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Abstract It is shown that the system of the form x+ V'(x)= p(t) with periodic V
and p and with (p) = 0 is near-integrable for large energies In particular, most (in
the sense of Lebesgue measure) fast solutions are quasipenodic, provided Ve C<5>

and p£L\ furthermore, for any solution x(t) there exists a velocity bound c for
all time |x(f)|<c for all l eR For any real number r there exists a solution with
that average velocity, and when r is rational, this solution can be chosen to be
periodic

1 Introduction
The result of this note states that any system consisting of a particle in a penodic
potential subject to penodic external forcing possesses KAM ton, physically corre-
sponding to quasipenodic translational motion The only assumptions are the C(5)

smoothness of the potential and the zero average of the forcing In particular, forcing
need not be small This note was stimulated by J Franks' extension of the Poincare-
Birkhoff theorem to the case when the boundaries of the annulus are noninvanant
This extension was proven and applied (the latter in collaboration with Moeckel
and Robinson) in [5] to the conservative pendulum with penodic forcing

* i

p(t)dt = O, (1)i:
where p( t +1) = p( t), to show that penodic solutions of any rational rotation number
exist

The standard version [2] of the Poincare-Birkhoff theorem may not seem appli-
cable in this case since no annulus with invanant boundaries is available a pnon
We will show that such boundanes actually do exist, using Moser's invariant curve
theorem [8], [13], [16]

We will look at the systems of the form

x+V'(x) = p(t), V(x+l)=V{x), p(t+\) = p(t) (2)

describing the motion of a particle in a penodic potential with external periodic
forcing p{t) This could be a simple model of an electron in an atomic lattice subject
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to a periodically varying potential, or of charge-density waves [6] We will show
that the associated Poincare map F (x, x),=oi-* (x, x), = 1 of the phase cylinder
(x mod 1, x) onto itself possesses noncontractible invariant circles The results are
stated fully in § 2 We mention a related result by Zehnder and Dieckerhoff [3,4]
on the existence of KAM circles for the particle in a superquadratic potential

x+Vx(x,t) = 0, (3)

V(x, t) = x2n + a1x
2"-1+ +a2n, n>\

with lower coefficients a,(t) periodic in t The superquadratic nature of the potential
provided the twist needed to apply KAM In the case at hand, the twist is provided
by a different effect, essentially, by the shear in the (x, x)-plane whose physical
manifestation lies in the obvious fact that the faster particles travel further The
invariant circles on the phase torus turn out to be approximately straight for large
energies, this eliminates the need of a preliminary change into action-angle variables,
making the proofs simpler than in the superquadratic case (3)

We mention also the earlier results by Jacobowitz and Struble [9] and by Hartman
[7], where the superquadratic nature of the potential was used to apply the Poincare-
Birkhoff theorem to prove the existence of periodic solutions in a class of systems
of the form (3)

2 Results
THEOREM 1 Assume that V(x) e C<5) and thatp(t) is continuous (actually, summable
is enough) with \x

op{t) dt = O
For any 0 < w < 1 satisfying for some c0 > 0 and fi>0 the set of inequalities

m
ft

-£- Vm, n 6 Z, n ?* 0,

there exists an integer ko = k(c0, fi)>0 such that Poincare map F (x, x),=0>-> (x, x),=1

of eq (2) possesses a countable set of invariant curves y =fa+k(x) =fai+k(x +1), for
all integers |/c| > fc0 with translation numbers u> + k The corresponding invariant circles
in the phase cylinder (x mod 1, x) have rotation numbers a> For large \k\ we have

L+k+M-fa,+k(x) = l + O(k-1) and /L+* = O(fc-')

Relative measure of invariant circles in an annulus J V < x s N + l tends to one as
N-*oo

Applying a recent result of Herman [8] on the existence of invariant curves for
C(3)-small perturbations of the twist maps, one can lower the smoothness assumption
to Ve C<4), at the expense of replacing the Diophantine condition on w by the
requirement that w be of constant type One also loses the statement on the relative
measure of invariant circles

Each such invariant circle sweeps out an invariant torus in the extended phase
space {(x mod 1, x, t mod 1)} = S1 xRx S1 Each orbit on such a torus is
quasipenodic with basic frequencies 1 and <o + k.
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Physically, these orbits correspond to quasipenodic rotations with average angular
velocity a) + k, or to quasipenodic translations (in the potential well interpretation)
with the average speed w + k The basic frequencies of the quasipenodic solutions
are 1 and w + k.

The existence of invariant circles implies at once the following

COROLLARY 1 Any solution of (2) is bounded in the phase cylinder {(x mod 1, x)} =
S1 x R, in other words, any solution of (2) has bounded angular velocity

Since Poincare map F defined above is a composition of monotone twist maps,
we can apply the Aubry-Mather theorem [1, 12, 13], obtaining

COROLLARY 2 For any real number a> there exists a Birkhoff orbit with that rotation
number Physically, there exists a motion with any average angular velocity Further-
more, as a consequence of the Poincare-Birkhoff's theorem, for any rational w = p/q
there exists a periodic solution satisfying x(t + q) = x(t) + q

A note added in proof After this paper had been submitted I learned that Jurgen
Moser had proved a similar statement for a more general equation x+ Wx(x, t) = Q
with Wx periodic in both arguments, satisfying the exactness condition
Jolo Wx(x, t) dxdt = 0 and smooth enough [17] Moser's proof is based on a van-
ational approach, the proof given in the present note is different—it is based on
the application of Moser's invariant curve theorem [13] The proof given here carnes
over almost verbatim to the more general case when the dependence on x and t is
not separate The argument requires, however, the differentiability in t as well, as
it does in [ 17], it suffices to assume V e C(5)(R2) In the special case (2) no smoothness
in / is assumed

3 Proof
We will show that F is an exact map of the cylinder which is C<4)-close to the linear
shear for large \y\ = \x\

3 1 Exactness of the Poincare map

The exactness of the cylinder map F is due, as it turns out, to the zero-average
property of p(t) - this was observed previously by Moeckel, Robinson [5] and others
For completeness, we provide a proof

Let Co be an arbitrary noncontractible circle going once around the cylinder, and
let Co be its image under the flow of eq (2)

Thus C, = FC0, we have to show that
f

ydx (5)f ydx=\
Let A, be the annulus bounded by the horizontal circle H = {y = Q) of the x-axis
(oriented in the positive direction) and by C, (oriented in the opposite direction to
the x-axis), figure 1
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, , y = x

FIGURE 1 Proof of exactness

Differentiating the area J \A dx dy and observing that only one component C, of
the boundary is moving with the flow (4), we obtain

where n is the outward unit normal vector
Using the divergence theorem, we rewrite the flux on the right-hand side as

- f nds=\ f nds-\\ divfdxdy(= \ f nds
Jc, JH J J A, JH

= V'(x)dx+ p{t)dx=\ p(t)dtl=O,
Jo Jo Jo

where the Hamiltonian (l e, divergence-free) character of/ was used in (A) and
zero-average property of p was used in (B) We conclude that

f f dxdy= f I dxdy,
J J Ao J J A,

which by Stokes' theorem is equivalent to the desired exactness property (5)

3 2 Near-mtegrabihty

To prove Theorem 1 it remains to show that the map F is Ct4)-close to the twist
for large y, we will show in fact, that

where P = i'oj'op(r) drdt and r = col (r,, r2) is C<4)-small there exists a constant C
depending on V( ) and p( ) only, such that

Ik, ||c«, IW|c«Cb>r (6a)
The idea of the proof is to show that for high angular velocities the effect of

periodic potential averages out to zero
To prove (6) and (6a) we let z(f) = z(t, s,, s2) be the solution of (4) with

z(0, .$!, s2) = col (s,, s2) To estimate r(x, y) we introduce the derivative vectors

dz_
ds/

z.,=
ds, dS, dSj dSk ds, ds. dsk dSj
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where i, j , k, I = 1 or 2 and show that for t = 1

z,(l) = +O(|y| '), z2(l) =

\ 0 / \ 1 /
while

|zy(D|, |zBt(l)|, |ztfU(l)| = O(b|-!) for y large

These vectors satisfy the linear, Hessian cubic and quartic versions of eq (4)

z, =/z(z, t)z,

781

(7a)

z«=/zZ9+/«(z)[z,,2j, z,,(0) = 0, (7b)

V = /zzyfc +/zz[Zfc, Z.J + /«[> . , Z,fc] +/zz[2,fc, Z,] +/zz[Zfc, Z,, Z,], Zuk(0) = 0, (7c)

and similarly for z,jkl The derivatives fzz, fzzz and /zzzz are tensors (multilinear
functions of their arguments) with coefficients being second, third and fourth mixed
partials in x and y of the components of /(z) For/(z, i) as in (4), these depend
only on V(l)(x) with i < 5 and thus satisfy, for some C > 0 and for all x € R, the bounds

!/«[«, »]|=sC|u||»| (8a)

I / « , [ U , W , W ] | S C | M | M M (8b)

!/„»[«, W , " U ] | : S C | I I | M M M (8c)

To obtain the desired C(4)-estimate (6a) on the remainder we will use the following
estimate on z(t, xo,yo) = z(t, z0) valid for large |yo|, given in Lemma 1 and in its
two corollaries

3 3 Auxiliary lemmas

L E M M A 1 Let B = maxx | V'(x)| + max, \p{t)\ For any x0, y0, t with _vo>8B and

0 5 r s l , the solution z(t, z0) of (4) lies in the triangle shown in figure 2, i e satisfies

1R 1R
yo + —(x(t,zo)-xo)>y(t,zo)2:yo {x(t, z0) -x 0 ) ,

yo y0

xosx(t, zo)s

(9a)

(9b)

F I G U R E 2 Estimate on z ( ( , z0) as given by Lemma 2
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Proof of Lemma 1 We show that the solution z(t, z0) stays in the tnangle defined
by (9) during 0< r< 1 by proving first that z(t, z0) cannot leave through the sloped
sides

2 H
y = )>o±— (x-x0) =f L±(x), x0<:X<x0 + 2y0,

yo

since the flow crosses these inwards First we show that the lower boundary is
crossed upwards if y(t)- L_(x(t)) = 0 and xo<x(l)<xo + 2}', then

d\ ( 2B, \1 , IB
"77 L v - Jo (*-*o) \ = -V'+p+—y
dt L \ y0 / J yo

— (yo-—(x-xo))
y0 \ y0 I
4B2

— JO ™r LD — 2 V-* — %0/

4B2 8B2

>B r 2yo=B >0, since >>0>8B
yo yo

Second, the top boundary of the tnangle defined by (9) is crossed downwards
for points (x, y) on the top boundary segment we have

B \ 1 , 2B

yo ° / J yo

= -V' + p-— lyo + —(x-xo))
y0 \ y0 )

4B2

<B-2B r(x-xo)<-B<0
yl

Since z(t) stays below the line, it does not travel too fast to the right - this gives
the estimate on x(t)

2B
x = y<yo+—(x-x0),

yo

and thus
2

x(f) — xo-\—- (e2Bl/v°— 1) forf>0,

which for 0< ts 1 and yo>8B gives

x(t)-&xo + 2yot D

COROLLARY 3 There exists a constant C > 0 independent of (x0, y0) such that for all
\yo\ >: 8B and for all x0

l£ V{k>(x(t,x0,y0))dt = l,2,3,4,5 (10)

Proof of Corollary 3 The idea of the proof is simple if x(t) had changed linearly
with time, the integral in question would have been zero Since x(t) changes
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near-hnearly by Lemma 1, the integral should be small To make this rigorous, we
choose x as the independent variable, obtaining

\rk)(x{t))dt

V(fc)(x),

-dx

V(k-l)(x)y'(x)
dx

y(x) "° J*o u\x)

where Lemma 1 was used to estimate y2 s Cyl from below and the estimates

!/(*)! =
dy
dx

-V' + p
< —T and \xi-xo\<2yo

\yo\
were incorporated, both following from Lemma 1 •

COROLLARY4 Letg [0,1] -»R be C1 -bounded \g(t)\, \g'(t)\< C,, let Ve C(5) and
assume that z(t, z0) satisfies conclusion (9) of Lemma 1 77ien 3 C > 0 SMC/J that for
all yo>%B we have

g(t)Vlk\x(t)) dt <C\yo\ (11)

Proof of Corollary 4 The idea of the proof is similar to the one above The added
ingredient (implicit in our analytic argument) is the fact that g changes slowly with
respect to x(t) so that the integrand averages out to near-zero over one full
27r-rotation of x

With h(x)= Va "(x), we have, choosing x as the independent variable

|J>"*HJ>'«'»*HJ.' . , h'(x(t))
g{t) xdt

y(x(0)

h'(x) dx

h(x)
g(t(x))

X0 J x 0

' « ^ Xi Xn
maxlgf-g/|

miny2

Since h, g are bounded and \y\ s |_yo| — 4B (Lemma 1), the first term in the last sum
satisfies the desired estimate Similarly, the second term is less than C|_yo|~' since
|x,-x0|<2|>'0|, and

dy dt
dx dx

y
X

-V' + p

y
1/001= ^ = Z =

B
•

3 4 End of the proof of Theorem 1

We now begin the end of the proof of the theorem
As the first step, we estimate the position z(l, z0) after one period Integrating

the second component of eq (3), we obtain for 0 £ ( < l

v(0 = >V+| (-V' + p)dt = yo+\
Jo Jo

(12)
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using Corollary 3, in particular, for t - 1 we obtain

Furthermore, integrating (12), we obtain

dt = xo+\ Uo+J p(T)dT+O(\y0\'
l)\

This proves the C°-smallness of the remainder r in (6) To get the C'-estimate, we
evaluate z,(l) introducing matrices A(t) =fz(z(t)) and B{t) =\'o A(T) dr, we obtain
from the linearized equation (7a)

B'(t)z,(t)dti
( l ) - B(t)A(t)z,(t)dt,

Jo
the last step involved integration by parts Using Corollary 3 on the elements of the
matrix B we obtain

while Corollary 4 gives

[ B{t)A(t)zXt)dt=O{\y0\-
1),

Jo
resulting in

proving the C1-estimate on r
The last argument shows also that the fundamental solution matrix <J> for the

linearized equation (7a) satisfies

This will be used in the remaining estimates
Equation (7b) is inhomogeneous in zv, but the inhomogeneity has been estimated

in the previous steps To show that zy(l) = O(\y())\~'), we use the variation of constant
formula to obtain

= [
Jo

Jo

[
o

Using the above estimate on <!>(;, T) together with the observation that the com-
ponents of/.. are either 0 or - V'"(x(t)), we can apply Corollary 4 to conclude that

, r ) for Os f=sl
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The estimate z,jk(l) = O(\y0\~') is obtained in precisely the same way, by using
all previous estimates on z, z,, zy together with Corollary 4 The last estimate
zu«(l) = CHbol') is obtained analogously This argument makes it clear that the
remainder r is Ck-small for large y0 if Ve Ck+i •
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