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Abstract
Hadwiger’s conjecture asserts that every graph without a Kt-minor is (t − 1)-colourable. It is known that
the exact version of Hadwiger’s conjecture does not extend to list colouring, but it has been conjectured
by Kawarabayashi and Mohar (2007) that there exists a constant c such that every graph with no Kt-minor
has list chromatic number at most ct. More specifically, they also conjectured that this holds for c= 3

2 .
Refuting the latter conjecture, we show that the maximum list chromatic number of graphs with no Kt-
minor is at least (2− o(1))t, and hence c≥ 2 in the above conjecture is necessary. This improves the
previous best lower bound by Barát, Joret and Wood (2011), who proved that c≥ 4

3 . Our lower-bound
examples are obtained via the probabilistic method.
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1. Introduction
Preliminaries.Given a number t ∈N, a Kt-minor is a graph G whose vertex set can be partitioned
into t pairwise disjoint non-empty sets Z1, . . . , Zt , such that for every i ∈ [t], the induced subgraph
G[Zi] is connected, and furthermore, for every two distinct i, j ∈ [t], there exists at least one edge
in G with endpoints in the sets Zi and Zj. We say that a graph contains Kt as a minor or that it
contains a Kt-minor if it admits a subgraph which is a Kt-minor.

Given a graph G and a colour-set S, a proper colouring of G with colours from S is a mapping
c :V(G)→ S such that c−1(s) is an independent set, for every s ∈ S. Given a graph G, a list assign-
ment for G is an assignment L :V(G)→ 2N of finite sets L(v) (called lists) to the vertices v ∈V(G).
An L-colouring of G is defined as a proper colouring c :V(G)→N of G in which every vertex is
assigned a colour from its respective list, that is, c(v) ∈ L(v) for every v ∈V(G). With this, we may
define the chromatic number χ(G) of a graph G as the smallest integer k≥ 1 such that G admits
an L-colouring, where L(v) := [k] for every v ∈V(G).

In a similar way, the list chromatic number χ�(G) of a graphG is defined as the smallest number
k≥ 1 such that G admits an L-colouring for every assignment L( · ) of colour lists to the vertices of
G, provided that |L(v)| ≥ k for every v ∈V(G).

Clearly, χ(G)≤ χ�(G) for every graph G, but in general χ�(G) is not bounded from above by a
function in χ(G), as shown for example by complete bipartite graphs.

Hadwiger’s conjecture, arguably one of the most important open problems in graph theory,
states the following upper bound on the chromatic number of graphs with no Kt-minor:
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Conjecture 1. (Hadwiger [7], 1943) For every t ∈N, if G is a graph not containing a Kt-minor,
then χ(G)≤ t − 1.

Hadwiger’s conjecture and its variants have received a lot of attention in the past, and a very
good overview of partial results on this topic until about 2 years ago can be found in the survey
article [17] by Seymour. In the following, let us briefly highlight the milestone results regarding
Hadwiger’s conjecture obtained so far.

As a result of Wagner [22], it was known that the case t = 5 of Hadwiger’s conjecture is equiv-
alent to the statement of the famous four colour conjecture. After its confirmative resolution by
Appel, Haken and Koch [1, 2] in 1977, Hadwiger’s conjecture had been proved for all values t ≤ 5.
Notably, in 1993, Robertson, Seymour and Thomas [16] managed to go one step further and to
prove Hadwiger’s conjecture also for the case t = 6. As of today, all the cases t ≥ 7 of Hadwiger’s
conjecture remain open problems.

The evident difficulty of the exact version of Hadwiger’s conjecture has inspired many
researchers to study its asymptotic relaxation, known as the Linear Hadwiger’s conjecture:

Conjecture 2. There exists an absolute constant c> 0 such that every graph G not containing a
Kt-minor satisfies χ(G)≤ ct.

While also the Linear Hadwiger’s conjecture remains open, there has been a lot of progress. By
classical results of Kostochka [10] and Thomason [19] from 1984, it was known that Kt-minor-
free graphs are O(t

√
log t)-colourable. While already quite close to a linear bound, it has proven

difficult to overcome this order of magnitude during more than 30 years of research. Finally, in
2019, Norine, Postle and Song [11] managed to break this barrier, by proving that the maximum
chromatic number of Kt-minor-free graphs is inO(t( log t)1/4+o(1)). Very soon afterwards, several
related results, extensions and improvements of this bound have been obtained, see [12–15]. The
current state of the art-bound of O(t log log t) has been obtained only couple of months ago by
Delcourt and Postle [6].

Parallel to the development of Hadwiger’s conjecture, which concerns the ordinary chromatic
number, the list chromatic number of graphs with no Kt-minor has also received a considerable
amount of interest. For example, Borowiecki [5] asked whether every graph with no Kt-minor has
list chromatic number at most t − 1 (which would strengthen Hadwiger’s conjecture). While this
is easily seen to be true for t ≤ 4, already for t = 5 there exist examples of planar graphs (hence
K5-minor-free) with list chromatic number 5, as constructed first by Voigt [21]. Later, Thomassen
[20] proved that 5 is also the correct upper bound for the list chromatic number of planar graphs,
and using Wagner’s result [22], this carries over to K5-minor-free graphs, see [8, 18]. For every
t ≥ 6, the maximum list chromatic number of Kt-minor-free graphs remains unknown.

Since the exact version of Hadwiger’s conjecture does not extend to list colouring, it is natural to
study asymptotic versions. The current state of the art-upper bound on the list chromatic number
of Kt-minor-free graphs is O(t( log log t)2), as was recently proved by Delcourt and Postle [6].
Compare also [12, 15] for the previous asymptotic upper bounds ofmagnitudesO(t( log t)1/4+o(1))
and O(t( log log t)6), respectively.

The following List Hadwiger conjecture was first stated by Kawarabayashi and Mohar [9] in
2007, compare also the entry [24] in the Open Problem Garden.

Conjecture 3. There exists an absolute constant c> 0 such that every Kt-minor-free graph G
satisfies χ�(G)≤ ct.

At first, an even stronger conclusion, namely that every Kt-minor-free graph is
t-list-colourable, was believed to be possible, compare for example [9, 23]. However, this stronger
conjecture was disproved by the following result of Barát, Joret and Wood [3] from 2011, which
shows that c≥ 4

3 in Conjecture 3 is necessary.
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Theorem 4. For every integer t ≥ 1 there exists a graph with no K3t+2-minor and list chromatic
number greater than 4t.

Kawarabayashi andMohar stated in [9] that they believe that Conjecture 3 holds true for c= 3
2 ,

and this statement also appears as Conjecture 8.4 in the survey article [17] by Seymour:

Conjecture 5. Every graph G without a Kt-minor satisfies χ�(G)≤ 3
2 t.

In this note, we disprove Conjecture 5 by showing that the maximum list chromatic number of
Kt-minor-free graphs is at least 2t − o(t), and hence c≥ 2 in Conjecture 3 is necessary. The proof
enhances an idea from [3] by using probabilistic arguments.

Theorem 6. For every ε ∈ (0, 1) there is t0 = t0(ε) such that for every t ≥ t0 there exists a graph with
no Kt-minor and list chromatic number at least (2− ε)t.

It would be interesting to see whether our lower-bound construction could be optimal up to
the lower-order term, or whether further improvement of the lower bound is possible.

Problem 7. Does every Kt-minor-free graph G satisfy χ�(G)≤ 2t?

2. Proof of Theorem 6
In the following, for a natural number n ∈N and a probability p ∈ [0, 1], we denote by G(n, n, p)
the bipartite Erdős-Renyi graph, that is, a random bipartite graph G with bipartition A∪ B such
that |A| = |B| = n, in which every pair ab with a ∈A, b ∈ B is selected as an edge of G with
probability p, independently from all other such pairs.

Lemma 8. Let ε ∈ (0, 1) be fixed, let f = f (ε) ∈N and δ = δ(ε) ∈ (0, 1) be constants chosen such
that f δ < 1. Let p= p(n) := n−δ . Then w.h.p. as n→ ∞, the random graph G=G(n, n, p(n)) with
bipartition A∪ B satisfies both of the following properties:

• For every subset X ⊆A such that |X| ≥ εn and every collection of pairwise disjoint non-empty
subsets Y1, . . . , Yk ⊆ B such that k≥ εn and max{|Y1|, . . . , |Yk|} ≤ f , there exists a vertex
x ∈ X and some j ∈ [k] such that G contains all the edges xy, y ∈ Yj. The same statement
holds symmetrically for the case when X ⊆ B and Y1, . . . , Yk ⊆A.

• G has maximum degree at most εn.

Proof.

• Let En denote the probability event that G does not satisfy the property claimed in the
first item. We need to show that P(En)→ 0 as n→ ∞. So consider a fixed subset X ⊆A
(or symmetrically, X ⊆ B) such that |X| ≥ εn, and a fixed collection Y1, . . . , Yk of disjoint
non-empty subsets of B (or symmetrically, A), where k≥ εn and max{|Y1|, . . . , |Yk|} ≤ f .
Let E(X, Y1, . . . , Yk) be the probability event ‘there exists no pair (x, j) ∈ X × [k] such that
x is fully connected to the vertices in Yj’. Fixing a vertex x ∈ X and an index j ∈ [k], clearly
the probability of the event that ‘x is not fully connected to Yj’ equals 1− p|Yj| ≤ 1− pf .
Since these events are independent for different choices of (x, j), we conclude that

P(E(X, Y1, . . . , Yk))≤
(
1− pf

)|X|·k ≤ (
1− pf

)ε2n2 ≤ exp(− pf ε2n2)= exp
(
−ε2n2−f δ

)
.

With a rough estimate, there are at most
2 · 2n · (n+ 1)n = exp(ln(2)(n+ 1)+ n ln(n+ 1))

ways to select the sets X, Y1, . . . , Yk. Hence, applying a union bound we find that

P(En)≤ exp(ln(2)(n+ 1)+ n ln(n+ 1)− ε2n2−f δ).
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The right hand side of the above inequality tends to 0 as n→ ∞, since f δ < 1 and hence
ε2n2−f δ = �(n2−f δ) grows faster than ln(2)(n+ 1)+ n ln(n+ 1)=O(n ln n). This proves
that G satisfies the properties claimed by the first item w.h.p., as required.

• To show that also the property claimed by the second item holds true w.h.p., consider the
probability that a fixed vertex x ∈A∪ B has more than εn neighbours in G. Note that the
degree of x in G(n, n, p) is distributed like a binomial random variable B(n, p), and hence
its expectancy is np= n1−δ , which is smaller than εn

2 for n sufficiently large in terms of ε

and δ. Applying Chernoff’s bound we find for every sufficiently large n:

P(dG(x)> εn)≤ P(B(n, p)> 2np)≤ exp
(

−1
3
np

)
= exp

(
−1
3
n1−δ

)
.

Since this bound applies to every choice of x ∈A∪ B, applying a union bound we find that
the probability that G has maximum degree more than εn is at most

2n exp
(

−1
3
n1−δ

)
= exp

(
ln(2n)− 1

3
n1−δ

)

which tends to 0 as n→ ∞, as desired (here we used that δ < 1 and hence n1−δ grows faster
than ln(2n)). �

The next lemma uses Lemma 8 to obtain a useful deterministic statement about the exis-
tence of graphs with certain properties, which are then handy when constructing the lower-bound
examples for Theorem 6.

Lemma 9. For every ε ∈ (0, 1), there is n0 = n0(ε) such that for every n≥ n0, there exists a graph H
whose vertex set V(H)=A∪ B is partitioned into two disjoint sets A and B of size n, and such that
the following properties hold:

• Both A and B are cliques of H,
• every vertex in H has at most εn non-neighbours in H, and
• for every t ∈N such that t ≥ (1+ 2ε)n, H does not contain Kt as a minor.

Proof. Let f := � 1
ε
� ∈N and δ := ε

2 . Then f δ < 1, and hence we may apply Lemma 8. It follows
directly that there exists n0 = n0(ε) ∈N such that for every n≥ n0 there exists a bipartite graph G,
whose bipartition classes A and B are both of size n, and such that

• For every subset X ⊆A such that |X| ≥ εn and every collection of pairwise disjoint non-
empty subsets Y1, . . . , Yk ⊆ B such that k≥ εn and max{|Y1|, . . . , |Yk|} ≤ f , there exists
a vertex x ∈ X and some j ∈ [k] such that G contains all the edges xy, y ∈ Yj. The same
statement holds symmetrically for the case when X ⊆ B and Y1, . . . , Yk ⊆A.

• G has maximum degree at most εn.

We now define H as the complement of G (also with vertex set A∪ B). Since G is bipartite,
clearly A and B form cliques in H, verifying the first item. The second item follows directly from
the fact that �(G)≤ εn.

It hence remains to verify the last item. Towards a contradiction, suppose that there exists a
number t ∈N, t ≥ (1+ 2ε)n, such that H contains Kt as a minor. This implies that there exists a
collection Z of non-empty and pairwise disjoint subsets of V(H) such that |Z| = t and such that
for every two distinct Z, Z′ ∈Z , there exists at least one edge in H connecting a vertex in Z to a
vertex in Z′. Let us denote Zs := {Z ∈Z||Z| = s}, and zs := |Zs|, for every s≥ 1. We clearly have

2n≥
∑
s≥1

szs ≥ 2(t − z1)+ z1 = 2t − z1 ≥ 2n+ 4εn− z1.
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Rearranging yields that z1 ≥ 4εn. From this, we may conclude that either A or B contains at
least 2εn singletons fromZ . By symmetry (possibly by renamingA and B), wemay assume w.l.o.g.
that B contains at least 2εn singletons from Z , and denote the set of these singletons by X. Let
us now define ZA := {Z ∈Z|Z ⊆A} and ZB := {Z ∈Z|Z ∩ B �= ∅}. Since the sets in Z are pair-
wise disjoint, we can see that |ZB| ≤ |B| = n, and therefore |ZA| = t − |ZB| ≥ t − n≥ 2εn. Since
|A| = n, the latter implies that there are at least εn distinct sets in ZA which have size at most 1

ε
.

Let Y1, . . . , Yk with k≥ εn be an enumeration of the sets inZA of size at most 1
ε

≤ f . By the above,
there exists j ∈ [k] and a vertex x ∈ X such that xy ∈ E(G) for every y ∈ Yj. Since H is the comple-
ment of G, this means that {x} and Yj are distinct sets in Z , which do not have any connecting
edge. This is a contradiction to our initial assumptions, and hence we have shown that the third
item claimed in the lemma is also satisfied. This concludes the proof. �

We are now ready for the proof of Theorem 6. The only missing ingredient is the following
well-known ‘pasting-lemma’, compare Lemma 3 in [3].

Lemma 10. Let G1 and G2 be -minor-free graphs, and let V(G1)∩V(G2)= C. If C forms a clique
in both G1 and G2, then the graph G1 ∪G2 is also Kt-minor-free.

Proof of Theorem 6. Let a fixed ε ∈ (0, 1) be given. Pick some ε′ ∈ (0, 1) such that 2−ε
′

1+2ε′ ≥ 2− ε
2 .

Let n0 = n0(ε′) ∈N be as in Lemma 9, and define t0 := max{�(1+ 2ε′)n0�,
⌈ 4

ε

⌉}. Now, let t ≥ t0 be
any given integer. Define n :=

⌊
t

1+2ε′
⌋

≥ n0. Applying Lemma 9, we find that there exists a graph
H whose vertex set is partitioned into two non-empty sets A and B of size n, such that both A and
B form cliques in H, every vertex in H has at most ε′n non-neighbours, and H is Kt-minor-free
(since t ≥ (1+ 2ε′)n, by definition of n).

For every possible assignment c ∈ [2n− 1]A of colours from [2n− 1] to vertices inA, denote by
H(c) an isomorphic copy ofH, such that the vertex set ofH(c) decomposes into the setsA and B(c)
of size n. More precisely, the distinct copiesH(c), c ∈ [2n− 1]A ofH share the same set A but have
pairwise disjoint sets B(c). Since A forms a clique of size n in the Kt-minor-free graph H(c) for
every colouring c :A→ [2n− 1], it follows by repeated application of Lemma 10 that the graph
G with vertex set A∪ ⋃

c∈[2n−1]A B(c), obtained as the union of the graphs H(c), c ∈ [2n− 1]A, is
Kt-minor-free.

Now, consider an assignment L :V(G)→ 2N of colour lists to the vertices of G as follows: For
every vertex a ∈A, we define L(a) := [2n− 1], and for every vertex b ∈ B(c) for some colouring
c ∈ [2n− 1]A of A, we define L(b) := [2n− 1] \ {c(a)|a ∈A, ab /∈ E(H(c))}. Note that since every
vertex in B(c) has at most ε′n non-neighbours in H(c), we have |L(v)| ≥ 2n− 1− ε′n for every
vertex v ∈V(G).

We now claim that G does not admit a proper colouring with colours chosen from the lists
L(v), v ∈V(G), which will then prove that χ�(G)≥ 2n− ε′n. Indeed, suppose towards a contradic-
tion there exists a proper colouring cG :V(G)→N ofG such that cG(v) ∈ L(v) for every v ∈V(G).
Let c be the restriction of cG toA, and consider the proper colouring ofH(c) obtained by restricting
cG. SinceH(c) has order 2n and cG(v) ∈ [2n− 1] for every v ∈V(H(c)), there must exist two (nec-
essarily non-adjacent) vertices inH(c) which have the same colour with respect to cG. Concretely,
there exist a ∈A, b ∈ B(c) such that ab /∈ E(H(c)) and cG(a)= cG(b). This however yields a
contradiction, since cG(b) ∈ L(b) and by definition c(a)= cG(a) is not included in the list of b.

We conclude that indeed, G is a Kt-minor-free graph which satisfies

χ�(G)≥ (2− ε′)n= (2− ε′)
⌊

t
1+ 2ε′

⌋
> (2− ε′)

(
t

1+ 2ε′ − 1
)

≥
(
2− ε

2

)
t − (2− ε′)≥ (2− ε)t,

where for the last inequality we used t ≥ t0 ≥ 4
ε
. �
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