,w0) is holomorphic for Re s > −e(σv), where e(σv) is some positive number. The
argument in [Zh, Theorem 3] proves that, for a tempered and generic representation σv, if
N(ν, σv,w0) is holomorphic at ν, then it is non-zero at ν under Conjecture 7.1 of [Sh1].

Therefore, we have

Theorem 3.9 [M-W2, Appendix] Let σ1 (σ2) be a unitary cuspidal representation of GLn

(GLm), n 6= m. Then the Rankin-Selberg L-function L(s, σ1 × σ2) is entire.

Proposition 3.10 Let σ1, σ2 be unitary cuspidal representations of GLn, where σ1 � σ2 ⊗
| det( )|t for all t ∈ C. Then the Rankin-Selberg L-function L(s, σ1 × σ2) is entire.

3.3 The case G is a simply-connected split group of type E6 and P = MN, M =
GL1 ·(SL2× SL5) (almost direct product)

This is the case E6 − 2 in [Sh4]. There is a canonical surjection M 7→ PGL2× PGL5.
Let σ1, σ2 be cuspidal representations of PGL2, PGL5, resp. Then σ1 ⊗ σ2 can be consid-
ered as a cuspidal representation of M. Let S be a finite set of places, including all the
archimedean places, such that for every v /∈ S, σ1v, σ2v, are all unramified. For v /∈ S,
let A(σ1v) = {diag(α1v, α2v)} be the semisimple conjugacy classes attached to σ1v. Let
A(σ2v) = {diag(β1v, . . . , β5v)} be the one attached to σ2v. Then the direct computation
shows that

L(s, σ1v ⊗ σ2v, r1) = L(s, σ1v ⊗ σ̃2v, ρ2 ⊗ ∧
2ρ5) =

∏
1≤i≤2,1≤ j<k≤5

(1− αivβ
−1
jv β

−1
kv q−s

v )−1

L(s, σ1v ⊗ σ2v, r2) = L(s, σ2v) =
5∏

i=1

(1− βivq−s
v )−1,

where ρn is the standard representation of GLn(C). In the same way as in Proposition 3.4,
we can see that the normalized local intertwining operators satisfy Assumption (A), pro-
vided that Conjecture 7.1 of [Sh1] holds in this case. Unfortunately, the result of [C-Sh]
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does not apply to the exceptional group. Since the standard L-function L(s, σ2) has no zeros
for Re s ≥ 1, we have, by Corollary 2.2,

Theorem 3.11 Let σ1, σ2 be cuspidal representations of PGL2, PGL5, resp. Suppose Conjec-
ture 7.1 of [Sh1] holds for the exceptional group of type E6. Then the completed L-function

L(s, σ1 ⊗ σ̃2, ρ2 ⊗ ∧
2ρ5),

is entire.

3.4 The case G is a simply-connected split group of type E6 and P = MN, M = GL1 ·D5

(almost direct product)

This is the case (xxiv) in [La1]. This case was suggested by Shahidi from the work [Mu-Sh].
Recall some facts from [Mu-Sh]. Let∆ = {α1, . . . , α6} be the set of simple roots of T with
respect to the Borel subgroup B, which are labeled on Dynkin diagram in the standard way.
Denote by P = MN (P ′ = M ′N ′, respectively) the maximal parabolic subgroup of G which
corresponds to the set of simple roots θ = ∆− {α1} (θ ′ = ∆− {α6}, respectively). Then
M, M ′ are groups of type D5. Let w0 be the longest element of the Weyl group W modulo
that of T in M. Then w0(θ) = θ ′ and M ′ = w0Mw−1

0 . The adjoint representation of LM on
Ln is an irreducible representation of the lowest weight α∨1 . Denote this representation by r.
This is one of the two 16-dimensional irreducible half spin representations when restricted
to the derived group of LM or the half-spin representation of LM = GSpin(10,C) by abuse
of terminology. Let σ be a generic cuspidal representation of M(A). Then the completed
L-function L(s, σ, r) is defined.

Theorem 3.12 Let σ be a generic cuspidal representation of SO(10). Then the completed
L(s, σ, r) is entire if Assumption (A) is satisfied.

We can prove that Assumption (A) is satisfied for unramified places from Shahidi’s result
that L(s, σv, r) is holomorphic for Re s ≥ 1 [Sh4, Lemma 5.8]. However, we were not able
to prove that the local normalized intertwining operators are holomorphic and non-zero
for Re s ≥ 1

2 at ramified places. One serious obstacle is that we do not have the standard
module conjecture for SO(2n). Nevertheless, in view of (2.2) and Corollary 2.2, we obtain
the result that the partial L-function LS(s, σ, r) is holomorphic for Re s > 0: Let S be a
finite set of places, including all the archimedean places, such that for every v /∈ S, σv is
unramified. Take f = ⊗v fv such that for each v /∈ S, fv is the unique Kv-fixed function
normalized by fv(ev) = 1 and let f̃v be the Kv-fixed function in the space of I

(
−s,w0(σv)

)
,

normalized the same way. Then (2.2) can be written as (see [Sh4, (2.7)])

M(s, σ,w0) f =
LS(s, σ, r)

LS(1 + s, σ, r)
⊗v /∈S f̃v ⊗

⊗
v∈S

A(s, σv,w0) fv.

For each v ∈ S, A(s, σv,w0) is not a zero operator. By Corollary 2.2, M(s, σ,w0) is holo-
morphic for Re s > 0. Suppose LS(s, σ, r) has a pole for Re s > 1. Then for each v ∈ S,
choose fv such that A(s, σv,w0) fv is not zero. From [Sh4, Theorem 5.1], LS(s, σ, r) has no
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poles for Re s > 2. We obtain a contradiction. In the same way, we see that LS(s, σ, r) is
holomorphic for Re s > 0.

Again in the same way, we see that the partial L-function LS(s, σ1 ⊗ σ̃2, ρ2 ⊗ ∧2ρ5) in
Theorem 3.11 is holomorphic for Re s > 1

2 without any assumption.
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