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Toric systems and mirror symmetry

Raf Bocklandt

Abstract

In their paper [Exceptional sequences of invertible sheaves on rational surfaces,
Compositio Math. 147 (2011), 1230–1280], Hille and Perling associate to every cyclic
full strongly exceptional sequence of line bundles on a toric weak del Pezzo surface a
toric system, which defines a new toric surface. We interpret this construction as an
instance of mirror symmetry and extend it to a duality on the set of toric weak del Pezzo
surfaces equipped with a cyclic full strongly exceptional sequence.

1. Reflexive polygons and weak del Pezzo surfaces

A convex integral polygon in Z2 that has exactly one internal lattice point is called a reflexive
polygon. Up to integral affine transformations, there are precisely 16 reflexive polygons, which
are shown below.

3a 4a 4b 4c

5a 5b 6a 6b

6c 6d 7a 7b

8a 8b 8c 9a

Fix a reflexive polygon P, let (0, 0) be the internal lattice point, and let v1, . . . , vk be the lattice
points on the boundary of the polygon in cyclic order. From this polygon we can construct a
toric fan

{0, [v1], . . . , [vk], [v1, v2], . . . , [vk, v1]}
where [u1, . . . , ul] is shorthand for R+u1 + · · ·+ R+ul. This fan defines a projective smooth toric
surface XP. This surface is a del Pezzo surface, i.e. with ample anticanonical bundle, if all of the
vi are corners of the polygon, and it is a weak del Pezzo surface otherwise.

To this fan we can associate a sequence of numbers (a1, . . . , ak) such that

vi−1 + aivi + vi+1 = 0,

and, up to cyclic shifts and inversion of the order, this sequence determines the polygon up to
affine transformations and the toric variety up to isomorphism.
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R. Bocklandt

In [HP11a], Hille and Perling studied full cyclic strongly exceptional sequences of line bundles
on weak del Pezzo surfaces. These are infinite sequences of line bundles . . . ,Li,Li+1, . . . such
that:

– Extr(Li,Lj) = Extr(Lj ,Li) = 0 if r > 0 and i6 j < i+ k;

– Hom(Li,Lj) = 0 if i > j;

– Li+k = Li ⊗K −1.

Here K is the canonical bundle and k is the rank of the Grothendieck group, which is the same
as the number of vectors vi.

Hille and Perling classified these full cyclic strongly exceptional sequences and proved the
following strange and remarkable result.

Theorem 1.1 [HP11a, Per10]. Given a cyclic full strongly exceptional sequence (Li) on a toric
surface, the sequence of numbers

(b1, . . . , bk) := (dim Hom(Li,Li+1)− 2, . . . , dim Hom(Li+k−1,Li+k)− 2)

corresponds to the sequence of a new weak del Pezzo surface.

The origin and interpretation of this new surface might seem mysterious at first;
however, recent developments in the study of mirror symmetry for punctured Riemann
surfaces [AAEKO11] and its relation to dimer models [Boc11] have shed new light on this issue.

To every cyclic full strongly exceptional sequence on a toric weak del Pezzo surface one can
associate a consistent dimer model, which is a quiver embedded in a Riemann surface. The dimer
contains enough information to recover both the surface and the exceptional collection. More
precisely, the (ai) sequence and the (bi) sequence can be determined from the dimer model, but
not the other way round. A list of all dimers coming from these full cyclic strongly exceptional
sequences can be found in [Boc12a], while examples of the quivers without their dimer structure
appear in [Per10].

A dimer model can be used to define two categories: a Fukaya category and a category
of matrix factorizations. In [Boc11] it is shown that there is a duality on the set of dimer
models, such that (under certain consistency conditions) the category of matrix factorizations
is (A∞)-equivalent to the Fukaya category of the dual dimer. This duality gives a combinatorial
description of mirror symmetry for punctured Riemann surfaces.

The main result of this paper is that the aforementioned duality acts as an involution on the
set of dimers coming from full strongly exceptional sequences of line bundles on weak toric del
Pezzo surfaces and interchanges the (ai) sequence and the (bi) sequence. This is an extension of
Hille and Perling’s result in the following way: the dimer duality not only associates to a cyclic
full strongly exceptional sequence of line bundles a new toric weak del Pezzo surface but also
equips it with a new full strongly exceptional sequence; moreover, this process is a duality and
therefore the toric system of the new exceptional sequence will give us back the original toric del
Pezzo surface.

The paper is organized as follows. We start with a brief introduction to dimer models, and
then we explain the phenomenon of dimer duality and its relation to mirror symmetry. In § 4 we
apply this to the special situation of weak toric del Pezzo surfaces and prove our main result.
We end with an illustration of the duality for reflexive polygons with eight lattice points on the
boundary.
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Toric systems and mirror symmetry

2. Dimer models

A quiver Q is an oriented graph. We denote the set of vertices by Q0 and the set of arrows by
Q1; the maps h and t assign to each arrow its head and tail. Paths are defined in the usual way
as sequences of arrows ak . . . a0 such that t(ai) = h(ai+1). A path is cyclic if its head and tail
coincide, and a cycle is the equivalence class of a cyclic path up to cyclic permutation. A trivial
path is just a vertex. The path algebra CQ is the vector space spanned by the paths with product
given by the concatenation of paths.

Let S be a compact orientable surface without boundary. A quiver is said to be embedded in
S if the vertices are a subset of S and the arrows can be viewed as smooth curves connecting
the heads and tails such that the only intersections occur at endpoints. The surface in which a
quiver Q is embedded will often be denoted by |Q|.

An embedded quiver is called a dimer model if the complement of the arrows is a disjoint union
of open discs, each bounded by a cyclic path of length at least 3. We will call the anticlockwise
boundary cycles the positive cycles and group them in a set Q+

2 , while the clockwise cycles will
be grouped in Q−2 . Note that the dimer and its surface are completely determined by the sets
Q±2 . For more information on dimers we refer to [Boc12b, Bro11, Ken04].

Example 2.1. Three dimer models are shown below. The first two are embedded in a torus, the
last in a double torus. Arrows and vertices with the same label are identified.
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The Jacobi algebra of a dimer model is the quotient of the path algebra by the ideal generated
by relations of the form ra := r+ − r− where r+a ∈Q+

2 and r−a ∈Q−2 for some arrow a ∈Q1:

Jac (Q) :=
CQ

〈ra | a ∈Q1〉
.

Every Jacobi algebra has a central element

`=
∑
v∈Q0

cv

where, for each vertex v, cv is a cyclic path with h(cv) = t(cv) = v that forms a cycle in Q2.
Using the relations, one can show that this element is indeed central and does not depend on
the cycles we chose to sum.

Remark 2.2. In a more general context, Jacobi algebras can be defined using a quiver and a
superpotential, which is a linear combination of cycles. Jacobi algebras are important because,
if certain consistency conditions are satisfied, they provide the noncommutative analogues of
Calabi–Yau-3 manifolds: their derived categories are Calabi–Yau-3, meaning that the third
shift is a Serre functor. Therefore, in many cases, endomorphism rings of tilting sheaves on
Calabi–Yau-3 manifolds are Jacobi algebras; we will see a specific instance in Theorem 2.8. For
more information on this topic we refer to [Boc08, Gin06].
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Fix a dimer model Q and denote its universal cover by Q̃. The universal cover of Q embedded
in S is obtained by lifting all arrows and vertices in all possible ways to the universal cover of S.
This may result in an infinite quiver.

For any arrow ã ∈ Q̃1 we can construct its zig ray Z+
ã . This is an infinite path

. . . ã2ã1ã0

such that ã0 = ã and ãi+1ãi sits in a positive cycle if i is even and in a negative cycle if i is odd.
Similarly, the zag ray Z−ã is the path where ãi+1ãi sits in a positive cycle if i is odd and in a
negative cycle if i is even. The projection of a zig ray or a zag ray down to Q will give us a cyclic
path because Q is finite. Such a cyclic path will be called a zigzag cycle. A dimer model is said
to be zigzag consistent if for every arrow ã the zig ray and the zag ray meet only in ã:

(Z−ã )i = (Z+
ã )j =⇒ i= j = 0.

In Example 2.1, the first and third quivers are consistent, but the second quiver is not because
(Z−x̃ )3 = (Z+

x̃ )3 = ỹ.
For dimer models on a torus, there are two extra characterizations of consistency, which we

will use later on.

Theorem 2.3 [Boc12b]. For a dimer model Q on a torus, the following statements are
equivalent.

(i) Q is zigzag consistent.

(ii) Q admits a consistent R-charge; this is a map R : Q1→ (0, 2) such that every positive
or negative cycle has degree 2 and for every vertex v we have∑

h(a)=v

(1−Ra) +
∑
t(a)=v

(1−Ra) = 2.

(iii) Jac (Q) embeds in Ĵac (Q) := Jac (Q)⊗C[`] C[`, `−1].

Other characterizations of consistency and similar results can be found in [Bro11, Dav11,
IU08, IU11, MR10].

Remark 2.4. The algebra Ĵac (Q) can be written as the path algebra of the double quiver with
relations. The double quiver contains Q as a subquiver but adds for each arrow a ∈Q1 an extra
arrow a−1 in the opposite direction. The new relations are the original relations together with
aa−1 = h(a) and a−1a= t(a) for each arrow in Q1. The isomorphism between the double quiver
with relations and Ĵac (Q) gives the identification a−1 = p`−1 if ap= h(a)`.

We will call paths and cycles in the double quiver weak paths and weak cycles. If we want to
stress that a weak path contains only arrows of the original quiver, we will call it real.

Another ingredient that we need consists of the perfect matchings. These are subsets P ⊂Q1

such that every positive and every negative cycle contains precisely one arrow of P. Every perfect
matching can also be seen as a degree function on Ĵac (Q) that assigns a degree 1 if a ∈ P and
degree 0 otherwise. We will write P(p) for the degree of a weak path p. Note that for the element
` we have P(`) = 1.

Later on we will need the following two lemmas.

Lemma 2.5 [HHV06]. For a consistent dimer model on a torus, two paths represent the same
element if they have the same homotopy class and the same degree for at least one perfect
matching.
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Toric systems and mirror symmetry

Lemma 2.6 [Bro11, Boc12b]. For a consistent dimer model on a torus, there is for every
homotopy class a path that has degree zero for at least one perfect matching.

Remark 2.7. A path as in Lemma 2.6 is said to be ‘minimal’ because every path with a given
homology class is of the form p`k where p is the minimal path and k > 0.

Fix a vertex o, which we will call the trivial vertex, and two weak cycles x and y that
span the homology of the torus. To every perfect matching P we can associate a point
~P := (P(x), P(y), P(`)) ∈ Z3. A set of matchings {P1, . . . , Pu} is said to be o-stable if there
is a real path from o to every other vertex that has Pi-degree zero for all matchings in the set.
The notion of o-stable coincides with that of θ-stable [Kin94] if θ is negative on o and positive on
all other vertices. If it is clear which vertex we have fixed, we will abbreviate o-stable to stable.
For each stable set S we can define a cone σS =

∑
P∈S R+ ~P.

The technique of perfect matchings can be used to relate dimer models to the geometry of
crepant resolutions of Gorenstein singularities.

Theorem 2.8 (Ishii and Ueda [IU09]; Mozgovoy and Bender [BM09, Moz09]). If Q is a consis-
tent dimer on a torus, then the following hold.

(i) The collection of cones σS , where S is a stable set of matchings, forms a fan; moreover,
the toric variety of this fan, X̃, is a crepant resolution of X = Spec Z(A).

(ii) If we intersect the fan with the plane at height z = 1, we get a convex polygon P which
is subdivided into elementary triangles, and on each integral point of the polygon sits a unique
stable perfect matching. These lattice points form a basis for the toric divisors of X̃; so any
Z-linear combination of stable perfect matchings gives us a line bundle.

(iii) Fix a set of paths {pv} from o to every other vertex v. The direct sum T of the line
bundles Lv with divisors

∑
Pi(pv)Pi (where the sum runs over all stable perfect matchings) is

a tilting bundle on X̃, and End(T ) = Jac (Q).

The above theorem has some implications which we will need further on.

Corollary 2.9. If Q is a consistent dimer on a torus, then the following hold.

(i) The number of vertices in Q is the number of elementary triangles in P.

(ii) For each weak path p in Q, we can split the stable matchings into two sets, M+ = {P |
P(p) > 0} and M− := {P | P(p)< 0}. The subset of triangles, line segments and lattice
points spanned by lattice points in P that correspond to stable sets in M± constitutes a
simply connected simplicial set.

(iii) For each weak path p in Q, we can split the stable boundary matchings into two sets,
B± :=M± ∩ ∂P. The subset of line segments and lattice points spanned by lattice points in
∂P that correspond to stable sets in B± constitutes a connected simplicial set (i.e. a circle
segment or the whole circle).

(iv) The number of zigzag paths in Q is the number of elementary line segments on the boundary
of P. More precisely, if {P1, P2} is a stable set of two perfect matchings on the boundary, then
the arrows contained in either P1 or P2 but not in both form a zigzag path; all zigzag paths
arise in this way.

(v) The stable perfect matchings on the boundary that contain a given arrow are precisely the
ones that lie between the elementary line segments of this arrow’s zig path and zag path.
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Proof. Statement (i) follows because the derived equivalence gives an equality between the
ranks of the Grothendieck groups; for the Jacobi algebra this rank is the number of vertices
in the quiver, and for the crepant resolution it is the number of elementary triangles needed to
subdivide P.

Statement (ii) can be proved using simplicial homology. Let p be any weak path in the dimer
with h(p) = v and t(p) = w; then

∑
Pi(p)Pi is a line bundle equivalent to LvL −1

w . Because T
is tilting, we have that LvL −1

w has no higher homology. The homology can be calculated from
the complex F•, δ where

Fr :=
⊕
|S|=r

C
[
Xm1Y m2Zm3 |m1P(x) +m2P(y) +m3 >−P(p) ∀P ∈ S

]
,

with the sums being taken over the stable sets of matchings, and

δ(Xm1Y m2Zm3)S =
∑
P∈S
±(Xm1Y m2Zm3)S\{P}

is the boundary map between these simplicial sets.
If we look at the summand corresponding to Xm1Y m2Zm3 = 1, we see that this complex

calculates the simplicial homology of the simplicial subcomplex containing only the S ⊂M+.
This is acyclic if and only if the subcomplex is simply connected. To get the statement for M−,
we need to look at the weak path p−1`−1.

Assertion (iii) is an easy consequence of (ii): if B+ is not connected, then either M+ or M−

is not connected.
Statement (iii) also implies that for two consecutive arrows a and b in a cycle, the segments

B+ are disjoint (because they sit in the same cycle) and adjacent to each other (because their
union forms the segment B+(ab)). This implies, furthermore, that if one looks at the segments
of the arrows in a positive or negative cycle, they will cover the boundary of the polygon in a
cyclic way.

Suppose we have two stable boundary matchings P1 and P2 next to each other. In each
cycle, either both matchings mark the same arrow or, by the previous discussion, they mark
consecutive arrows.

Therefore the arrows in (P1 ∪ P2)\(P1 ∩ P2) must form a union of zigzag cycles. If they
formed more than one zigzag cycle, then {P1, P2} could not be stable because the complement
of P1 ∪ P2 would consist of more than one connected component and hence there could not be
a path from the trivial vertex to every other vertex.

Now, given a zigzag path Z, we can construct a stable set of two perfect matchings. If q is
a minimal path from the trivial vertex to any other vertex, we define P+(q) to be the number
of times q intersects Z in an even arrow (i.e. (Z)i with i ∈ 2Z), while P− is defined analogously
using the odd arrows.

For any other path p, let q1 and q2 be two minimal paths connecting the trivial vertex
with the endpoints of p such that q−1

1 pq2 is contractible. If q−1
1 pq2 = `ko, then we set P±(p) =

k + P±(q1)− P±(q2). It is easy to check that P± are well-defined perfect matchings. They form a
stable pair because the zigzag path cuts the torus in a cylinder, which is still strongly connected,
so there is a minimal path from o to any other vertex that does not intersect the zigzag path.
The P± are boundary matchings because there is a cycle that has degree zero for both, namely
the opposite cycle to the zigzag path. This completes the proof of statement (iv).
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Statement (v) follows easily from statements (iii) and (iv): it is clear that the arrow sits in
just one of the two perfect matchings of the stable pair corresponding to its zig ray (and zag
ray). The fact that B+(a) is a segment does the rest. 2

3. Mirror symmetry for dimers

In general, homological mirror symmetry conjectures an equivalence between two categories,
one constructed from algebraic geometry and one from symplectic geometry. Originally,
Kontsevich conjectured in [Kon95] an equivalence between the derived Fukaya category of
a compact symplectic Calabi–Yau manifold and the derived category of coherent sheaves
of a mirror manifold which is compact complex Calabi–Yau. Over the years it turned out
that this conjecture is part of a set of equivalences which are much broader than the
compact Calabi–Yau setting [Abo09, AKO06, AKO08, HV07, Kat07]. Removing the compactness
or the Calabi–Yau condition often makes the mirror a singular object, which physicists call a
Landau–Ginzburg model [Orl04, Orl06].

In the case that we will be considering, both categories can be constructed explicitly from
a dimer model. In this section we will summarize the main results of [Boc11], which are a
generalization of those in [AAEKO11].

3.1 The Fukaya category
If Q is a dimer model, we can look at its wrapped Fukaya category. For more information on
general wrapped Fukaya categories we refer to [AS10]. Objects in this category are the arrows of
the quiver, which we consider as Lagrangian submanifolds of the underlying surface punctured by
the vertices. Morphisms between Lagrangians are given by time-one flow curves of a Hamiltonian
flow on the surface that connect these Lagrangians. The products are given by counting certain
maps from the disc to the surface such that the boundary of the disc lies on the Lagrangians
and the time-one flow curves. This produces an A∞-category fuk(Q).

3.2 Matrix factorizations
To each arrow a in a dimer we can associate a matrix factorization of ` ∈ Jac (Q), which is a
diagram of the form

P̄a := Jac (Q)h(a)
a // Jac (Q)t(a)
ā

oo

where ā is defined such that aā ∈Q+
2 . Note that P̄a can also be viewed as a Z2-graded projective

Jac (Q)-module with a curved differential d such that d2 = `.
Given two such matrix factorizations P̄ and Q̄, the space HomJac (Q)(P̄ , Q̄) becomes equipped

with an ordinary (non-curved) differential δ. The category H mf(Q) contains as objects the matrix
factorizations P̄a and as hom-spaces the homology of δ on Hom(P̄ , Q̄). The dg-structure on
HomJac (Q)(P̄ , Q̄) can be turned into an A∞-structure on H mf(Q).

3.3 Dimer duality
The two categories defined above can be related by a certain duality on the level of dimers. Let
Q be any, not necessarily consistent, dimer. We define its mirror dimer Q̌ as follows.

(i) The vertices of Q̌ are the zigzag cycles of Q.

(ii) The arrows of Q̌ are the arrows of Q, h(a) is the zigzag cycle coming from the zig ray,
and t(a) is the cycle coming from the zag ray.
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(iii) The positive faces of Q̌ are the positive faces of Q.

(iv) The negative faces of Q̌ are the negative faces of Q in reverse order.

Some relevant examples of dimer duality can be found in Table 1 in the final section of the paper.

Remark 3.1. The dual can also be obtained by cutting the dimer along the arrows, flipping
over the clockwise faces, reversing their arrows, and then gluing everything back again. This
construction is basically the same as the one introduced by Feng et al. in [FHKV08], but applied
to all possible dimers. It is also important to note that the genus of the surface in which the dual
dimer lives often differs from the genus of the surface of the original dimer.

Theorem 3.2 [Boc11]. If Q is a consistent dimer, then the categories H mf(Q) and fuk(Q̌) are
A∞-isomorphic.

An A∞-category can be completed by adding twisted objects, which are morally complexes
of the old ones (see [Kel01]). We also need to add in projectors to ensure that the category is
idempotent complete. If we apply this process to both categories above, we get two categories
DπFuk(Q) and Dπmf(Q). The first one only depends on the surface in which Q is embedded and
the number of punctures (i.e. vertices in Q); we call it the idempotent completed wrapped Fukaya
category of the punctured surface.

If Q sits on a torus, then, by a theorem of Ishii and Ueda [IU09], the second category is
equivalent to the idempotent completion of a category of singularities

DSingf−1(0) :=
DbCoh f−1(0)
Perff−1(0)

,

where f : X̃ → C : p 7→ `(p) and X̃ is a crepant resolution of Spec Z(Jac (Q).
In this way we recover a version of mirror symmetry which equates the idempotent completed

category of singularities of f−1(0) to the idempotent completed wrapped Fukaya category of a
surface with genus 1

2(2−#Q̌0 + #Q0) and #Q̌0 punctures. Details of this equivalence will be
provided in a follow-up paper to [Boc11].

4. Weak del Pezzo dimers

4.1 From surface to dimer
Now we return to the setting of weak toric del Pezzo surfaces. Let v1, . . . , vk ∈ Z2 be the vectors
in cyclic order that define a weak toric del Pezzo surface X, and let (Li)i∈Z be a cyclic full
strongly exceptional sequence on X. We can represent each Li by a divisor li1E1 + · · ·+ likEk.
Here Ej is the divisor corresponding to the vector vj and Ei =O(Ei) will be its corresponding
line bundle.

How do we get a dimer model out of these data? Let Ỹ be the total space of the canonical
bundle K on X, and denote the natural projection by π : Ỹ →X. From toric geometry we
know that the fan of Y can be constructed from the fan of X in the following way. We lift
every vector vi to a vector ṽi = (vi1, vi2, 1); these points form a polygon P in the plane with
third coordinate equal to 1. Let z = (0, 0, 1) be the unique internal lattice point of this polygon.
The maximum-dimensional cones of the fan of Ỹ are then

[ṽ1, ṽ2, z], [ṽ2, ṽ3, z], . . . , [ṽk−1, ṽk, z], [ṽk, ṽ1, z].

Because all the vectors ṽi and z lie in the same plane, Ỹ is a local Calabi–Yau 3-fold. Moreover,
this variety is a crepant resolution of an affine variety Y generated by the cone [ṽ1, . . . , ṽk].
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To generate this cone, we only need the ṽi that lie on the corners of the polygon. In terms of
the (ai) sequence of the polygon, these are the ṽi for which ai 6=−2. This gives us the following
formula for the coordinate ring of Y :

C[Y ] := C
[
xm1ym2zm3 | ∀µ : aµ =−2 : 〈m, ṽµ〉> 0

]
.

A theorem of Bridgeland (see [Bri05]) states that if (Li)i∈Z is a cyclic full strongly exceptional
sequence on X, then for any i ∈ Z the direct sum

T =
i+k−1⊕
j=i

π∗Lj

forms a tilting bundle on Ỹ . Different choices of i will give isomorphic tilting bundles. The Picard
group of Ỹ is generated by the toric divisors Ẽi corresponding to the ṽi and an extra divisor Z
coming from z. The pullback of a line bundle over X with divisor li1E1 + · · ·+ likEk results in
a line bundle with divisor li1Ẽ1 + · · ·+ likẼk.

Because Ỹ is a toric Calabi–Yau-3 variety and T is a direct sum of line bundles, B = EndT
is a toric Calabi–Yau-3 order in the sense of [Boc09]. The main theorem in [Boc09] implies
that B is the Jacobi algebra of a consistent dimer model Q on a torus and a noncommutative
crepant resolution of Y in the sense of [vdB02]. This is an endomorphism ring of reflexive C[Y ]-
modules with global dimension equal to the dimension of Y . For every π∗Lj we get a reflexive
C[Y ]-module

Lj := SpanC
[
xm1ym2zm3 | ∀µ : aµ =−2 : 〈m, ṽµ〉+ ljµ > 0

]
.

The endomorphism ring of the direct sum of these reflexives, EndC[Y ]

⊕i+k−1
j=i Lj , is isomorphic

to B. The algebra B is also called the rolled-up helix algebra; see [BS09].
Analogously to [Boc12a], we can construct the dimer for B in the following way. Let u be the

number of corner vertices of the polygon and identify the lattice Zu ⊂ Ru with the set of reflexive
C[Y ]-modules of the form

Ta := C
[
xm1ym2zm3 | ∀µ : aµ =−2 : 〈m, ṽµ〉+ ajµ > 0

]
where a ∈ Zu.

Now let Q̃0 be the subset of Zu that corresponds to modules isomorphic to Li for some i.
Draw an arrow between a and b in Q̃0 if Ta ⊂ Tb (or, equivalently, if ai 6 bi for all i6 u) and
there is no other c ∈ Q̃0 with Ta ⊂ Tc ⊂ Tb. Factor out the equivalence relation generated by
a≡ b ⇐⇒ Ta ∼= Tb. This projects our infinite quiver down to a finite quiver Q. The positive and
negative cycles of Q are all paths of Zu-degree (1, . . . , 1).

Example 4.1 (The projective plane blown up in three points). The toric fan of this del Pezzo
surface has six two-dimensional cones as shown in Figure 1. The full cyclic strongly exceptional
sequence is obtained by extending the six line bundles to an infinite sequence by tensoring with
powers of K . An arrow corresponding to an embedding Ta ⊂ Tb is labelled by the vector b− a.

4.2 From dimer to surface
A dimer on a torus is said to be weak del Pezzo if it is consistent and its polygon has one internal
lattice point. This means that the number of elementary triangles in the polygon P equals the
number of elementary segments on the boundary, which, by Corollary 2.9, is equivalent to the
property that the number of zigzag paths equals the number of vertices. By choosing the weak
paths x and y (used to construct the lattice points for the perfect matchings) carefully, we can
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Figure 1. A dimer model for the projective plane blown up in three points.

assume that the internal vertex of the polygon is (0, 0, 1). We order the boundary lattice points
of the polygon cyclically and assume they have coordinates ṽi := (vi, 1) where vi ∈ Z2.

To any weak del Pezzo dimer Q we will associate the toric del Pezzo surface XQ defined by
the vi. This gives us a sequence (ai) which can be reconstructed from the zigzag cycles. Fix a
trivial vertex o and use this to assign to each (vi, 1) a stable perfect matching Pi and to each
elementary line segment between (vi, 1) and (vi+1, 1) a zigzag path Zi (see Theorem 2.8 and
Corollary 2.9).

Proposition 4.2. The sequence (ai) of the weak toric del Pezzo surface XQ is the same as the
sequence (ki − 2) where ki is the number of common arrows between the ith and (i+ 1)th zigzag
cycles.

Proof. The ith zigzag path that corresponds to the boundary segment ṽi−1ṽi points in the
direction perpendicular to vi − vi−1. Therefore the intersection number on the torus between
the ith and (i+ 1)th zigzag cycles can be calculated as

det
(
vi−vi−1
vi+1−vi

)
= det ( vi

vi+1) + det
(−vi−1
vi+1

)
+ det ( vi

−vi
) + det

(−vi−1
−vi

)
= 1 + det

(
aivi+vi+1
vi+1

)
+ 0 + 1

= 2 + ai.

The intersection number between two consecutive zigzag paths is always equal to the number
of joint arrows. If this were not the case, the zigzag paths would have to cross each other in
different directions (both from left to right and from right to left), which would further imply
that there is an arrow a1 for which the first zigzag cycle is a zig ray and the second a zag ray,
as well as an arrow a2 for which the first zigzag cycle is a zag ray and the second a zig ray. By
Corollary 2.9(v), one of these arrows would be contained in all stable boundary perfect matchings
except one (while the other is only contained in a single one). Now each arrow is contained in at
least one boundary matching and each perfect matching contains just one arrow of a positive or
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negative cycle. Therefore a1 or a2 would sit in a positive cycle of at most two arrows, but this is
forbidden by our definition of dimer model. 2

We now construct a full strongly exceptional sequence on this weak del Pezzo surface.
Fix a trivial vertex o and let Ei be the divisor corresponding to the vector vi and o-stable
perfect matching Pi. Choose a degree function R= λ1P1 + · · ·+ λnPn with λi > 0 such that
(R(x),R(y),R(`)) = (0, 0, 2) (this is possible because (0, 0, 2) is in the cone spanned by the
polygon).

All cyclic paths in the dimer have an R-degree that is an even integer. Each vertex v can
be given a number R(p) with h(p) = o and t(p) = v. This number is uniquely defined in R/2Z,
and we can use it to give a cyclic order to the vertices of Q. Let w1, . . . , wk be these vertices in
cyclic order, starting with w1 = o.

Now put L1 =OX and define Li±1 inductively from Li as follows. If p is a weak path from
wi to wi±1 with 0 6R(p)< 2, then set

Li±1 = Li ⊗ E
±P1(p)
1 ⊗ · · · ⊗ E

±Pk(p)
k .

Proposition 4.3. For any weak del Pezzo dimer Q with trivial vertex o, the sequence of line
bundles (Li) as constructed above is a well-defined cyclic strongly exceptional sequence on XQ,
and its sequence (bi) is given by (#{a ∈Q1 | h(a) = wi+1, t(a) = wi} − 2).

Proof. We first have to show that the sequence is well-defined. If we had chosen a different weak
path p′, then R(p′) =R(p) because R(c) of any cycle is an even integer. Therefore

L −1
i+1L

′
i+1 = E

P1(p′)−P1(p)
1 ⊗ · · · ⊗ E

Pk(p′)−Pk(p)

k

= E
〈v1,(i,j)〉
1 ⊗ · · · ⊗ E

〈vk,(i,j)〉
k

∼=O in PicXQ.

To show that the sequence is strongly exceptional, it suffices to show that for any weak path
p with 0 6R(p)< 2, the bundle

L (p) := E
P1(p)
1 ⊗ · · · ⊗ E

Pk(p)
k

has H i(L (p)) = 0 for all i 6= 0 and H i(L (p−1)) = 0 for all i.

The cohomology of
∑

i Pi(p)Ei can be computed using the complex F2 δ→F1 δ→F0 where

Fr :=
⊕

|S|=r,S⊂∂P

C[XiY j | iP(x) + jP(y) >−P(p) ∀P ∈ S],

with the sums being taken over the stable sets of boundary matchings, and

δ(XiY j)S =
∑
P∈S
±(XiY j)S\{P}

is the boundary map between these simplicial sets. There is homology with Z2-degree (i, j) if
and only if the simplicial subcomplex of boundary perfect matchings for which iP(x) + jP(y) >
−P(p) has homology.

We can rephrase these conditions in terms of p′ = pXiY j : the homology Hu(L (p)) is nonzero
if and only if there is a weak path p′ with h(p) = h(p′), t(p) = t(p′) and R(p) =R(p′) such that

Pr(p′) > 0 for all r if u= 0,
the r for which Pr(p′) > 0 do not form a connected segment in Z/kZ if u= 1,
Pr(p′)< 0 for all r if u > 1.
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So H2(p′) = 0 because R(p′) > 0, while H1(p′) = 0 because of Corollary 2.9(iii). If 0<R(p)< 1,
then H0(p−1) = 0 because, by Poincaré duality, H0(p−1) =H2(p`) = 0.

To prove the statement about the sequence (bi), we need to show that dim Hom(Li,Li+1)
equals the number of arrows between wi and wi+1. In other words, none of the morphism factors.
This is indeed true because the R-degree of every morphism is positive but there is no vertex
intermediate between wi and wi+1. 2

Remark 4.4. If we start with a weak del Pezzo dimer, construct its surface and full cyclic strongly
exceptional sequence and use this to construct a dimer again, we end up with the dimer we started
with. This is true because Lj := Γ(π∗Lj)∼= Tap , where apµ = Pµ(p) for any path p from o to the
vertex wj . So, for every path p starting at o, we get a module Tap , and Tap ⊂ Taq if ap

−1q > 0.
The latter condition implies that p−1q must be a real path in the dimer. If not, let k > 0 be the
minimal power for which pq−1`k is real. From [Boc12b, Theorem 8.7] we know that there is a
corner perfect matching Pµ for which Pµ(pq−1`k) = 0, but this would imply that apq

−1

µ < 0. We
see that there is a bijection between the real paths in the dimer and the embeddings Tap ⊂ Taq ,
and hence the embeddings that do not factor correspond to the arrows of the original dimer.

Remark 4.5. Normally one would first construct a tilting bundle on the total space Y using an
appropriate stability condition and then restrict this to a strongly exceptional sequence on the
zero fibre X. However, we prefer not to do this, because in general it is not so straightforward
to cook up the stability condition that does the trick. This can be done using work by Craw and
Ishii [CI04]. In general, the notion of o-stability does not give a moduli space of representations
that is isomorphic to the total space Y . But the o-stable perfect matchings are sufficient to
generate the strongly exceptional sequence without constructing a moduli space of θ-stable
representations.

Theorem 4.6. If Q is weak del Pezzo, then Q̌ is also weak del Pezzo with (ai)Q̌ = (bi)Q and

(bi)Q̌ = (ai)Q.

Proof. Because we already know that the number of zigzag paths equals the number of vertices
and dimer duality interchanges the two quantities, the Euler characteristic does not change. So
both the dimer and its dual are embedded in a torus.

Now we prove that Q̌ is consistent. Take a zigzag path Z in the original dimer Q. By
Corollary 2.9(iv), we can find o-stable perfect matchings P1 and P2 on the boundary of the
polygon such that Z = (P1 ∪ P2)\(P1 ∩ P2). Let O be the left opposite path of Z; this consists
of all the rest of the arrows of the positive cycles that meet Z, except for those in Z itself. This
path has degree-zero P1 and P2, and hence it is not a multiple of `. It can identified with the
monomial XiY jZk ∈ Z(Jac (Q)) with (−i,−j) being the homology class of Z and k as small
as possible. Because P is a polygon with one internal lattice point, the dual cone must also be
generated by a polygon with one internal lattice point; so k = 1.

Now Z =O−1`z/2 where z is the length of Z, and the zigzag path corresponds to the
element X−iY −jZ−1+z/2. Choose a degree function R= λ1P1 + · · ·+ λnPn with λi > 0 such
that (R(x),R(y),R(`)) = (0, 0, 2) (remember that this is possible because (0, 0, 2) is in the cone
spanned by the polygon). Then R(Z) = 2 + z and we can write this as∑

a∈Z
R(a) =−2 + z or

∑
a∈Z

(1−R(a)) = 2.

If we look at this condition from the point of view of the dual dimer Q̌, it is precisely the condition
for a consistent R-charge.
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The (ai) and (bi) sequences are interchanged because the duality interchanges vertices and
zigzag paths. 2

4.3 A categorical point of view
Using the dimer duality and the fact that both the dimer and its dual are consistent, we get two
A∞-isomorphisms of A∞-categories,

fuk(Q)∼=∞ H mf(Q̌), fuk(Q̌)∼=∞ H mf(Q).

Following [Boc11], we can go over to the derived versions of the twisted completions of all these
categories. In this way we get equivalences between the derived wrapped Fukaya category of the
surface with punctures |Q|\Q0 and the category of singularities of Jac (Q)/(`). The latter is, by
definition,

DSing Jac (Q)/(`) :=
DbMod Jac (Q)/(`)
Perf Jac (Q)/(`)

.

By a theorem of Ishii and Ueda (see [IU09]), the category of singularities of Jac (Q)/(`) is
also equivalent to the category of singularities of f−1

Q (0), where fQ : Ỹ → C corresponds to the
coordinate function ` ∈ C[Y ] = Z(Jac (Q)). So

DFuk(|Q|\Q0)∼= DSing f−1
Q̌

(0), DFuk(|Q̌|\Q̌0)∼= DSing f−1
Q (0).

Now both |Q|\Q0 and |Q̌|\Q̌0 are tori with the same number of punctures, so we get that the
four completed categories above are all equivalent. But, as there is no prescribed isomorphism
between the two tori, there seems to be no canonical isomorphism between DSing f−1

Q̌
(0) and

DSing f−1
Q (0).

One expects, however, to be able to identify two objects in DSing Jac (Q)/(`), one with
ext-algebra equal to H mf(Q) (considered as an algebra) and one with ext-algebra H mf(Q̌). The
former is Jac (Q)/J̄ =

⊕
v∈Q0

Sv viewed as a Jac (Q)/(`)-module, because one can easily check
that the resolution of Sv = vJac (Q)/J̄ stabilizes to⊕

a,h(a)=v

P̄a ⊗Jac (Q) Jac (Q)/(`).

We expect the latter to be the direct sum⊕
a,Z+

a =Z

P̄a ⊗Jac (Q) Jac (Q)/(`)

where Z is a zigzag path. At the moment it is not clear whether one can find objects SZ in
Mod Jac (Q)/(`) (or Coh f−1

Q (0)) that stabilize to these.

Remark 4.7. The categorical interpretation also indicates why the construction only works for
dimers coming from toric weak del Pezzo surfaces. For other dimers, the dual lives on a surface
with different genus, and hence there cannot be an equivalence between all four categories.

On the other hand, while tilting objects for all rational surfaces have been constructed
in [HP11b], these usually do not come from cyclic full strongly exceptional sequences; therefore
a generalization outside the weak del Pezzo case does not seem likely. Even for non-toric weak
del Pezzo surfaces it is not obvious, because then the rolled-up helix algebra does not come from
a dimer model any more, and hence its quiver does not embed in a torus. Also, it is not even
clear what the mirror of the singular locus of B/` is.
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Table 1. Dimers and their corresponding duals for reflexive polygons of size 8.
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The best chance of generalizing this result is to increase the dimension and consider full
strongly exceptional sequences on toric Fano 3-folds.

5. An example: dimers for reflexive polygons of size 8

We conclude this paper with an illustration of the main theorem for reflexive polygons of size 8.
There are three such polygons: a square, a trapezoid and a triangle. The square has four dimers,
the trapezoid two, and the triangle one. In Table 1 we show all dimers and their corresponding
duals. Next to each dimer is its corresponding polygon. We draw attention to the following
remarks.

(i) Because a dimer Q and its dual Q̌ have the same arrows and the same faces but different
vertices, we labelled the arrows in such a way that the corresponding arrows in a dimer and
its dual have the same number. One can easily check that each face in Q also appears in Q̌
(although sometimes the orientation of the arrows around the face is reversed). For example, in
the first row we can spot a triangle composed of arrows 7, 8, 20, which is slightly below centre
in the dimer Q and slightly left above centre in its dual dimer Q̌.

(ii) We did not label the vertices because there is no correspondence between the vertices
of a dimer and those of its dual. There is, however, a correspondence between the vertices of a
dimer and the zigzag paths of its dual dimer. For instance, in the second row, the arrows incident
with the vertex at the centre of the dimer Q are 7, 22, 9, 18, 8, 21, 10, 17; in the dual dimer Q̌,
one can find a zigzag path going downwards that contains the same arrows.

(iii) From Corollary 2.9 we know that there is a one-to-one correspondence between the zigzag
paths in the dimer and the line segments of the polygon. We drew the polygons next to their
dimers in such a way that the zigzag paths point in the same direction as the outward normals
to the boundary segments in the polygon. For example, the zigzag path in the second row that
we looked at in (ii) points downwards and corresponds to a horizontal line segment on the
boundary of polygon 8c, because its normal points downwards. On the other hand, the zigzag
path composed of the arrows 24, 21, 12, 19, 14, 22, 6, 20 is directed upwards and to the right, and
it corresponds to a line segment of the hypotenuse of polygon 8c.

(iv) Three of these dimers are self-dual: two for the square and one for the trapezoid. The
self-dual dimers can be found in the last three rows of the table. Note that in these cases there
is no canonical isomorphism between the dimer and its dual.
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Sémin. Congr. 25 (2010), 369–389.

vdB02 M. Van den Bergh, Non-commutative crepant resolutions, in The legacy of Niels Hendrik
Abel: the Abel Bicentennial, Oslo 2002 (Springer, Berlin, 2002), 749–770.

Raf Bocklandt raf.bocklandt@gmail.com
School of Mathematics and Statistics, Herschel Building,
Newcastle University, Newcastle upon Tyne, NE1 7RU, UK

1855

https://doi.org/10.1112/S0010437X1300701X Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X1300701X

	1 Reflexive polygons and weak del Pezzo surfaces
	2 Dimer models
	3 Mirror symmetry for dimers
	3.1 The Fukaya category
	3.2 Matrix factorizations
	3.3 Dimer duality

	4 Weak del Pezzo dimers
	4.1 From surface to dimer
	4.2 From dimer to surface
	4.3 A categorical point of view

	5 An example: dimers for reflexive polygons of size 8
	References



