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A MOUNTAIN PASSTO THE JACOBIAN CONJECTURE

MARC CHAMBERLAND AND GARY MEISTERS

ABSTRACT. This paper presents an approach to injectivity theorems via the Moun-
tain Pass Lemma and raises an open question. The main result of this paper (The-
orem 1.1) is proved by means of the Mountain Pass Lemma and states that if the
eigenvalues of F/(x)F/(x)" are uniformly bounded away from zero for x € R", where
F:R" — R"isaclassC! map, then F isinjective. Thiswasdiscovered in ajoint attempt
by the authors to prove a stronger result conjectured by the first author: Namely, that
a sufficient condition for injectivity of class C1 maps F of R into itself is that all
the eigenvalues of F/(x) are bounded away from zero on R". This is stated as Con-
jecture 2.1. If true, it would imply (via Reduction-of-Degree) injectivity of polynomial
maps F:R" — R" satisfying the hypothesis, detF/(x) = 1, of the celebrated Jaco-
bian Conjecture (JC) of Ott-Heinrich Keller. The paper ends with several examples to
illustrate a variety of cases and known counterexamples to some natural questions.

1. A sufficient condition for injectivity. The purpose of this paper is to show
that the celebrated Mountain Pass Lemma can be used to prove a sufficient condition for
injectivity of C mapsF: R" — R". Wediscovered thisinjectivity theoremwhiletrying to
prove adifferent injectivity conjecture of thefirst author, stated below as Conjecture 2.1,
whose truth would clearly imply injectivity of polynomial maps F:R" — R" satisfying
the hypothesis, det F'(x) = 1, of the Jacobian Conjecture of Ott-Heinrich Keller [16]. We
regard elements x of R" as column vectors[Xs, . . . , X.] T and write F/(x) for the Jacobian
matrix of F at X, whose entry in itsi-th row and j-th columnis [F'(x)];; = 9 Fi(X) /9.

THEOREM 1.1. LetF:R" — R" beaC* map. Supposethereexistsan ¢ > 0 such that
|| > e for all the eigenvalues i of F'(x)F'(x)" for all x € R". Then F isinjective.

To prove this we use the Mountain Pass Lemma due to Ambrosetti and Rabi-
nowitz [1]. The statement of it given below as Lemma 1.1 is taken from [4]. Let E
be a Banach space and h: E — R a function which might satisfy any of the following
conditions.

C;. The Palais-Smale Compactness Condition at onevalue a € R:

P9 |
C,. The Palais-Smale Compactness Condition:

PS) We say that h satisfies (PS) if (PS), holdsfor every a € R.
This condition was originally introduced by Palais and Smale [23].

Every sequence {xy} in E, such that h(x,) — aand ||h'(x)|| — O,
has a convergent subsequence.
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Cs. The Mountain Pass Condition:

[ Thereis an open neighborhood U of 0 and some point Xo ¢u
such that max{h(0), h(xo)} < m:=inf{h(x) : x € dU}.
Let A denote the family of all continuous pathsg: [0, 1] — E
joining 0 to X, and put ¢ := infgep MaXie[o,1) h(g(t)). Clearly c > m.

(MP)

LEMMA 1.1 (THE STANDARD MPL). Let h: E— R bea C? function satisfying (MP).
Then there exists a sequence {xy} in E such that

h(xi) — ¢ and ||h(x)| — O.

If h also satisfies (PS); with ¢ defined asin (MP), then cisa critical value of h: That is,
for somex. € E, h(xc) = cand h'(x) =0" = (0,....0).

For more about Critical Point Theory and the Mountain Pass Lemma see [1, 4, 23,
26, 28] and the references cited there. To prove Theorem 1.1 we apply the Mountain
Pass Lemma 1.1, in the finite-dimensional real Banach space E = R", to an appropri-
ately defined real-valued function h: R" — R associated with the given C* mapping F:
R"— R".

The 1-dimensional example F(x) = arctan(x) suffices to show that the condition in
Theorem 1.1 is not necessary for the injectivity of F.

2. Proof of Theorem 1.1 and an open question.

THE PROOF. If F is not injective, then F(x1) = F(x2) for two distinct vectors x;,
X2 € R". Let G(X) := F(X +X1) — F(X1), Xo = X2 — X1, and h(x) := %G(X)TG(X). Thenhis
real-valued on R" and h(0) = h(xo) = 0. Since ' (x) = G(x)"G/(x), and G/(x) isinvertible
for al x € R", every point . at which h'(x;) = 0" must satisfy G(x.) = 0, and so also
h(xc) = 0. Furthermore, x = 0 is an isolated zero of h. To see this we argue as follows.
By applying the Classical Mean Value Theorem, f(1) — f (0) = f/(#) for some0 < 6 < 1,
to f(t) := Gi(tx) for each component G;(x) of G(x) and each nonzero x € R", we obtain

1) Gi(x) = G/(6i(x)x)x where 0<6i(x)<1 fori=1,....n.
Thenthen x n matrix A(x), defined by A(0) = G'(0) and
G/ (60100x)
2 A(X) = ( : when x # 0,
\ G} (6(x)
satisfiesthe equation
(3 G(x) = Ax)x foralxeR".
Now define B: R"x - xR" — M«n(R) by
Gi(x1)
(4) B(xl.....,xn)=( : )
Gp(Xn)
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Then Bis continuous, B(x. . .. . X) = G'(x), and B(61(X)X. ... . . 6a(X)X) = A(X). Since
©) detB(O,.....0) = det G'(0) # 0.

there exists areal number r > 0 such that det B(xy, . . . , Xn) #Z 0when 1L, [|xi]|2 < r2.
Therefore, det A(x) # 0 if ||x]|? < r?/n. So, by (3) G(x) = O insidethe ball [|x|| <r/,/n
only at x = 0, whichisthusan isolated zero of h(x). Also [|Xo|| > r/4/nsince G(xg) = 0.

Thus the function h(x) := %G(X)TG(X) satisfies the Mountain Pass Condition (MP),
withU = {x € R": ||x|]| < r/+/n}, m=min{h(x) : [|x|| =r/y/n}, and xg = Xz — X1.
The infimum miis positive because the sphere § 7 = {x € R" : ||x|| =r/\/n} = U
is compact, h is continuous, and h is not zero on S, /m- Now the c in (MP) cannot be
a critical value of h because if h'(x;) = 0" then, as we noted above, h(xc) = O too;
so we would obtain the contradiction 0 < m < ¢ = h(x;) = 0. Thus, by Lemma 1.1,
the compactness condition (PS). does not hold for our function h(x) := %G(X)TG(X).
Therefore there is a sequence {xx} € R" such that

() lim_oo [IXl| = 00;

(i) lime_o h(x) =c>m> 0;i.e, lim ., [|G(x)| = v2¢ > 0; and
(iii) limy_o h'(X) = limy_.oo G(Xk) TG’ (x) = 0.

If 111 denotesthe minimum eigenvalueof ahermitian matrix A, one hasthe well-known
inequality pa = infy0(yTAy)/(yTy). That is, the minimum eigenvalue of a symmetric
matrix A is the infimum of the Rayleigh Quotient p(y) = (Y'Ay)/(y'y). See [22].
Applying thiswith y = G(x) and A = G'(x)G'(x)" (a positive definite hermitian matrix),
weobtainat x = x foral k> 1,

6  0<pui(x) < Gx) G (X)G (X)) G(xk) /G(x) T G(xi),  for Glx) # 0.

Sincethe numerator ||G’(x)TG(xk)||? in the right-hand-side of (6) tendsto O by (iii) while
the denominator tendsto 2c > 0 by (ii), we obtain u1(Xx) — 0. Sincethis contradictsthe
hypothesis of Theorem 1.1 that all eigenvalues of F/(x)F/(x)" are bounded away from
zero, it follows that F must be injective. This completesthe proof of Theorem1.1. =
Compare the statement of Theorem 1.1 with that of the following open conjecture.

CONJECTURE 2.1. Let F:R" — R" bea C! map. Suppose there exists an € > 0 such
that |\| > ¢ for all the eigenvalues \ of F'(x) for all x € R". Then F isinjective.

The example F(x) = arctan(x), mentioned after Theorem 1.1, also shows that the
condition in Conjecture 2.1 is not necessary for the injectivity of F. In order for the
argument used in the proof of Theorem 1.1 to prove Conjecture 2.1, we would need to
show that limy_., A1(Xk) = 0, where

A1(Xy) = min{|A| : A an eigenvalue of G’(xk)}.

However, ;i1 — 0 does not imply that A; — 0, as the following example on R? shows.
Let (u,v) = F(x,y) = (ax — 3. by), ab # 0. This is a polyomorphism of R? whose
Jacobian matrix F’(x, y) has eigenvalues {a. b} (hence bounded away from zero); but,
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nevertheless, the minimum eigenvalue uy of the positive definite symmetric matrix
F/(x. y)F'(x,y)" doestend to zero asy — oo. Thus yi3 — 0 does not imply that \; — O;
so no contradiction.

Why should the eigenvalue of G’(xx) with minimum absolute value |A\(xk)| go to
zero as k — 00? Of course there is the well-known inequality |A(xq)| < [|G'(x)|;
but there is no reason to believe that ||G'(x)|| — 0 as k — oo. However, one might
think that we could apply the above mentioned Rayleigh Quotient idea to the (non-
symmetric) matrix A = G'(x,) because (at that point in the proof) we know by (iii) that
liMioo N (%) = limM_oo G(X) TG/ (X)) = 07, so that

7) 1im G(x)7G'(XIG(K) / G(x)" G0 = 0.

But this Rayleigh Quotient for G'(x,) does not majorize A1 (xy), as can be seen for the
example F(x, y) = (ax — y2, by), with ab # 0, so no contradiction arises.

It isinteresting to compare our Theorem 1.1 with the[1906] Theoremof Hadamard on
the global injectivity of proper maps[14]: A C! map f:R" — R" is a diffeomorphism if
andonly if f isproper and the Jacobian determinant of f, det f’(x), never vanishes. Recall
[see, e.g., Bourbaki's General Topology Part 1, Chapter |, Section 10] that a continuous
map f issaid to be proper if f ~1(K) is compact whenever K is compact; and a continuous
map from R" to R" is proper if and only if ||x|| — oo implies || f(x)|| — co. Thus a
proper map satisfies (PS). The proof of Theorem 1.1 essentially arguesthat, supposing f
is not injective, the condition (PS) is violated, which leads to the contradiction.

Note that the eigenvalue-hypothesisof Theorem 1.1 can be expressed in another way.
For real square matrices A and B, ||A||2 = ||ATA|| = r(ATA), the spectral radius of ATA;
and the eigenvalues of B and B~ are reciprocals of each other. Also det AAT = (det A)?
so the product of the eigenvalues of AAT is the square of the product of the eigenvalues
of A. Thus the eigenvalues of F'(x)F'(x)" are bounded from zero on R" if and only if
det F/(X) never vanisheson R" and ||F’(x)~2|| is bounded on R". From this one can see
that our Theorem 1.1 isrelated to resultsin the papers of Plastock [25], Rabier [27], and
Smyth and Xavier [31].

3. TheJacobian Conjecture. Letkbeafield of characteristic zero, and k" thevector
spaceover kof column n-tuplesof elementsof k. Call F: k" — k" apolynomial mapif each
of its components F;(x) belongs to the polynomial ring ki = k[x] = K[X1. Xz. . ... X];
a Keller map if also detF'(x) = constant # 0; and a polyomorphism if, in addition,
F is bijective with polynomial inverse. The Jacobian Conjecture, expressed in this
terminology, is that the following question, raised in 1939 by Ott-Heinrich Keller [16],
has an affirmative answer.

CoNJECTURE 3.1 (k-JC). Isevery Keller map of k" a polyomorphism of k"?

For the exact form and context of Keller's origina question see [16]; and for more
general versionsand a survey of its history and many other referencessee[2, 12, 17, 18,
19, 20, 21, 32].
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In this paper, we are only concerned with the two cases: k = R and k = C. In all that
follows in this paper, we may (and do) assume without loss of generality that Keller
maps are normalized to satisfy det F’(x) = 1. Proofs of R-JC and of C-JC can be based
on the following two reductions, which are independent of each other. First, for C-JC it
sufficesto prove injectivity [3, 30]:

REDUCTION 3.1 (INJECTIVITY SUFFICES). Injective polynomial maps of R" or C" into
itself are surjective. Bijective polynomial maps of C" into itself have polynomial inverses.

Using thisreduction, it followsimmediately from the elementary mean-valueformula
_Ev) = F (Y x —
FO) —FY) =F (52 ) (x—)

for polynomial maps F: k"™ — k" of degree two, that (1) C-JC istruein all dimensions
for all polynomial maps of degree two; and (2) al quadratic polynomial maps of R"
into itself with nonvanishing Jacobians are bijective. (Pinchuk’s counterexample [24]
has degree 25.)

Thesecondreduction [2, 33] iscalled reduction of degreeand statesthat by increasing
dimension (the number of variables) it is possible to reduce the degree of the polynomial
map F to three with no term of degree two. We may also assume F(0) = 0O and F'(0) = I.

REDbUCTION 3.2 (REDUCTION OF DEGREE). Keller maps F: k™ — k", of every degree
and in every dimension n, areinjective if and only if, in every dimension n, Keller maps
of the special “ cubic-homogeneous’ formF(x) = x — H(x), where H(t x) = t3H(x) for all
t € kandfor all x € k", arealso injective. For these, Keller'scondition det F'(x) = 1is
equivalent to the condition that the Jacobian matrix H’(x) is nilpotent Vx € k™ Indeed,
if det(l — H'(x)) = 1, then, YA > 0, det(Al — H'(X)) = A"det(l — H'(x/v/X)) = A™;
so the characteristic polynomial of H'(x) is A", and H'(x)" = O by the Cayley-Hamilton
Theorem. Consideration of the minimum polynomial of H'(x) gets the converse.

4. Keller mapson R" and C". What would the truth of Conjecture 2.1 entail for
polynomial maps of R" and C"?

THEOREM 4.1. Truth of Conjecture 2.1 implies Keller maps of R" areinjective.

PrROOF. By the Reduction Theorem 3.2 it suffices to prove that Keller maps of the
special “cubic-homogeneous’ form F(x) = x — H(x), where H(tx) = t3H(x) for all
t € kand for al x € k", are injective in every dimension n > 2. But such maps, as
noted, satisfy the condition that the Jacobian matrix H’(x) is nilpotent for every x in k™
H'(x)" = O. And it follows from this condition that all eigenvaluesof F/'(x) =1 — H’(x)
are+1, becauseVA < 1, det(F/(x) — Al) = (1— )" det(l —H'(x/v/1—= X)) = (1— \)".
So now by Conjecture 2.1 these cubic-homogeneous K eller maps are indeed injective.m

Whether or not bijective Keller maps of R" have polynomial inverses remains to be
seen.

THEOREM 4.2. Truth of Conjecture 2.1 implies Keller maps of C" are polyomor-
phisms.
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ProoF. Let F = (F1....,F,):C" — C" be a Keller map of C". Define the as-
sociated real map F:R*" — R defined by F = (RF1.SFq. ..., RFn. SF,). Now
detF’ = |detF’|, so detF’ is a nonzero constant if and only if detF’ is a nonzero
constant. Consequently F: R — R?"isaKeller map of R*", and henceinjective by The-
orem4.1. But oneeasily seesthat F isinjectiveif and only if F isinjective. It now follows
from the Reduction Theorem 3.1 of Biatynicki-Birulaand Rosenlicht [3], recently given
a more elementary proof by Rudin [30], that F is bijective with a polynomial inverse
(i.e., apolyomorphism). ]
Here are afew examplesto illustrate the situation to date, asfar as we know it.

5. Recent Polynomial Examples are Consistent with Conjecture2.1.

EXAMPLE 5.1. Cubic-homogeneous maps F(x) := x — H(x), where H(tx) = t3H(x)
and H'(x)" = 0. All known examples of Keller maps of this type are polyomorphisms.
The Jacobian Conjectureistrue by virtue of the Reduction 3.2 iff no polymap of thistype,
inany dimension, fails to be injective. Each polymap of this form hasall eigenvalues of
its Jacobian matrix egual to +1, and thus satisfies the hypotheses of Conjecture 2.1.

ExaMPLE 5.2. Injective cubic-homogeneous maps need not be polynomialy lin-
earizable [10].

F= (Xl + Xg(XaXq + XgXa), Xo — Xa(XaX1 + XaX2), X + X4°, X4)T-

This example hasthe property that its dilations sk are not polynomially linearizable; but
they are analytically linearizable. That is, there is an s-family ¢s(x), holomorphic in x
but not polynomial in x, such that ¢s o SF o ¢t = sX [9, 15].

ExAMPLE 5.3. Injective cubic-homogeneous maps need not be analytically lineariz-
able[11].

F = (X + Xa(XaXa + XaXa)?. Xz — Xa(XaXq + XaXe)2. Xg + Xa 3. Xa) -

Dilations sF of this map are not even analytically linearizable. But sk could perhaps be
linearizable for some s-family of bijections ¢s(x).

EXAMPLE 5.4. A polynomial counterexamplein R® to the Markus-Yamabe Conjec-
ture[7].

F = (=X + Xa(Xa + XaXa)?. —Xo — (Ko + XoXa)2 —Xs)
Zeroisnot aglobal attractor of the differential equation x = F(x) even though F(0) = 0,

Fisinjective, and Vx € R® all eigenvalues of F/(x) have negativereal parts (all are —1).
Nevertheless, the system X = F(x) has the solution x(t) = (18¢', —12e*,e™!) /4 0.
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6. Non-Injective Examples.

ExXAMPLE 6.1. Pinchuk’s polynomial map P: R> — R? satisfies det P’(x) > O for all
x € R?, but is neither injective nor surjective: Indeed, P(1.0) = P(—1, —2) = (0, —1);
and P(R?) = R*\ {two points}. Pinchuk’s polymap P(x) = P(x.y) = (p(x.y). q(x.y)) is
defined, Vx = (x,y)", by the equationst := xy — 1, h == t(xt + 1), f := (h+ 1)(xt + 1)? /X,
p(x,y) := f+h, Q := —t2—6th(h+1), u := 170fh+91h2+195f h2+69n3+75h%f +(75/ 4)h?,
a(x.y) = Q—u; sodetP/(x,y) = (p. G) /3 (x.y) = B+ (t+(13+15h) ) +2. Therefore,
along the curve xy = 1, we have t = 0 so the Jacobian reduces to det P/(x. y) = 170y?
which clearly tends to zero asy — 0 and x — oo. Consequently, not both eigenvalues
of P’(x) are bounded away from zero; so Pinchuk’s non-injective polynomia map does
not satisfy the hypotheses of Conjecture 2.1. See[6, 8, 24].

EXAMPLE 6.2. A non-injective analytic Keller map F: €2 — €2, which also maps R?
into R?, is given by F(x. y) := (u(x. y). v(x. y))T where
F [ (x. ) := v/2€*/2 cos(ye~)
v(x.y) = v/2e¥/2sin(ye™).

Indeed, F(0, y+2kr) = F(0, y), so F isnot injective even though det F'(x) = 1. However,
not both eigenvalues of F/(x) are bounded away from zero.

ExAMPLE 6.3. Thefollowing non-injective analytic Samuelson map F: R? — R? was
given by Gale and Nikaidd in 1965 [13]. Let F(x.y) := (f(x.y). g(x. y))T where

f(x.y) =e*—y?*+3

g(x.y) := dye® — y°.
A C! self-map of real n-spaceis called a Samuelson map if the leading principle minors
U1 ..., pn OF its Jacobian matrix vanish nowhere. These maps are named after the

economist and Nobel laureate, Paul A. Samuelson, who suggested in 1953 that such
maps should be univalent (injective).

For Gale and Nikaidd's map given here, F(0,2) = F(0,—2) = (0,0), so F is not
injective even though ;1 = 26 and i, = detF/(x) = €(8e* + 10y?) are everywhere
positive. Note that the eigenvalues of F/(x) are not bounded from zero because, along
each liney = ¢, detF/(x) — 0 asx — —oo. Also note that F(R?) = R? \ {(3.0)}.
However, everywhere defined rational Samuel son maps are injective. See Campbell [5].

7. Exampleswith EigenvaluesBounded from Zero Every polynomial map of the
form F(x) = x — H(x), with nilpotent Jacobian H’(x) of its homogeneous part H(x), has
the property that all the eigenvalues of its Jacobian matrix F'(x) are equal to 1 (and
hence are bounded away from zero). If it were known to be true that all such polynomial
maps are injective, then the Jacobian Conjecture would be known to be true as well
(by reduction of degree). The Conjecture 2.1 claims more: That any C'-map F must be
injective if the eigenvalues of its Jacobian matrix F'(x) are bounded away from zero.
In the absence of counterexamples, it is interesting to see some nontrivial (and non-

https://doi.org/10.4153/CMB-1998-058-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1998-058-4

A MOUNTAIN PASSTO THE JACOBIAN CONJECTURE 449

polynomial) examples where it is true: Thus the statement of Conjecture 2.1 is at least
true for some non-polynomial analytic maps.

ExAMPLE 7.1. An injective analytic map with eigenvalues bounded from zero. Let
F:R? — R? be given by F(x) = F(x.y) := (u(x.y). v(x. y))T wherex = (x,y)" and

E [ u(x. y) := x — €Y, and
V(X. y) = 2y + €Y,

Its eigenvalues are {1, A(y)} Where A(y) = 2 — €'Y sin2y > 0.1540508716. . .. This
can be easily seen asfollows: A(y) isacontinuous function of period 7, so its maximum
and minimum must occur at points where its derivative \'(y) iszero. This happenswhen
(cos2y)? + 2cos2y — 1 = 0, or when cos2y = /2 — 1, or y = +0.5718588702. . ..
The minimum occurs at the positive value and the maximum occurs at the negative
value: Thus Amin = 0.1540508716 . . . and Amax = 3.8459491284. . .. Since | F(x)|| — oo
whenever ||x|| — oo, and det F'(x) never vanishes, Hadamard's theorem for proper local
diffeomorphisms tells us that this mapping F is a global diffeomorphism of R?.

ExAMPLE 7.2. Another injective analytic map with eigenvalues bounded from zero.
Let F:R* — R? be given by F(x) = F(x.y) := (u(x. y). V(X. y))T wherex = (x,y)" and

u(x.y) := 2x+ cosxcosy, and
V(X, y) := 2y — COSX COSY.

Its eigenvalues are {2, A(x, y)} where \(x,y) = 2 — sin(x — y) > 1. Again ||F(x)|| — oo
whenever ||x|| — oo, and det F'(x) never vanishes, so Hadamard's theorem for proper
local diffeomorphismstells us that this mapping F is a global diffeomorphism of R2.

ExampLE 7.3. Non-injectiverational mapswith eigenvaluesbounded fromzero. Let
F:R%? — R? begiven, for any integer p > 2, by

F u(X,y) :==x— Ll(f,)p*l. and
v(x.y) =y — ()P

Its eigenvaluesare {1, 1} and F(6, 3) = F(12, —3) = (4,1) whenp = 1.

EXAMPLE 7.4. Open: Aninteger n > 2 and anon-injective C-map F: R" — R" with
eigenvalues bounded from zero. This would be a counterexample to the Conjecture 2.1.
If no such counterexample exists, then the Jacobian Conjectureis true.
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