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1. Introduction

In this note we consider a singular perturbation problem for the equation

U2K(y)uxx + uyy = 0, y>0

[K(y)uxx + uyy = 0, y<0

where K(y) = sgn y and. e is a small (positive) parameter. This equation for e ̂  0 is elliptic
for y>0 and hyperbolic for y<0. Many of the results carry over to more difficult and
interesting problems for equations of mixed type. The particularly simple model treated
here permits the elimination of some complications in the analysis involving singular
integral equations while preserving the main qualitative features of more general cases.
For a special Tricomi-like problem for (1.1) we construct asymptotic expansions in e,
including boundary layer corrections, of the solution. A proof of uniform asymptotic
validity of the lowest order terms is given.

For e=l equation (1.1) becomes the Lavrent'ev-Bitsadze equation (see [1] and
references therein) which has proved to be a reliable simple model for more complicated
equations of mixed type, in particular the Chaplygin and Tricomi equations. These
equations, of course, are of importance for transonic gas dynamics when studied in the
hodograph plane. We do not claim that the perturbation problem treated here has
immediate application to that important area.

Despite the intense activity in singular perturbation problems in recent years the
author is not aware of any proofs of uniform asymptotic validity in the case of partial
differential equations of mixed type.

As in the case of purely elliptic problems (Eckhaus and de Jager [2]) and purely
hyperbolic problems (de Jager [3]) the direction of the subcharacteristics (i.e.
characteristics of the reduced equation) plays a vital role. References [2]-f_4] provide
some further references to the vast literature on singular perturbations.

The technique used here is one of multiple scales as introduced by Latta [5] and our
approach follows that of Keller [6] in his treatment of a parabolic problem but results
can also be obtained by stretching and matching. The new feature here is how the
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elliptic and hyperbolic regions interact and, in particular, how the boundary layers in
the elliptic region carry over onto the characteristics which bound the hyperbolic region
(see the construction in Section 3 and the discussion in Section 5). A shortcoming of our
results is that our assumptions on the data may very well suppress corner expansions
(as well as corner singularities) which would otherwise be present. It is hoped that
attention will be called to these matters and more definitive results will be forthcoming.

2. Statement of the problem

By Q we denote the region in the xy-plane bounded below in the hyperbolic region
by the characteristics C0 = {(x, — x): 0 : g x ^ } , Cl ={(x,x—1): ^ < x ^ l } and above in the
elliptic region by the straight line segments F o = {(0,_y): O^y<y0}, F1 = {(l,y): O^y<yt}
and the smooth curve F = {(x, y(x)): O ^ x ^ l , yeC°°[0,l], y(0) = yo, y(l) = y1} which joins
the points (0, y0), (l,)^) and lies completely above the x-axis (y is a strictly positive
function). The reason for this choice of region is based upon the fact that it was desired
to treat a region closely resembling a Tricomi region but with entire segments of the
boundary in the direction of the subcharacteristics. This case was also treated for elliptic
problems in [2], [4].

We will denote by fi+ the elliptic region il+={(x,y)eQ:y>0} and by fi_ the
hyperbolic region Q_ = {(x,y)eQ:y<0}.

Our problem consists of equation (1.1) together with the boundary conditions

«|co = ^ (2-1)

u|r = 0 (2.2)

"|ro = ^o (2.3)

«|r,=0i (2-4)

with the obvious compatibility conditions to ensure continuity of the boundary data.
We seek asymptotic solutions uniformly valid in Q, i.e. in the maximum norm and

hence consider smooth data and seek classical solutions of the boundary value problem
(1.1), (2.1H2.4) in the class

V(Cl): = C2(Q+ u fl_) n C\Q) n C(fi).

This is precisely the set of classical solutions usually considered when e = 1 ([1]).
Existence of a solution u for given data is assumed. Uniqueness follows from Lemma 2
of Section 4.

3. Formal construction of asymptotic solutions

Based on results of singular perturbation theory we make the following ansatz for the
solution u of our boundary value problem

u(x, y; s) ~ U(x, y; e) + V(x, y, s) + W(x, y; e)
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LAVRENT'EV-BITSADZE EQUATION 51

where the outer solution U has the form

U(x,y,e)~ £ enUn(x,y) (3.1)
n = 0

while the boundary layer corrections at x = 0 and x = l have the forms

9(x,y,e)~ £ £nV"(x,y;e) (3.2)

and
00

respectively. We seek V", W" for y > 0 tentatively in the forms

V\x,y),

W\x, y; e) = exp j —y-^- \ W{x, y).

Further details on these various functions are given below in this section in the course
of their recursive construction.

Substitution of the ansatz (3.1) into (1.1) and (2. l)-{2.2) leads to the determination of
U° as the solution of the boundary value problem

U% = 0, (x, y) e Q +; U°(x, y(x)) = «̂ ,(x), 0 ̂  x ^ 1 (3.3) +

The same DE as in (3.3) is satisfied by V1 while for n^.2

U;y=U"xx, (x,y)eQ_.

The function U° is the solution of "the reduced problem" obtained by setting e = 0 in
(1.1) and by omitting the boundary conditions (2.3)—(2.4).

It is easy to verify in a straightforward way that for smooth 4>, ij/ and y the unique
solution of (3.3) in the class ^(Q) is given by

, v (3-4)
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where for x in [0,1]

(3-5)

the boundary conditions on the subcharacteristics are not
U° and this necessitates the introduction of boundary layer

It is observed that
necessarily satisfied by
corrections V° and W°.

Substitution of the ansatz (3.2) into (1.1) and (2.1)-(2.2), and taking into account the
U° previously constructed leads to the following boundary value problem for V°. In fi+

this consists of the differential equation

subject to the boundary condition

V°(x,y(x)) = 0.

(3.6)

(3.7)

Here a{x, y) must be chosen as a function a = a{x) of x alone in order to balance terms
at lowest order and a dot "." indicates d/dx here and below. In fi_ the differential
equation for V° = V is

subject to the boundary condition

Vyy=Vxx

V(x,-x) = 0.

(3.8)

(3.9)

Considering the boundary value problem for V° we see that we have a somewhat
non-standard eigenvalue problem with eigenvalue parameter b2(x). We solve this
problem in the following way. If V°(x, 0) = 0, then the ODE eigenvalue problem (3.6),
(3.7) in the variable y for y}tO with parameter x has a countable number of eigenvalues
given via

y(x)

and associated eigenfunctions

®m(x,y)= /-rTsin ~rr

which have been orthonormalised with respect to an appropriate inner product (for
fixed x)

o

https://doi.org/10.1017/S0013091500028066 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500028066


LAVRENT'EV-BITSADZE EQUATION 53

For arbitrary smooth functions a°(x) (to be determined) the functions

also solve our restricted eigenvalue problem. Since K°(x,0;e) need not vanish we adjoin
to the eigenfunctions F° the function

which corresponds to <r(x) = 0 and which vanishes for y = y(x) but not y = 0 and consider
fory^O

V°(x,y;e) = F°(x,y;e) + £ exp{--jXm(s)dsi V°m(x,y)
m=l [ £0 J

with A0 to be determined. This expression for V° is a generalisation of the original
ansatz assumed above in (3.2).

Using V°(x, 0; e), V°(x, 0; e) as Cauchy data we solve the Cauchy problem for the wave
equation (3.8) in O . also subject to the boundary condition (3.9). The flexibility
provided by A0 allows this seemingly overdetermined problem to be solved in a unique
way yielding

where for x in [0,1]

A°(x;s):= £ ](exp\-]~\cxp\--]Ut)dt}v°m,y(s,0))ds. (3.11)
m = l 1 V (. sY(tj) i Bo ) /

Our choice of unity for the lower limit on the integral in (3.11) makes A0 exponentially
(transcendentally) small away from x = 0 and of order O(e) uniformly in [0, 1] (see (3.18)
below). Hence the boundary condition (3.9) is satisfied to order s and K° is uniformly
O(e) on Q although it is part of V° which is a zeroth order correction. This term is
needed, however, to allow K° to be extended from fi+ to Q_ as an element of #(0). For
the complete specification of V° only the quantities a° are yet to be determined. Before
doing this let us note that similar considerations lead to the determination of W° as

W°(x,y;e) =

B°(x + y;e), (x,y)efi_
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54 R. J. WEINACHT

where W^(x, y) = b°(x)Om(x, y) with fc£ to be determined and for X E [ 0 , 1]

£ J
m = l 0

Thus H'0 is exponentially small away from r \ .
These results make it necessary to modify our ansatz for V" and W" in y>0

corresponding to the forms of V° and W° above. Further experimenting leads us to take

V\x,y;s)=-l

where for y ^

m = l 1

with Vn
m and bn

m to be determined. The revised form of W is similar

W%{x, y; e) + f exp j - - } lm(s) rfs} Wi(x, y), (x, y) e fl+
m = 1 ^ 6 x J (3.13)

where for y ̂  0

f ] p \
m = l 0 I £

with W"m and E ,̂ to be determined.
The modified ansatz does not change the problem for V° or its solution (3.10) but it
does lead to the following modified problem for V^ for y > 0

- ^ - ) V°m,y(x,0)

(3.14)

V1
m(x,0)=V1

m(x,y(x)) = 0.
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The problem for Vm for n ^ 2 then consists of the equation in Q +

Vn
m,yy + li{x)Vl = l2kJx)Vm:x

l +Am(x)K"m~1 - Vm-Jx

+ Ux) d"m- \x, x, y)-Dt 8"m-^y)- ID, Sfm~ \x, x, y)

= -fnm(x,y) (3.15)

with the same boundary condition as in (3.14). In (3.15) and hereafter Dh as usual,
denotes differentiation with respect to the ith argument. The 8"m are to satisfy

Zlyy = 0;dn
m,yy=-dn

m:x
2

x for n^2, (x,y)eQ +

with the boundary conditions

8"m(s,x, y(x)) = 0

5"m(x, x, 0) = K " m > , 0), D2 5n
m(s, x, 0) = D 3 8"m(s, x, 0).

The latter conditions ensure a C1 continuation of V" to y<0 as a solution of the wave
equation (3.8). Observe that for n = 0,1

^ ) { } A j ,,(5,0). (3.16)

Now we return to the determination of the a°(x). A necessary and sufficient condition
for the existence of a solution to the problem (3.14) is the orthogonality condition

y), /i,(*,)0> = 0 (3.17)

which yields the ODE

with solution

a°(x)= ltK~' exp^ C *" ^ a0 (CO
V v(0) 1 o y(t) j

determined uniquely by a°(0). The latter are chosen to meet the boundary condition on

4><fo) ~ U°(0, y) = V(0, y; e) = £ aS,(0)<Dm(0, y)
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so that a°(0) is the Fourier coefficient

Note that the function 4>0{y) — U°(0,y) vanishes at y = 0 and y = y(O) due to the
compatibility conditions (/>0(0) = (/'(O) and 0o(y(O)) = 0(0) respectively. Thus this function
has a continuous periodic extension to all of IR. Further discussion of the resulting
Fourier series appears in Section 5. Now V° is completely determined.

In a similar way one finds for W° in (3.12)

and b°m{\) is chosen so that W°(\.,y;e) = <f)l(y)-U0{\,y), i.e.

Note here that the function 4>i{y) — U°(l,y), vanishes at y = y{\) due to the compatibility
condition </)1(y(l)) = </)(l) but does not necessarily vanish for y = 0. Thus the Fourier
series for (I>i(y)—Uo(l,y) will not have this function as its pointwise limit unless the
rather restrictive condition that <j>1(O)=U°(l,O) is imposed. Further discussion on this
point is given in Section 5. With this W° is completely determined.

In assessing the accuracy of the lowest order approximation U° + V° + W°, orders of
magnitude of the difference between U° +V°+ W° along the boundary and the
prescribed data must be calculated. To this end, we note that from earlier results

mill dt Y]

Consider now Fo. From (3.10)

f v ~] s°
\+ I K(0,y)

By construction, the infinite sum is precisely <t>o(y)—U°(O,y) (using <j)0{y) — U°(0,y) = 0 at
y=o, y(0».

Thus

V(0, y; e) + 1 / ( 0 , y) — <t>0(y)
L yyyu

r v i
(3.19)
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by (3.18), where

' 2

and £(e) denotes terms transcendentally small in s. Similarly on the boundary Co, using
the condition U°(x, — x) = i//(x\

V°(x, -x;s)+ U°(x, -x)- *(x) = MO; e)

= -ea° + E(e). (3.20)

Provided that <pl meets certain conditions (see Section 5), an analogous calculation for
W° shows that along r , ,

7(1).

£(e) (3.21)

where

/ * 4 I bjti)-
y(l)m=i

Finally noting that V° and W° are transcendentally small in e away from Fo and Tl

respectively, it follows that t7° + K° + ^ 0 formally satisfies the differential equation (1.1)
exactly in Q . and to order s in Q + while the boundary condition (2.2) is satisfied
exactly and the boundary conditions (2.1), (2.3) and (2.4) are satisfied to order z. We
proceed to the construction of Ul, V1 and Wl in order to solve our boundary value
problem to order e2. In particular L/1 is to be chosen so that the O(e) terms in (3.19) and
(3.20) are cancelled.

As observed above Ul must satisfy the same differential equations as for U° in (3.3)
but the boundary conditions are Ui(x,y(x)) = 0 and U1(x, —x) = a°. Thus

o I xVdt
a ° e x p < - j —-

{ o y{t)

is the unique element of ^(Q) satisfying these conditions. Now V1 and Wl are to be
constructed to provide corrections to the boundary conditions on r 0 and Tx.

As a result of fulfilling the orthogonality condition (3.17) the problem (3.14) is
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solvable with general solution

where

<(x,y)= t

and the al
m are arbitrary. With this Vl

m we obtain dl
m from (3.16) to get V\ and form for

V\x,y;e) = V\(x,y;e)+ £ exp\--]Xm(s)ds\ Vl
m(x,y).

m=l (. £ 0 J

As we did for V° we use Vi(x, 0;e), K*(x,0;£) as Cauchy data for the Cauchy problem
for (3.8) subject to (3.9) (to order one) to obtain for y:gO

(3.22)

where for x in [0,1]

A\x;e):= £ jfexp\-]±
m=l 1 \ (. sy(l)

Now al
m is determined from the orthogonality condition

<®Jx,y),f2
m(x,y)>=0

leading to

where

1*,,y(s,0))ds.

a°(x)<<6m,xx(x, y),Om(x,y)}

+ {D, 5°m{x, x, y) + 2D2 S°m(x, x, y), (Dm(x, y)>

and the a ,̂(0) are chosen so that

0=F1(0 !y;£)= £ [v^O, y) + â ,(0)<Dm(0, y)]
m = l
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and hence

thus determining V1 completely.
The function Wl is constructed in an entirely analogous manner with the result

W1
[x, y; e) =

;e), (x,y)en_

where for x in [0,1]

= 1 0

Further we have

fa, y) = «i,( , y),

gl(x, y)=- 2lm ~~-^j Wljx, 0),

«(x, x, y), <

^y ©i. y(x, 0)1 - « x(x, y)
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and

sfm

For n^.2 the procedure continues in a similar way allowing recursive determination
of the Un, V" and W" for all n.

4. An a priori estimate

For the proof of uniform asymptotic validity of the expansions constructed in the
previous section we use in Section 5 the simple a priori estimate given below in Lemma
2. Its proof is based upon

Lemma 1. (Comparison Theorem) Let v be in the class <̂ (Q) and suppose that

with on Fo

V(0,0;E) on Co

Then v<0 in Q.

Proof. The differential equation in Q_ and the boundary condition on Co imply that
in Q_

v(x, y; e)=g(x + y; e) -g(0; e) + v(0,0; e) (4.1)

for a C2(0,1) n C[0,1] function g and hence

so that

max V= max v(x, 0; e)
«_ Ogxgl

max v = max v.

But this maximum does not occur at (xo,0 for 0<x o < 1 since at such a point
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and so from (4.1)

Dy(xo,0;e) = 0

in violation of Hopf's [7] boundary point principle. Now from the maximum principle
for elliptic inequalities

max v = max v < 0

the assertion follows.

Remark. As is clear from the proof, Lemma 1 is a slight variant of a maximum
principle for equation (1.1) (cf. [1; p. 74]).

From the Comparison Theorem one obtains in a familiar way

Lemma 2. (a priori Estimate) Let F belong to C(Q+) and let f belong to
C(F0 u f u f , ) . Suppose that w is a function in the class ^(Q) such that

f e2wxx + wyy = F inQ +

\w^x-wyy = 0 in H.

and

{ w=f o«r0urur,

w = /(0,0) on Co.

Then there exists a constant M, independent of e as well as (x, y\ such that

\W(x,y;e)\^M\\F\\ + \\f\\

where the norms are the maximum norms over D + and F o u F u r \ respectively.

Proof. Let h = h(£) be any real-valued C2 function of the real variable £, such that,
for given <̂ 0 = max(x + y) for (x,y) in fl, h"{£)£-l and / J ( ^ ) ^ 0 for 0 ^ ^ ^ 0 . Then the
function v

satisfies the hypotheses of Lemma 1 and so the assertion follows with M = max/i on

[<U]

5. Justification

Before stating our main result we analyze briefly the results of the formal construction
of the previous section. As is clear from (3.4) the function U° belongs to ^(fl) under the
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sufficient conditions that <j>,y belong to C2[0,1] and \\i belongs to C2[0,£|. Under the
additional conditions stated in the theorem below the correction term V° also belongs
to ^(Q). A main factor in the validity of this assertion is that the compatibility
conditions (po(0) = il/(0) and <t>o{yo)= 0(0) ensure a continuous periodic extension of <fio(y)
- U°(0, y) to the entire real line.

The correction term W°, however, poses difficulties with regard to the convergence of
the corresponding series. The compatibility condition (/>i(y,) = </>(l) guarantees that (p^y)
— t/°(l,y) vanishes at y = yt but this function need not vanish at y = 0 and so the
corresponding Fourier series will not converge to the function at the end points of the
interval of concern.

At this point it becomes necessary to restrict 4>i(y), the boundary data on x = l, to be
such that <l>i(y)— U°(l,y) vanishes when y = 0. Of course, by this assumption we may be
avoiding the interesting question of corner expansions and corner singularities which
occur for equations of mixed type. In contrast to the case for PDE's of unchanging type
the topic of corner expansions in the present case is unexplored and remains a subject
for future study.

A difficulty similar to that for W° arises in the convergence of the series
representation of Wl unless rather special and overly restrictive conditions are imposed.
Since this may involve the suppression of corner expansions which would otherwise be
present, our theorem gives uniform results only up to order O(e). There is no such
difficulty for V1 and it is considered worthwhile to indicate the nature of the estimates
involved to establish convergence of the series. These are presented in Appendix B.

We now state our main result which is embodied in the

Theorem. Let <f>,ye C2[0,1], xj/ e C2[0,1/2] and for i = 0,1, 0; e C4[0, yj with the usual
compatibility conditions for continuity of the boundary data:

4>o(0), <K0)=<l>o(Yo), <t>W=<t>i(y1).

Suppose in addition that D2J(j)i(0) = D^cpfy^O for j = 1,2 and

Then

u(x, y; e) = U°(x, y) + V°(x, y; e) + W°(x, y; e) + O(s)

uniformly on Q.

Remark. Under the hypotheses on the data an elementary computation shows that
both a°(0) and b£(0) are 0(m~4) as m-»oo. Hence it follows from Appendix A that the
term-wise differentiated series (up through the second order) for V°, and W° converge
uniformly on Q+ and Q_ separately. Thus each of these functions belongs to
C2(H+)nC2(fi_). Then the matching for smoothness along y = 0 in their construction
ensures that they belong to
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Proof. Introduce the function

Z(x, y; e): = u(x, y; e) - [l/°(x, y) + V°(x, y; e) + W°(x, y; e)]

which by our remark belongs to ()
It is straightforward to verify directly from the definitions that U°, V°, andl^0 each

satisfy (1.1) in Q_ and hence the same is true for Z. Moreover by direct computation

uniformly in fi+ and

Z| r = 0

Z\Co=-A°(0;e) =

uniformly on their respective segments. Then Z satisfies the hypotheses for the function
w in Lemma 2 of Section 4 with F = O(s) uniformly on Q+ and f = O(e) uniformly on

with/(0,0)= —/4°(0;e). From this the assertion of the theorem follows.

Remark. Because A0 and B° are uniformly O(s) on [0,1] it follows from the theorem
that •

U=U0+V0+W0

where the bar indicates that the terms involving A0 and B° have been omitted from V°
and W° respectively. The omitted terms are needed for the solutions to be in the class
#(fi). In this connection it is interesting to note that the 0(1) boundary layer correction
K° on Fo carries over into the hyperbolic region as an O(E) boundary layer on the
characteristic Co.

Appendix A: Convergence of the series

In this appendix we consider the convergence of the series constructed in Section 3
for smooth and suitably restricted data. It does not seem possible to avoid the tedious
nature of the required estimates and hence we restrict ourselves to giving details (see
Appendix B) only for terms up to order e2. Higher order terms require smoother data
and further restrictions for the estimates to be valid.

We begin with the series for V° which is defined in (3.10) as a sum of two series, the
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second appearing in the definition of A0. It is easy to see that each of these series and
the term-wise differentiated series up through the second order (with respect to x and/or
y) has the following majorant for each positive e

C f \a°m(0)\X2
m(0) (A.1)

m = l

uniformly on Q. The constant C may depend on e. Thus from (A.I) V° belongs to C2 in
£2+ and fi_ separately provided

a°(0) = O(m'«), m-*co

for a > 3. Under this assumption the matching for smoothness in the construction of V°
then ensures that V° belongs to ^(fi). Similarly, under the assumption that

for fi > 3, an identical proof guarantees that W° belongs to
The series for K1 are not quite so easily handled since the estimate is not trivial as is

(A.I) in the case of V°. The key estimate is supplied by (B.I) in Appendix B. Using the
integral comparison test for single and double series one sees that the series in (B.I)
converges provided

with a>6. Now the argument proceeds as for V° to obtain that V1 belongs to
provided that the additional conditions that 4>oeC'[0,yo] and that D6<£O(O) = D60O(}>O)
= 0 are met. The function W1 may be treated in the same way but only by introducing
an auxiliary problem to eliminate otherwise restrictive conditions on the data.

Appendix B: Some estimates

The following estimates may be obtained by straightforward computation. We use the
symbol C for a generic constant which may differ in the various inequalities but is
always independent of m and s as well as x and y. By km we denote lm{x) at any fixed
but convenient point, say for definiteness at x = 0.

The key estimate (B.I) appears at the end of the appendix.

j / , m As |

xx r x2 i
c,y),<Ds,xx(x,^)>|^C.;2

5" I l + |A2^A2ij

, xmxi r xi,+xi
c v ) $ (Y V)"> < C I — , 1+T-^—I
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AAJ + . 2 2 | + , 2 2 |2

These estimates in turn lead directly to

2|2

so that both al
m and d̂ , satisfy

and

We come now to the key estimate for the series defining V1. Let D2V denote any
derivative up through the second order of term-wise differentiation of V1.
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Then we have after a lengthy computation

00 P\a°(0)\
\n*v\<r V 33 v ' i s *• '1
\u v\ = ^ L Am L 1,2 121

+c x ^K(o)|hm+

(
m=l (. s^m | ^ m - 4 | L \Am ~ As \ V-m~ *s | J J (B.I)

uniformly on Q. The constant C may depend upon e.
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