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Abstract

Let B> 1 be a real number, and let {a;} be an unbounded sequence of positive integers such that
a1 /ax < B for all k> 1. The following result is proved: if n is an integer with n > (1 + 1/(28))a; and
A is a subset of {0, 1, ..., n} with JA| > (1 = 1/(28 + 1))n + 1, then (A + A) N (A — A) contains a term of
{ar}. The lower bound for |A| is optimal. Beyond these, we also prove that if n > 3 is an integer and A
is a subset of {0, 1, ..., n} with |[A| > %n, then (A + A) N (A — A) contains a power of 2. Furthermore, ‘5—‘
cannot be improved.
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1. Introduction

Erd6s and Freiman [3] proved a conjecture of Erdds and Freud: if A C[1, n] with
|A| > n/3, then some power of 2 is the sum of elements of A. Later, Nathanson and
Séarkozy [7] proved that 3504 summands are enough. Freiman [4] reduced 3504 to 6.
Finally, Lev [6] reduced 6 to 4. Here 4 is best possible (see Alon [2]). The key to Lev’s
proof is the following lemma: let A C [0, n] with |A] > %n + 1. Then either A contains
a power of 2, or there exist two distinct elements of A whose sum is a power of 2.
Abe [1] and Pan [8] extended this result to the powers of an integer m.

For a set A of integers, let A+ A={a; +ay:a;,a €A} and A-A={a;—a:
ai, ay € A}. Recently, Kapoor [5] extended the above results to general sequences.
He proved that for an unbounded sequence {a;} of positive integers with a,/a; — @
as k — oo, and 8 > max(a, 2), if A C [0, x] is a set of integers with 0 € A and

Al = (1 - é)x

then A + A contains a term of the sequence {a;}.
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In this paper, the following result is proved.

THeEOREM 1.1. Let B> 1 be a real number, and let {a;} be an unbounded sequence of
positive integers such that aiy1/ay < B for all k > 1. Suppose that n is an integer with
n>(1+1/(2B))a, and A is a subset of {0, 1, ..., n}.

(1) Ifall ay are even, and

1
A 1——),
||>( B+1)

then (A + A) N (A — A) contains a term of {ay}.
(i1) If ax are not all even, and

|A|2(1— )n+1

28+ 1 2’
then (A + A) N (A — A) contains a term of {a;}.
Furthermore (i) and (ii) are sharp.
From Theorem 1.1, by taking a; = 2 and 8 = 2, we have the following corollary.

CorOLLARY 1.2. Let n >3 be an integer and A be a subset of {0, 1, ..., n} such that

|A] > ;—‘n. Then (A + A) N (A — A) contains a power of 2. Furthermore, * cannot be

improved. ’
2. Proof of the theorem
Let k be the least integer such that
n< (1 + i)ak+1.
2B
Then k > 1 and

n> (1 + é)ak.

We will show that a, € (A + A) N (A — A).
First we prove that @, € A — A. Suppose that a; ¢ A — A.

Case2.1. (1 +(1/28))ay < n < 2a.

Since ay =(ay +i)—ifori=0,1,...,n—a we have |A N {a; + i, i}| <1 for each
i€{0,1,...,n—ay}. Hence

1
< — — = < —
Al<n+1-(—a+1) ak_(l 2ﬁ+1)n,

a contradiction.

Case2.2. 2ap <n <1+ (1/28)ais1-
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Since ay = (ay +i)—ifori=0,1,...,a;— 1, we have |A N{a; + i, i} <1 for each
ie{0,1,...,ar—1}. Hence |A|<n+ 1 - a.
If a; = 1 (this is a special case of (ii)), then

n<(1+%)ak+1<(1+%)ﬁ ﬁ+_

Thus

1
|A|Sn+1—ak=n<(l—2ﬁ+1)n+§,

a contradiction.
If a; > 2, then by

(1 + z_ﬁ)akﬂ <(2B+ 1) ar < 2B+ D(ax - 1),

we have
1

1
Wz

n.

Thus

Al<n+1-a,<n-

1 1
(-2
28+1" ( 28+1/)"
a contradiction.

Now we prove that a; € A + A. Suppose that a; ¢ A + A.

Case 2.3. ay is even.

Since akz(%ak—i)+(%ak+i) for i=O,1,...,;ak, we have %akséA and so

IAO{%ak—i,%ak+i}lsl for i:1,2,...,%ak. Hence |A|§n+1—%ak—1:n—
%ak.By

1 1
< (1 + %)ak+l < (2ﬁ+ l)zak,

we have

1 1
Al<n-—— 1-
Al <n 2“"<( 2ﬁ+1)"’

a contradiction.

Case 2.4. ayi is odd.

Since ay = (3(ax — 1) — i)+ (3(ap + 1)+ i) for i=0,1,..., 3(ar— 1), we have
AN {Fa—1) =i Sax+ D) +i}|<1fori=0,1,...,3(a—1). Hence |A|<n+1-
%(ak+1):n—%ak+%.By

n<(1+ %)akﬂ <@B+ Dt S,

https://doi.org/10.1017/S0004972711002747 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972711002747

82 Q.-H. Yang and Y.-G. Chen [4]

we have

1 1 1 1
Al<n- = +—<(1— )+—,
Al<n =zt p+1)" "2
a contradiction. We have proved (i) and (ii).
Next we show that Theorem 1.1 is sharp by taking a; = m* for a fixed integer m > 2.
In this case 8 = m. It is clear that

1
> — _
'A|—(1 2m+1)”+2
is equivalent to
1 1
Al > (1 - - - . 2.1
||>( 2m+1)"+2 am+2 1)

Let N denote the set of nonnegative integers. For odd m > 3, letn = (2m + 1)m* /2 —
1/2 and A = [m*/2 + 1/2, 2m + 1)m*/2 — 1/2] N N, where k is a nonnegative integer.
Then

1 )((2m+1)mk 1)+1 1
2m + 1 2 2] 2 Am+2’

so that (2.1) does not hold. Since (A —A) NN C [0, m**! —1] and A + A C [m* + 1,
(2m + Dmk — 1], we have (A + A) N (A — A) C [m* + 1, m**! — 1], which contains no
power of m.

Forevenm >2,letn=(2m + D)mF/2and A = [m*/2 + 1, @m + 1)m*/2] N N, where
k is a nonnegative integer. Then

G [

1 )(2m+ Dym*

Al = i+ = (1 _ ,
Al =m 2m+ 1) 2

so the bound in case (i) does not hold. It follows that (A — A) NN C [0, m**! — 1] and
A+AC[m*+2,Q2m+ 1)m*]. Hence (A +A)N(A—A) C[mF+2, m*! — 1], which
also contains no power of m. This completes the proof of Theorem 1.1.
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