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Abstract

We study linear complementary dual four circulant codes of length 4n over Fq when q is an odd prime
power. When qδ + 1 is divisible by n, we obtain an exact count of linear complementary dual four circulant
codes of length 4n over Fq. For certain values of n and q and assuming Artin’s conjecture for primitive
roots, we show that the relative distance of these codes satisfies a modified Gilbert–Varshamov bound.
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1. Introduction
Linear complementary dual (LCD) codes are linear codes that intersect with their dual
trivially. This concept was introduced by Massey [11], motivated by a problem in
information theory. Boolean masking, of interest in embedded cryptography, led to a
rediscovery of LCD codes in [4]. Self-dual double negacirculant (circulant) codes over
finite fields have been studied in [1, 2] and self-dual four negacyclic (circulant) codes
over finite fields have been studied in [13, 14]. In these four papers, the authors derive a
modified Gilbert–Varshamov bound on the relative distance for the codes, building on
exact enumeration results for a given code length and finite field. A natural question is
to ask for a modified Gilbert–Varshamov bound on the relative distance for LCD four
circulant codes over finite fields.

This paper will give an answer to this question. Section 2 introduces some basic
concepts and definitions. Section 3 develops the machinery of the Chinese remainder
theorem (CRT) approach to four circulant codes. Section 4 gives the exact enumeration
of LCD four circulant codes over finite fields. Section 5 is dedicated to asymptotic
bounds on the relative Hamming distance of these codes when their lengths tend to
infinity.
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2. Notation and definitions

Let q be a prime power. A linear code C of length n over Fq is a subspace of Fn
q.

If x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) are two elements of Fn
q, their standard

(Euclidean) inner product is 〈x, y〉E =
∑n

i=1 xiyi, where the operation is performed in
Fn

q. The Euclidean dual code C⊥E of C over Fq is defined by

C⊥E = {y ∈ Fn
q | 〈x, y〉E = 0 for all x ∈ C}.

A linear code C of length n over Fq is called an LCD code with respect to the Euclidean
inner product if C ∩C⊥E = {0}.

Define the conjugate a of a ∈ Fq by a = a
√

q. The Hermitian inner product of x and
y in Fn

q is defined by 〈x, y〉H =
∑n

i=1 xiyi. The Hermitian dual code C⊥H of C over Fq is
defined by

C⊥H = {y ∈ Fn
q | 〈x, y〉H = 0 for all x ∈ C}.

A linear code C of length n over Fq is called an LCD code with respect to the Hermitian
inner product if C ∩C⊥H = {0}.

A matrix A over Fq is said to be circulant if its rows are obtained by successive
shifts from the first row. If the rows are obtained by successive negative shifts from
the first row, the matrix is said to be negacirculant. A code is called a double circulant
(negacirculant) code if its generator matrix is of the form

(In, A),

where In is the identity matrix of order n and A is a circulant (negacirculant) matrix.
In polynomial form this can be written as (1, a(x)), where the x-expansion of the
polynomial a(x) is the first row of A.

A linear code C is called a four circulant code if the code C is generated by(
In 0 A B
0 In −Bt At

)
,

where A, B are circulant matrices and the exponent ‘t’ denotes transposition. This
so-called four circulant construction was introduced in [3] and revisited in [8]. If
AAt + BBt + In = 0, then C is a self-dual code.

From an algebraic perspective, we can view such a code C as an R[x]/(xn − 1)
submodule in (R[x]/(xn − 1))4 , and the generator matrix of C is(

1 0 a(x) b(x)
0 1 −b′(x) a′(x)

)
,

where a′(x), b′(x) are two polynomials of degree less than n, uniquely defined by the
conditions a′(x) = a(xn−1) mod (xn − 1), b′(x) = b(xn−1) mod (xn − 1).

Let f (x) = a0 + a1x + · · · + amxm ∈ Fq[x] with am , 0. The reciprocal polynomial
f ∗(x) of f (x) is defined by f ∗(x) = xm f (1/x) = a0xm + a1xm−1 + · · · + am. The
polynomial f (x) is a self-reciprocal polynomial if f (x) = f ∗(x). (See [9] for more on
reciprocal polynomials.)
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Denote by T the standard shift operator on Fn
q. A linear code C is said to be a quasi-

cyclic code of index l if it is invariant under T l. Obviously, a four circulant code is a
quasi-cyclic code of index four.

If C(n) is a family of codes with parameters [n, kn,dn] over Fq, the rate ρ and relative
distance δ are defined as ρ = lim supn→∞ kn/n and δ = lim infn→∞ dn/n, respectively. A
family of codes is called asymptotically good if ρδ > 0.

3. Algebraic structure of four circulant codes

We assume that q is an odd prime power and gcd(n, q) = 1. According to [10], the
factorisation of xn − 1 into distinct irreducible polynomials over Fq takes the form

xn − 1 = α(x − 1)
s∏

i=1

gi(x)
t∏

j=1

h j(x)h∗j(x),

where α ∈ F∗q, gi(x) is a self-reciprocal polynomial with deg(g(x)) = 2ki for 1 ≤ i ≤ s,
and h∗j(x) is the reciprocal polynomial of h j(x) with deg(h j(x)) = l j for 1 ≤ j ≤ t.

By the CRT,

Fq[x]
(xn − 1)

'
Fq[x]

(x − 1)
⊕

( s⊕
i=1

Fq[x]
(gi(x))

)
⊕

( t⊕
j=1

(( Fq[x]
(h′j(x))

)
⊕

( Fq[x]
(h′′j (x))

)))

' Fq ⊕

( s⊕
i=1

Fq2ki

)
⊕

(( t⊕
j=1

Fql j ⊕ Fql j

))
.

In particular, each Fq[x]/(xn − 1)-linear code C of length four can be decomposed as
the ‘CRT sum’

C ' C0 ⊕

( s⊕
i=1

Ci

)
⊕

( t⊕
j=1

(C′j ⊕C′′j )
)
,

where C0 is a linear code over Fq, Ci is a linear code over Fq2ki of length four for
1 ≤ i ≤ s, and C′j and C′′j are linear codes over Fql j of length four for 1 ≤ j ≤ t. These
codes are called the constituents of C.

Lemma 3.1 [5, Theorem 3.1]. A four circulant code C over Fq[x]/(xn − 1) of length
four is LCD with respect to the Hermitian inner product (or equivalently, a quasi-
cyclic code of index four of length 4n over Fq is LCD with respect to the Euclidean
inner product) if and only if the following conditions hold:

(i) C0 ∩C⊥E
0 = {0};

(ii) Ci ∩C⊥H
i = {0}, for 1 ≤ i ≤ s;

(iii) C′j
⊥E ∩C′′j = {0} and C′j ∩C′′j

⊥E = {0}, for 1 ≤ j ≤ t.

We now discuss the three conditions in Lemma 3.1 in more detail.

https://doi.org/10.1017/S0004972718000175 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972718000175


162 H. W. Zhu and M. Shi [4]

Let ξ be a primitive nth root of unity over Fq. Suppose that gi(ξui ) = 0 and h j(ξv j ) = 0
for all i, j. Then h∗j(ξ

(n−1)v j ) = 0. From the CRT, the respective generator matrices of
C0, Ci, C′j and C′′j are G0, Gi, G′j and G′′j given by

G0 =

(
1 0 a(1) b(1)
0 1 −b′(1) a′(1)

)
, Gi =

(
1 0 a(ξui ) b(ξui )
0 1 −b′(ξui ) a′(ξui )

)
,

G′j =

(
1 0 a(ξv j ) b(ξv j )
0 1 −b′(ξv j ) a′(ξv j )

)
, G′′j =

(
1 0 a(ξ(n−1)v j ) b(ξ(n−1)v j )
0 1 −b′(ξ(n−1)v j ) a′(ξ(n−1)v j )

)
,

where a(1), b(1), a′(1), b′(1) ∈ Fq, a(ξui ), b(ξui ), a′(ξui ), b′(ξui ) ∈ Fq2ki , a(ξv j ), b(ξv j ),
a′(ξv j ), b′(ξv j ) ∈ Fql j and a(ξ(n−1)v j ), b(ξ(n−1)v j ), a′(ξ(n−1)v j ), b′(ξ(n−1)v j ) ∈ Fql j .

Condition (i) in Lemma 3.1. Since a(1) = a′(1) and b(1) = b′(1), then C0 is an LCD
code with respect to the Euclidean inner product if and only if

1 + a(1)c(1) + b(1)d(1) , 0. (3.1)

Condition (ii) in Lemma 3.1. Ci is an LCD code with respect to the Hermitian inner
product if and only if

−a(ξui )b′q
ki (ξui ) + b(ξui )a′q

ki (ξui ) , 0 or


−a(ξui )b′q

ki (ξui ) + b(ξui )a′q
ki (ξui ) = 0,

1 + a(ξui )aqki (ξui ) + b(ξui )bqki (ξui ) , 0,
1 + a′(ξui )a′q

ki (ξui ) + b′(ξui )b′q
ki (ξui ) , 0.

Using the Hermitian scalar product of [10, Remark 2], we see that the prime acts like
conjugation z 7−→ zq over Fq2 so that a′(ξui ) = aqki (ξui ). Thus Ci is an LCD code with
respect to the Hermitian inner product if and only if

1 + a(ξui )aqki (ξui ) + b(ξui )bqki (ξui ) , 0. (3.2)

Condition (iii) in Lemma 3.1. C′j
⊥E ∩ C′′j = {0} and C′j ∩ C′′j

⊥E = {0} for 1 ≤ j ≤ t if
and only if 1 + b′(ξv j )b′(ξ(n−1)v j ) + a′(ξv j )a′(ξ(n−1)v j ) = θ1,

−a(ξ(n−1)v j )b′(ξv j ) + b(ξ(n−1)v j )a′(ξv j ) = θ2,

where θ1 and θ2 are not both zero, and1 + a(ξv j )a(ξ(n−1)v j ) + b(ξv j )b(ξ(n−1)v j ) = θ3,

−a(ξv j )b′(ξ(n−1)v j ) + b(ξv j )a′(ξ(n−1)v j ) = θ4,

where θ3 and θ4 are not both zero. Since a(ξ(n−1)v j ) = a′(ξv j ) and b(ξ(n−1)v j ) = b′(ξv j ),
the conditions are equivalent to

1 + a(ξv j )a′(ξv j ) + b(ξv j )b′(ξv j ) , 0.
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4. Exact enumeration

We assume that n is an odd integer, q is a prime power and n|(qδ + 1) for some
positive integer δ. Then xn − 1 can be factored into a product of self-reciprocal
irreducible polynomials.

We will enumerate the LCD four circulant codes over Fq when n|(qδ + 1). From [9],
if q is an odd prime, the so-called quadratic character η of Fq is given by η(c) = (c/q)
for c ∈ F∗q, the Legendre symbol from elementary number theory.

Lemma 4.1 [5, Appendix]. If q is odd, then the number of solutions (x, y) in Fq of the
equation x2 + y2 = −1 is q − η(−1).

Lemma 4.2 [5, Appendix]. The number of solutions (x, y) in Fq2 of the equation
x1+q + y1+q = −1 is (q + 1)(q2 − q).

Now we can present the counting formula for four circulant self-dual codes over Fq

when n|(qδ + 1).

Theorem 4.3. Suppose n|(qδ + 1). Then xn − 1 = α(x − 1)
∏s

i=1 gi(x) over Fq, where
α ∈ F∗q and the gi(x) are self-reciprocal irreducible polynomials with degree 2ki for
1 ≤ i ≤ s. Furthermore, the total number of LCD four circulant codes over Fq is
Ωn = (q2 − q + η(−1))

∏s
i=1(q3ki − q2ki + qki ).

Proof. From the preceding discussion and Lemma 3.1, we can count the number of
LCD four circulant codes over Fq by counting their constituent codes. We first need to
count the number of C0. According to Lemma 4.1 and (3.1), there are q2 − q + η(−1)
choices for {a(1), b(1)}. Next, we count the Ci by comparing Lemma 4.2 and (3.2). We
find q4ki − (q2ki + 1)(q2ki − qki ) = (q3ki − q2ki + qki ) choices for {a(ξui ), b(ξui )}. Thus, the
total number of codes over Fq is (q2 − q + η(−1))

∏s
i=1(q3ki − q2ki + qki ). �

5. Relative distance bound

5.1. Special decomposition of xn − 1. Let q be a primitive root modulo n where n
is an odd prime. Recall that xn − 1 = (x − 1)(xn−1 + · · · + x + 1) := (x − 1)M(x) where
M(x) is an irreducible polynomial over Fq. The nonzero codewords of the cyclic code
of length n generated by M(x) are called constant vectors. The relative distance bound
is based on the following auxiliary result.

Lemma 5.1. Suppose the nonzero vector z = (e(x), f (x), g(x), h(x)) ∈ (Fq[x]/(xn − 1))4

and e(x)e′(x) + f (x) f ′(x) is not a constant vector. Then there are at most λ = q2 four
circulant codes C over Fq[x]/(xn − 1) such that z ∈ C.

Proof. By the CRT,

Fq[x]
(xn − 1)

'
Fq[x]

(x − 1)
⊕
Fq[x]

(M(x))
' Fq ⊕ Fqn−1
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and

C ' C0 ⊕C1, e(x) ' e0 ⊕ e1, f (x) ' f0 ⊕ f1, g(x) ' g0 ⊕ g1, h(x) ' h0 ⊕ h1,

where C0 ⊆ F
4
q, C1 ⊆ F

4
qn−1 , e0, f0, g0, h0 ∈ Fq and e1, f1, g1, h1 ∈ Fqn−1 .

Since ξ is the primitive root of unity over Fq, there is an integer ui such that ξui is
a root of M(x). The condition z = (e(x), f (x), g(x), h(x)) ∈ C is equivalent to the two
systems of equationsg0 = e0a(1) − f0b(1), that is (e2

0 + f 2
0 )a(1) = e0g0 + f0h0,

h0 = e0b(1) + f0a(1), that is (e2
0 + f 2

0 )b(1) = e0h0 − f0g0,

andg1 = e1a(ξui ) − f1b′(ξui ), that is
(
e1eq(n−1)/2

1 + f1 f q(n−1)/2

1
)
a(ξui ) = e1gq(n−1)/2

1 + f1hq(n−1)/2

1 ,

h1 = e1b(ξui ) + f1a′(ξui ), that is
(
e1eq(n−1)/2

1 + f1 f q(n−1)/2

1
)
b(ξui ) = h1eq(n−1)/2

1 − f1gq(n−1)/2

1 .

For the first constituent of C, there are two cases according to the value of e2
0 + f 2

0 .

(i) If e2
0 + f 2

0 , 0, then there exists a unique solution for {a(1), b(1)}, where

a(1) =
e0g0 + f0h0

e2
0 + f 2

0

, b(1) =
e0h0 − f0g0

e2
0 + f 2

0

.

(ii) If e2
0 + f 2

0 = 0, then a(ξui ) and b(ξui ) are arbitrary elements in Fq, and there are at
most q2 choices for {a(1), b(1)}.

For the second constituent of C, consider the unit character of e1eq(n−1)/2

1 + f1 f q(n−1)/2

1 .

(i) If e1eq(n−1)/2

1 + f1 f q(n−1)/2

1 , 0, then there exists a unique solution for {a(ξui ), b(ξui )},
where

a(ξui ) =
g1eq(n−1)/2

1 + f1hq(n−1)/2

1

e1eq(n−1)/2

1 + f1 f q(n−1)/2

1

and b(ξui ) =
h1eq(n−1)/2

1 − f1gq(n−1)/2

1

e1eq(n−1)/2

1 + f1 f q(n−1)/2

1

.

(ii) If e1eq(n−1)/2

1 + f1 f q(n−1)/2

1 = 0, then e(x)e′(x) + f (x) f ′(x) = 0 mod h(x) and
e(x)e′(x) + f (x) f ′(x) is a constant vector, a contradiction.

Therefore, we obtain the desired result. �

5.2. Asymptotics of the relative distance. We derive the asymptotics for a family
of codes for which we can apply an auxiliary result from number theory. Artin’s
conjecture (see [12]) states that for any integer a , ±1 or a perfect square, there are
infinitely many primes p for which a is a primitive root (mod p). This conjecture was
shown to be true by Hooley [6] based on the generalised Riemann hypothesis. With
this assumption, there are infinite families of four circulant codes C(4n) over Fq where
the analysis made for xn − 1 with only two irreducible factors applies.
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The q-ary Hilbert entropy function is defined for 0 ≤ t ≤ (q − 1)/q by

Hq(t) =

0 if t = 0,
t logq(q − 1) − t logq(t) − (1 − t) logq(1 − t) if 0 < t ≤ (q − 1)/q.

This quantity arises in the estimation of the volume of high-dimensional Hamming
balls when the base field is Fq. Namely, the volume of the Hamming ball of radius tn
is asymptotically equivalent, up to subexponential terms, to qnHq(t), when 0 < t < 1 and
n goes to infinity [7, Lemma 2.10.3]. This result can be used to establish an interesting
relationship between Ωn and λ.

Theorem 5.2. Suppose n is an odd prime, n > q and q is a primitive root modulo n.
The family of LCD four circulant codes over Fq of length 4n, of relative distance δ and
rate 1/2, satisfies Hq(δ) ≥ 3

8 . In particular, this family of codes is asymptotically good.

Proof. Let Ωn denote the size of the family. By Theorem 4.3,

Ωn = (q2 − q + η(−1))(q3(n−1)/2 − qn−1 + q(n−1)/2) ∼ q3n/2, as n→∞,

for LCD four circulant codes. Assume we can prove that Ωn > λB(dn) for n sufficiently
large, where B(r) denotes the number of vectors in F4n

q with the Hamming weight of
their Fq image less than r. From Lemma 5.1, the number of LCD four circulant codes
satisfying the condition is less than λ = q2.

Denote by δ the relative distance of this family of q-ary codes. Take dn to be
the largest number satisfying Ωn > λB(dn) and assume a growth of the form dn ∼

4δ0n. Thus Ωn ∼ λB(dn) as n→ ∞. By the entropic estimate B(dn) ∼ q4nHq(δ0) [7,
Lemma 2.10.3], and our estimate for Ωn, we obtain the estimate Hq(δ0) = 3

8 for LCD
four circulant codes. The result follows since δ ≥ δ0, from the definition of δ. �

References
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[14] M. J. Shi, H. W. Zhu and P. Solé, ‘On the self-dual four-circulant codes’, Internat. J. Found.

Comput. Sci. (to appear), https://arxiv.org/pdf/1709.07548.pdf (2017).

HONGWEI ZHU, School of Mathematical Sciences, Anhui University,
Hefei, Anhui 230601, China
e-mail: zhwgood66@163.com

MINJIA SHI, Key Laboratory of Intelligent Computing and Signal Processing,
Ministry of Education, Anhui University, No. 3 Feixi Road, Hefei,
Anhui Province 230039, PR China
and
School of Mathematical Sciences of Anhui University, Anhui 230601, PR China
e-mail: smjwcl.good@163.com

https://doi.org/10.1017/S0004972718000175 Published online by Cambridge University Press

https://doi.org/10.1007/s10623-017-0455-0
https://arxiv.org/pdf/1709.07548.pdf
http://orcid.org/0000-0002-1282-7094
mailto:zhwgood66@163.com
http://orcid.org/0000-0002-4990-6271
mailto:smjwcl.good@163.com
https://doi.org/10.1017/S0004972718000175

	Introduction
	Notation and definitions
	Algebraic structure of four circulant codes
	Exact enumeration
	Relative distance bound
	Special decomposition of xn-1
	Asymptotics of the relative distance

	References

