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A MOUNTAIN PASS TO THE JACOBIAN CONJECTURE

MARC CHAMBERLAND AND GARY MEISTERS

ABSTRACT. This paper presents an approach to injectivity theorems via the Moun-
tain Pass Lemma and raises an open question. The main result of this paper (The-
orem 1.1) is proved by means of the Mountain Pass Lemma and states that if the
eigenvalues of F0(x)F0(x)T are uniformly bounded away from zero for x 2 Rn, where
F:Rn

! Rn is a class C 1 map, then F is injective. This was discovered in a joint attempt
by the authors to prove a stronger result conjectured by the first author: Namely, that
a sufficient condition for injectivity of class C 1 maps F of Rn into itself is that all
the eigenvalues of F0(x) are bounded away from zero on Rn. This is stated as Con-
jecture 2.1. If true, it would imply (via Reduction-of-Degree) injectivity of polynomial
maps F: Rn

! Rn satisfying the hypothesis, det F0(x) � 1, of the celebrated Jaco-
bian Conjecture (JC) of Ott-Heinrich Keller. The paper ends with several examples to
illustrate a variety of cases and known counterexamples to some natural questions.

1. A sufficient condition for injectivity. The purpose of this paper is to show
that the celebrated Mountain Pass Lemma can be used to prove a sufficient condition for
injectivity of C 1 maps F:Rn ! Rn. We discovered this injectivity theorem while trying to
prove a different injectivity conjecture of the first author, stated below as Conjecture 2.1,
whose truth would clearly imply injectivity of polynomial maps F:Rn ! Rn satisfying
the hypothesis, det F0(x) � 1, of the Jacobian Conjecture of Ott-Heinrich Keller [16]. We
regard elements x of Rn as column vectors [x1Ò    Ò xn]T and write F0(x) for the Jacobian
matrix of F at x, whose entry in its i-th row and j-th column is [F0(x)]ij = ] Fi(x)Û] xj.

THEOREM 1.1. Let F:Rn ! Rn be a C 1 map. Suppose there exists an è Ù 0 such that
jñj ½ è for all the eigenvalues ñ of F0(x)F0(x)T for all x 2 Rn. Then F is injective.

To prove this we use the Mountain Pass Lemma due to Ambrosetti and Rabi-
nowitz [1]. The statement of it given below as Lemma 1.1 is taken from [4]. Let E
be a Banach space and h: E ! R a function which might satisfy any of the following
conditions.

C1. The Palais-Smale Compactness Condition at one value a 2 R:

(PS)a

(
Every sequence fxkg in E, such that h(xk) ! a and kh0(xk)k ! 0,
has a convergent subsequence.

C2. The Palais-Smale Compactness Condition:

(PS)
(

We say that h satisfies (PS) if (PS)a holds for every a 2 R.
This condition was originally introduced by Palais and Smale [23]
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C3. The Mountain Pass Condition:

(MP)

8>>>><
>>>>:

There is an open neighborhood U of 0 and some point x0 Û2 U
such that maxfh(0)Ò h(x0)g Ú m := inffh(x) : x 2 ] Ug.
Let A denote the family of all continuous paths g: [0Ò 1] ! E
joining 0 to x0, and put c := infg2A maxt2[0Ò1] h

�
g(t)

�
. Clearly c ½ m.

LEMMA 1.1 (THE STANDARD MPL). Let h: E ! R be a C 1 function satisfying (MP).
Then there exists a sequence fxkg in E such that

h(xk) ! c and kh0(xk)k ! 0
If h also satisfies (PS)c with c defined as in (MP), then c is a critical value of h: That is,
for some xc 2 E, h(xc) = c and h0(xc) = 0T = (0Ò    Ò 0).

For more about Critical Point Theory and the Mountain Pass Lemma see [1, 4, 23,
26, 28] and the references cited there. To prove Theorem 1.1 we apply the Mountain
Pass Lemma 1.1, in the finite-dimensional real Banach space E = Rn, to an appropri-
ately defined real-valued function h:Rn ! R associated with the given C 1 mapping F:
Rn ! Rn.

The 1-dimensional example F(x) = arctan(x) suffices to show that the condition in
Theorem 1.1 is not necessary for the injectivity of F.

2. Proof of Theorem 1.1 and an open question.

THE PROOF. If F is not injective, then F(x1) = F(x2) for two distinct vectors x1,
x2 2 Rn. Let G(x) := F(x + x1)�F(x1), x0 = x2 � x1, and h(x) := 1

2 G(x)TG(x). Then h is
real-valued on Rn and h(0) = h(x0) = 0. Since h0(x) = G(x)TG0(x), and G0(x) is invertible
for all x 2 Rn, every point xc at which h0(xc) = 0T must satisfy G(xc) = 0, and so also
h(xc) = 0. Furthermore, x = 0 is an isolated zero of h. To see this we argue as follows.
By applying the Classical Mean Value Theorem, f (1)� f (0) = f 0(í) for some 0 Ú í Ú 1,
to f (t) := Gi(t x) for each component Gi(x) of G(x) and each nonzero x 2 Rn, we obtain

(1) Gi(x) = G0
i

�íi(x)x
�
x where 0 Ú íi(x) Ú 1 for i = 1Ò    Ò n

Then the n ð n matrix A(x), defined by A(0) = G0(0) and

(2) A(x) =

0
BBB@

G0
1

�
í1(x)x

�
...

G0
n

�ín(x)x
�

1
CCCA when x 6= 0Ò

satisfies the equation

(3) G(x) = A(x)x for all x 2 Rn
Now define B:Rnð nÐ Ð Ð ðRn ! Mnðn(R) by

(4) B(x1Ò    Ò xn) =

0
BB@

G0
1(x1)
...

G0
n(xn)

1
CCA 
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Then B is continuous, B(xÒ    Ò x) = G0(x), and B
�í1(x)xÒ    Ò ín(x)x

�
= A(x). Since

(5) det B(0Ò    Ò 0) = det G0(0) 6= 0Ò

there exists a real number r Ù 0 such that det B(x1Ò    Ò xn) 6= 0 when
Pn

i=1 kxik2 � r2.
Therefore, det A(x) 6= 0 if kxk2 � r2Ûn. So, by (3) G(x) = 0 inside the ball kxk � rÛpn
only at x = 0, which is thus an isolated zero of h(x). Also kx0k Ù rÛpn since G(x0) = 0.

Thus the function h(x) := 1
2 G(x)TG(x) satisfies the Mountain Pass Condition (MP),

with U = fx 2 Rn : kxk Ú rÛpng, m = minfh(x) : kxk = rÛpng, and x0 = x2 � x1.
The infimum m is positive because the sphere SrÛpn = fx 2 Rn : kxk = rÛpng = ] U
is compact, h is continuous, and h is not zero on SrÛpn. Now the c in (MP) cannot be
a critical value of h because if h0(xc) = 0T then, as we noted above, h(xc) = 0 too;
so we would obtain the contradiction 0 Ú m � c = h(xc) = 0. Thus, by Lemma 1.1,
the compactness condition (PS)c does not hold for our function h(x) := 1

2 G(x)TG(x).
Therefore there is a sequence fxkg 2 Rn such that

(i) limk!1 kxkk = 1;
(ii) limk!1 h(xk) = c ½ m Ù 0; i.e., limk!1 kG(xk)k =

p
2c Ù 0; and

(iii) limk!1 h0(xk) = limk!1 G(xk)TG0(xk) = 0T .
If ñ1 denotes the minimum eigenvalue of a hermitian matrix A, one has the well-known

inequality ñ1 = infy6=0(yTAy)Û(yTy). That is, the minimum eigenvalue of a symmetric
matrix A is the infimum of the Rayleigh Quotient ö(y) := (yTAy)Û(yTy). See [22].
Applying this with y = G(x) and A = G0(x)G0(x)T (a positive definite hermitian matrix),
we obtain at x = xk for all k ½ 1,

(6) 0 Ú ñ1(xk) � G(xk)TG0(xk)G0(xk)TG(xk)ÛG(xk)TG(xk)Ò for G(xk) 6= 0

Since the numerator kG0(xk)TG(xk)k2 in the right-hand-side of (6) tends to 0 by (iii) while
the denominator tends to 2c Ù 0 by (ii), we obtain ñ1(xk) ! 0. Since this contradicts the
hypothesis of Theorem 1.1 that all eigenvalues of F0(x)F0(x)T are bounded away from
zero, it follows that F must be injective. This completes the proof of Theorem 1.1.

Compare the statement of Theorem 1.1 with that of the following open conjecture.

CONJECTURE 2.1. Let F:Rn ! Rn be a C 1 map. Suppose there exists an è Ù 0 such
that jïj ½ è for all the eigenvalues ï of F0(x) for all x 2 Rn. Then F is injective.

The example F(x) = arctan(x), mentioned after Theorem 1.1, also shows that the
condition in Conjecture 2.1 is not necessary for the injectivity of F. In order for the
argument used in the proof of Theorem 1.1 to prove Conjecture 2.1, we would need to
show that limk!1 ï1(xk) = 0, where

ï1(xk) := min
njïj : ï an eigenvalue of G0(xk)

o
However, ñ1 ! 0 does not imply that ï1 ! 0, as the following example on R2 shows.
Let (uÒ v) = F(xÒ y) = (ax � y3Ò by), ab 6= 0. This is a polyomorphism of R2 whose
Jacobian matrix F0(xÒ y) has eigenvalues faÒ bg (hence bounded away from zero); but,
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nevertheless, the minimum eigenvalue ñ1 of the positive definite symmetric matrix
F0(xÒ y)F0(xÒ y)T does tend to zero as y !1. Thus ñ1 ! 0 does not imply that ï1 ! 0;
so no contradiction.

Why should the eigenvalue of G0(xk) with minimum absolute value jï(xk)j go to
zero as k ! 1? Of course there is the well-known inequality jï(xk)j Ú kG0(xk)k;
but there is no reason to believe that kG0(xk)k ! 0 as k ! 1. However, one might
think that we could apply the above mentioned Rayleigh Quotient idea to the (non-
symmetric) matrix A = G0(xk) because (at that point in the proof) we know by (iii) that
limk!1 h0(xk) = limk!1 G(xk)TG0(xk) = 0T, so that

(7) lim
k!1

G(xk)TG0(xk)G(xk)ÛG(xk)TG(xk) = 0

But this Rayleigh Quotient for G0(xk) does not majorize ï1(xk), as can be seen for the
example F(xÒ y) = (ax � y3Ò by), with ab 6= 0, so no contradiction arises.

It is interesting to compare our Theorem 1.1 with the [1906] Theorem of Hadamard on
the global injectivity of proper maps [14]: A C 1 map f :Rn ! Rn is a diffeomorphism if
and only if f is proper and the Jacobian determinant of f , det f 0(x), never vanishes. Recall
[see, e.g., Bourbaki’s General Topology Part 1, Chapter I, Section 10] that a continuous
map f is said to be proper if f�1(K) is compact whenever K is compact; and a continuous
map from Rn to Rn is proper if and only if kxk ! 1 implies k f (x)k ! 1. Thus a
proper map satisfies (PS). The proof of Theorem 1.1 essentially argues that, supposing f
is not injective, the condition (PS) is violated, which leads to the contradiction.

Note that the eigenvalue-hypothesis of Theorem 1.1 can be expressed in another way.
For real square matrices A and B, kAk2 = kATAk = r(ATA), the spectral radius of ATA;
and the eigenvalues of B and B�1 are reciprocals of each other. Also det AAT = (det A)2

so the product of the eigenvalues of AAT is the square of the product of the eigenvalues
of A. Thus the eigenvalues of F0(x)F0(x)T are bounded from zero on Rn if and only if
det F0(x) never vanishes on Rn and kF0(x)�1k is bounded on Rn. From this one can see
that our Theorem 1.1 is related to results in the papers of Plastock [25], Rabier [27], and
Smyth and Xavier [31].

3. The Jacobian Conjecture. Let k be a field of characteristic zero, and kn the vector
space over k of column n-tuples of elements of k. Call F: kn ! kn a polynomial map if each
of its components Fi(x) belongs to the polynomial ring k[n] = k[x] = k[x1Ò x2Ò    Ò xn];
a Keller map if also det F0(x) � constant 6= 0; and a polyomorphism if, in addition,
F is bijective with polynomial inverse. The Jacobian Conjecture, expressed in this
terminology, is that the following question, raised in 1939 by Ott-Heinrich Keller [16],
has an affirmative answer.

CONJECTURE 3.1 (k-JC). Is every Keller map of kn a polyomorphism of kn?
For the exact form and context of Keller’s original question see [16]; and for more

general versions and a survey of its history and many other references see [2, 12, 17, 18,
19, 20, 21, 32].
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In this paper, we are only concerned with the two cases: k = R and k = C. In all that
follows in this paper, we may (and do) assume without loss of generality that Keller
maps are normalized to satisfy det F0(x) � 1. Proofs of R-JC and of C-JC can be based
on the following two reductions, which are independent of each other. First, for C-JC it
suffices to prove injectivity [3, 30]:

REDUCTION 3.1 (INJECTIVITY SUFFICES). Injective polynomial maps of Rn or Cn into
itself are surjective. Bijective polynomial maps ofCn into itself have polynomial inverses.

Using this reduction, it follows immediately from the elementary mean-value formula

F(x) � F(y) = F0
�x + y

2

�
(x � y)

for polynomial maps F: kn ! kn of degree two, that (1) C-JC is true in all dimensions
for all polynomial maps of degree two; and (2) all quadratic polynomial maps of Rn

into itself with nonvanishing Jacobians are bijective. (Pinchuk’s counterexample [24]
has degree 25.)

The second reduction [2, 33] is called reduction of degree and states that by increasing
dimension (the number of variables) it is possible to reduce the degree of the polynomial
map F to three with no term of degree two. We may also assume F(0) = 0 and F0(0) = I.

REDUCTION 3.2 (REDUCTION OF DEGREE). Keller maps F: kn ! kn, of every degree
and in every dimension n, are injective if and only if, in every dimension n, Keller maps
of the special “cubic-homogeneous” form F(x) = x�H(x), where H(t x) = t3H(x) for all
t 2 k and for all x 2 kn, are also injective. For these, Keller’s condition det F0(x) � 1 is
equivalent to the condition that the Jacobian matrix H0(x) is nilpotent 8x 2 kn: Indeed,
if det

�
I � H0(x)

� � 1, then, 8ï Ù 0, det
�ïI � H0(x)

� � ïn det
�
I � H0(xÛpï)

� � ïn;
so the characteristic polynomial of H0(x) is ïn, and H0(x)n � O by the Cayley-Hamilton
Theorem. Consideration of the minimum polynomial of H0(x) gets the converse.

4. Keller maps on Rn and Cn. What would the truth of Conjecture 2.1 entail for
polynomial maps of Rn and Cn?

THEOREM 4.1. Truth of Conjecture 2.1 implies Keller maps of Rn are injective.

PROOF. By the Reduction Theorem 3.2 it suffices to prove that Keller maps of the
special “cubic-homogeneous” form F(x) = x � H(x), where H(t x) = t3H(x) for all
t 2 k and for all x 2 kn, are injective in every dimension n ½ 2. But such maps, as
noted, satisfy the condition that the Jacobian matrix H0(x) is nilpotent for every x in kn:
H0(x)n � O. And it follows from this condition that all eigenvalues of F0(x) = I �H0(x)
are +1, because 8ï Ú 1, det

�
F0(x)�ïI

�
� (1�ï)n det

�
I�H0(xÛp1 � ï)

�
� (1�ï)n.

So now by Conjecture 2.1 these cubic-homogeneous Keller maps are indeed injective.
Whether or not bijective Keller maps of Rn have polynomial inverses remains to be

seen.

THEOREM 4.2. Truth of Conjecture 2.1 implies Keller maps of Cn are polyomor-
phisms.
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PROOF. Let F = (F1Ò    ÒFn):Cn ! Cn be a Keller map of Cn. Define the as-
sociated real map F̃:R2n ! R2n defined by F̃ = (<F1Ò =F1Ò    Ò <FnÒ =Fn). Now
det F̃0 = j det F0j2, so det F̃0 is a nonzero constant if and only if det F0 is a nonzero
constant. Consequently F̃:R2n ! R2n is a Keller map of R2n, and hence injective by The-
orem 4.1. But one easily sees that F is injective if and only if F̃ is injective. It now follows
from the Reduction Theorem 3.1 of Białynicki-Birula and Rosenlicht [3], recently given
a more elementary proof by Rudin [30], that F is bijective with a polynomial inverse
(i.e., a polyomorphism).

Here are a few examples to illustrate the situation to date, as far as we know it.

5. Recent Polynomial Examples are Consistent with Conjecture 2.1.

EXAMPLE 5.1. Cubic-homogeneous maps F(x) := x � H(x), where H(t x) = t3H(x)
and H0(x)n � 0. All known examples of Keller maps of this type are polyomorphisms.
The Jacobian Conjecture is true by virtue of the Reduction 3.2 iff no polymap of this type,
in any dimension, fails to be injective. Each polymap of this form has all eigenvalues of
its Jacobian matrix equal to +1, and thus satisfies the hypotheses of Conjecture 2.1.

EXAMPLE 5.2. Injective cubic-homogeneous maps need not be polynomially lin-
earizable [10].

F =
�
X1 + X4(X3X1 + X4X2)ÒX2 � X3(X3X1 + X4X2)ÒX3 + X4

3ÒX4

�T

This example has the property that its dilations sF are not polynomially linearizable; but
they are analytically linearizable. That is, there is an s-family ûs(x), holomorphic in x
but not polynomial in x, such that ûs Ž sF Ž û�1

s = sX [9, 15].

EXAMPLE 5.3. Injective cubic-homogeneous maps need not be analytically lineariz-
able [11].

F =
�
X1 + X4(X3X1 + X4X2)2ÒX2 � X3(X3X1 + X4X2)2ÒX3 + X4

3ÒX4

�T

Dilations sF of this map are not even analytically linearizable. But sF could perhaps be
linearizable for some s-family of bijections ûs(x).

EXAMPLE 5.4. A polynomial counterexample in R3 to the Markus-Yamabe Conjec-
ture [7].

F =
��X1 + X3(X1 + X2X3)2Ò �X2 � (X1 + X2X3)2Ò �X3

�T

Zero is not a global attractor of the differential equation ẋ = F(x) even though F(0) = 0,
F is injective, and 8x 2 R3 all eigenvalues of F0(x) have negative real parts (all are�1).
Nevertheless, the system ẋ = F(x) has the solution x(t) = (18etÒ �12e2tÒ e�t) 6! 0.
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6. Non-Injective Examples.

EXAMPLE 6.1. Pinchuk’s polynomial map P:R2 ! R2 satisfies det P0(x) Ù 0 for all
x 2 R2, but is neither injective nor surjective: Indeed, P(1Ò 0) = P(�1Ò �2) = (0Ò �1);
and P(R2) = R2 n ftwo pointsg. Pinchuk’s polymap P(x) = P(xÒ y) =

�
p(xÒ y)Ò q(xÒ y)

�
is

defined, 8x = (xÒ y)T , by the equations t := xy � 1, h := t(xt + 1), f := (h + 1)(xt + 1)2Ûx,
p(xÒ y) := f +h, Q := �t2�6th(h+1), u := 170 f h+91h2+195 f h2+69h3+75h3f +(75Û4)h4,

q(xÒ y) := Q�u; so det P0(xÒ y) = ] (pÒ q)Û] (xÒ y) = t2 +
�
t + (13 + 15h) f

�2
+ f 2. Therefore,

along the curve xy = 1, we have t = 0 so the Jacobian reduces to det P0(xÒ y) = 170y2

which clearly tends to zero as y ! 0 and x ! 1. Consequently, not both eigenvalues
of P0(x) are bounded away from zero; so Pinchuk’s non-injective polynomial map does
not satisfy the hypotheses of Conjecture 2.1. See [6, 8, 24].

EXAMPLE 6.2. A non-injective analytic Keller map F:C2 ! C2, which also maps R2

into R2, is given by F(xÒ y) :=
�
u(xÒ y)Ò v(xÒ y)

�T
where

F
(

u(xÒ y) :=
p

2exÛ2 cos( ye�x)
v(xÒ y) :=

p
2exÛ2 sin( ye�x)

Indeed, F(0Ò y +2kô) = F(0Ò y), so F is not injective even though det F0(x) � 1. However,
not both eigenvalues of F0(x) are bounded away from zero.

EXAMPLE 6.3. The following non-injective analytic Samuelson map F:R2 ! R2 was

given by Gale and Nikaidô in 1965 [13]. Let F(xÒ y) :=
�
f (xÒ y)Ò g(xÒ y)

�T
where

F
(

f (xÒ y) := e2x � y2 + 3
g(xÒ y) := 4ye2x � y3

A C 1 self-map of real n-space is called a Samuelson map if the leading principle minors
ñ1Ò    Ò ñn of its Jacobian matrix vanish nowhere. These maps are named after the
economist and Nobel laureate, Paul A. Samuelson, who suggested in 1953 that such
maps should be univalent (injective).

For Gale and Nikaidô’s map given here, F(0Ò 2) = F(0Ò �2) = (0Ò 0), so F is not
injective even though ñ1 = 2e2x and ñ2 = det F0(x) = e2x(8e2x + 10y2) are everywhere
positive. Note that the eigenvalues of F0(x) are not bounded from zero because, along
each line y = c, det F0(x) ! 0 as x ! �1. Also note that F(R2) = R2 n f(3Ò 0)g.
However, everywhere defined rational Samuelson maps are injective. See Campbell [5].

7. Examples with Eigenvalues Bounded from Zero Every polynomial map of the
form F(x) = x � H(x), with nilpotent Jacobian H0(x) of its homogeneous part H(x), has
the property that all the eigenvalues of its Jacobian matrix F0(x) are equal to 1 (and
hence are bounded away from zero). If it were known to be true that all such polynomial
maps are injective, then the Jacobian Conjecture would be known to be true as well
(by reduction of degree). The Conjecture 2.1 claims more: That any C 1-map F must be
injective if the eigenvalues of its Jacobian matrix F0(x) are bounded away from zero.
In the absence of counterexamples, it is interesting to see some nontrivial (and non-
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polynomial) examples where it is true: Thus the statement of Conjecture 2.1 is at least
true for some non-polynomial analytic maps.

EXAMPLE 7.1. An injective analytic map with eigenvalues bounded from zero. Let

F:R2 ! R2 be given by F(x) = F(xÒ y) :=
�
u(xÒ y)Ò v(xÒ y)

�T
where x = (xÒ y)T and

F
(

u(xÒ y) := x � ecos2 yÒ and
v(xÒ y) := 2y + ecos2 y

Its eigenvalues are f1Ò ï( y)g where ï( y) = 2 � ecos2 y sin 2y ½ 01540508716   . This
can be easily seen as follows: ï( y) is a continuous function of period ô, so its maximum
and minimum must occur at points where its derivative ï0( y) is zero. This happens when
(cos 2y)2 + 2 cos 2y � 1 = 0, or when cos 2y =

p
2 � 1, or y = š05718588702   .

The minimum occurs at the positive value and the maximum occurs at the negative
value: Thus ïmin = 01540508716    and ïmax = 38459491284   . Since kF(x)k ! 1
whenever kxk ! 1, and det F0(x) never vanishes, Hadamard’s theorem for proper local
diffeomorphisms tells us that this mapping F is a global diffeomorphism of R2.

EXAMPLE 7.2. Another injective analytic map with eigenvalues bounded from zero.

Let F:R2 ! R2 be given by F(x) = F(xÒ y) :=
�
u(xÒ y)Ò v(xÒ y)

�T
where x = (xÒ y)T and

F
(

u(xÒ y) := 2x + cos x cos yÒ and
v(xÒ y) := 2y� cos x cos y

Its eigenvalues are f2Ò ï(xÒ y)g where ï(xÒ y) = 2 � sin(x � y) ½ 1. Again kF(x)k ! 1
whenever kxk ! 1, and det F0(x) never vanishes, so Hadamard’s theorem for proper
local diffeomorphisms tells us that this mapping F is a global diffeomorphism of R2.

EXAMPLE 7.3. Non-injective rational maps with eigenvalues bounded from zero. Let
F:R2 ! R2 be given, for any integer p ½ 2, by

F

8<
: u(xÒ y) := x � p

p+1 ( x
y )p+1Ò and

v(xÒ y) := y � ( x
y )p

Its eigenvalues are f1Ò 1g and F(6Ò 3) = F(12Ò �3) = (4Ò 1) when p = 1.

EXAMPLE 7.4. Open: An integer n ½ 2 and a non-injective C 1-map F:Rn ! Rn with
eigenvalues bounded from zero. This would be a counterexample to the Conjecture 2.1.
If no such counterexample exists, then the Jacobian Conjecture is true.
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