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Abstract

Let β > 1 be a real number, and let {ak} be an unbounded sequence of positive integers such that
ak+1/ak ≤ β for all k ≥ 1. The following result is proved: if n is an integer with n > (1 + 1/(2β))a1 and
A is a subset of {0, 1, . . . , n} with |A| ≥ (1 − 1/(2β + 1))n + 1

2 , then (A + A) ∩ (A − A) contains a term of
{ak}. The lower bound for |A| is optimal. Beyond these, we also prove that if n ≥ 3 is an integer and A
is a subset of {0, 1, . . . , n} with |A| > 4

5 n, then (A + A) ∩ (A − A) contains a power of 2. Furthermore, 4
5

cannot be improved.
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1. Introduction

Erdős and Freiman [3] proved a conjecture of Erdős and Freud: if A ⊆ [1, n] with
|A| > n/3, then some power of 2 is the sum of elements of A. Later, Nathanson and
Sárközy [7] proved that 3504 summands are enough. Freiman [4] reduced 3504 to 6.
Finally, Lev [6] reduced 6 to 4. Here 4 is best possible (see Alon [2]). The key to Lev’s
proof is the following lemma: let A ⊆ [0, n] with |A| ≥ 1

2 n + 1. Then either A contains
a power of 2, or there exist two distinct elements of A whose sum is a power of 2.
Abe [1] and Pan [8] extended this result to the powers of an integer m.

For a set A of integers, let A + A = {a1 + a2 : a1, a2 ∈ A} and A − A = {a1 − a2 :
a1, a2 ∈ A}. Recently, Kapoor [5] extended the above results to general sequences.
He proved that for an unbounded sequence {ak} of positive integers with ak+1/ak→ α
as k→∞, and β > max(α, 2), if A ⊂ [0, x] is a set of integers with 0 ∈ A and

|A| ≥
(
1 −

1
β

)
x,

then A + A contains a term of the sequence {ak}.
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In this paper, the following result is proved.

T 1.1. Let β > 1 be a real number, and let {ak} be an unbounded sequence of
positive integers such that ak+1/ak ≤ β for all k ≥ 1. Suppose that n is an integer with
n > (1 + 1/(2β))a1 and A is a subset of {0, 1, . . . , n}.

(i) If all ak are even, and

|A| >
(
1 −

1
2β + 1

)
n,

then (A + A) ∩ (A − A) contains a term of {ak}.
(ii) If ak are not all even, and

|A| ≥
(
1 −

1
2β + 1

)
n +

1
2
,

then (A + A) ∩ (A − A) contains a term of {ak}.

Furthermore (i) and (ii) are sharp.

From Theorem 1.1, by taking ak = 2k and β = 2, we have the following corollary.

C 1.2. Let n ≥ 3 be an integer and A be a subset of {0, 1, . . . , n} such that
|A| > 4

5 n. Then (A + A) ∩ (A − A) contains a power of 2. Furthermore, 4
5 cannot be

improved.

2. Proof of the theorem

Let k be the least integer such that

n <
(
1 +

1
2β

)
ak+1.

Then k ≥ 1 and

n ≥
(
1 +

1
2β

)
ak.

We will show that ak ∈ (A + A) ∩ (A − A).
First we prove that ak ∈ A − A. Suppose that ak < A − A.

Case 2.1. (1 + (1/2β))ak ≤ n < 2ak.

Since ak = (ak + i) − i for i = 0, 1, . . . , n − ak, we have |A ∩ {ak + i, i}| ≤ 1 for each
i ∈ {0, 1, . . . , n − ak}. Hence

|A| ≤ n + 1 − (n − ak + 1) = ak ≤

(
1 −

1
2β + 1

)
n,

a contradiction.

Case 2.2. 2ak ≤ n < (1 + (1/2β))ak+1.
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Since ak = (ak + i) − i for i = 0, 1, . . . , ak − 1, we have |A ∩ {ak + i, i}| ≤ 1 for each
i ∈ {0, 1, . . . , ak − 1}. Hence |A| ≤ n + 1 − ak.

If ak = 1 (this is a special case of (ii)), then

n <
(
1 +

1
2β

)
ak+1 ≤

(
1 +

1
2β

)
β = β +

1
2
.

Thus

|A| ≤ n + 1 − ak = n <
(
1 −

1
2β + 1

)
n +

1
2
,

a contradiction.
If ak ≥ 2, then by

n <
(
1 +

1
2β

)
ak+1 ≤ (2β + 1)

1
2

ak ≤ (2β + 1)(ak − 1),

we have

ak − 1 >
1

2β + 1
n.

Thus

|A| ≤ n + 1 − ak < n −
1

2β + 1
n =
(
1 −

1
2β + 1

)
n,

a contradiction.
Now we prove that ak ∈ A + A. Suppose that ak < A + A.

Case 2.3. ak is even.

Since ak = ( 1
2 ak − i) + ( 1

2 ak + i) for i = 0, 1, . . . , 1
2 ak, we have 1

2 ak < A and so
|A ∩ { 12 ak − i, 1

2 ak + i}| ≤ 1 for i = 1, 2, . . . , 1
2 ak. Hence |A| ≤ n + 1 − 1

2 ak − 1 = n −
1
2 ak. By

n <
(
1 +

1
2β

)
ak+1 ≤ (2β + 1)

1
2

ak,

we have

|A| ≤ n −
1
2

ak <
(
1 −

1
2β + 1

)
n,

a contradiction.

Case 2.4. ak is odd.

Since ak = ( 1
2 (ak − 1) − i) + ( 1

2 (ak + 1) + i) for i = 0, 1, . . . , 1
2 (ak − 1), we have

|A ∩ { 12 (ak − 1) − i, 1
2 (ak + 1) + i}| ≤ 1 for i = 0, 1, . . . , 1

2 (ak − 1). Hence |A| ≤ n + 1 −
1
2 (ak + 1) = n − 1

2 ak +
1
2 . By

n <
(
1 +

1
2β

)
ak+1 ≤ (2β + 1)

1
2

ak,
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we have

|A| ≤ n −
1
2

ak +
1
2
<
(
1 −

1
2β + 1

)
n +

1
2
,

a contradiction. We have proved (i) and (ii).
Next we show that Theorem 1.1 is sharp by taking ak = mk for a fixed integer m ≥ 2.

In this case β = m. It is clear that

|A| ≥
(
1 −

1
2m + 1

)
n +

1
2

is equivalent to

|A| >
(
1 −

1
2m + 1

)
n +

1
2
−

1
4m + 2

. (2.1)

LetN denote the set of nonnegative integers. For odd m ≥ 3, let n = (2m + 1)mk/2 −
1/2 and A = [mk/2 + 1/2, (2m + 1)mk/2 − 1/2] ∩ N, where k is a nonnegative integer.
Then

|A| = mk+1 =

(
1 −

1
2m + 1

)( (2m + 1)mk

2
−

1
2

)
+

1
2
−

1
4m + 2

,

so that (2.1) does not hold. Since (A − A) ∩ N ⊆ [0, mk+1 − 1] and A + A ⊆ [mk + 1,
(2m + 1)mk − 1], we have (A + A) ∩ (A − A) ⊆ [mk + 1, mk+1 − 1], which contains no
power of m.

For even m ≥ 2, let n = (2m + 1)mk/2 and A = [mk/2 + 1, (2m + 1)mk/2] ∩ N, where
k is a nonnegative integer. Then

|A| = mk+1 =

(
1 −

1
2m + 1

) (2m + 1)mk

2
,

so the bound in case (i) does not hold. It follows that (A − A) ∩ N ⊆ [0, mk+1 − 1] and
A + A ⊆ [mk + 2, (2m + 1)mk]. Hence (A + A) ∩ (A − A) ⊆ [mk + 2, mk+1 − 1], which
also contains no power of m. This completes the proof of Theorem 1.1.
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