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1. Introduction. Kazhdan and Lusztig introduced three equivalence relations ∼L,
∼R and ∼LR on the elements of a Coxeter group in [11] and called the equivalence classes
as left cells, right cells and two-sided cells respectively. Each left cell and each right cell
contains at least one involution. Every two-sided cell is a union of left cells and a union
of right cells.

We study the finite symmetric group W which is a finite Coxeter group of type
A. In this case, each left cell and each right cell contains exactly one involution, and
each two-sided cell contains exactly one involution of a special form—a standard
parabolic involution—which we describe below. The parabolic involutions form a
larger collection of involutions, each of which may be associated with the standard
parabolic involution in the two-sided cell containing it in a simple combinatorial
way. The Robinson–Schensted–Knuth process provides a combinatorial technique for
identifying the standard parabolic involution in the same two-sided cell as a given
involution. Our aim is to provide a simpler combinatorial technique for carrying out
this identification for a large proportion of the involutions. Not all involutions will be
covered by the technique, since they must satisfy a certain length restriction which is not
satisfied by all involutions. We have computed the proportion of involutions failing this
restriction for symmetric groups of degree ≤12 and found it to be <0.007. Similarly,
the proportion of involutions not covered by our combinatorial technique is <0.016.

Moreover, if � is a system of roots for W , we show that in order to identify the two-
sided cell of W containing an involution z ∈ W , it suffices to consider the realizations of
z as the longest element of a Young subgroup W (�) with respect to a simple generating
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system of the subsystem � of � which is contained in �+. In particular, for involutions
covered by our combinatorial technique, among the � described above, there will exist
a dominant one with respect to a pre-order we define below.

2. Background notation, terminology and results. Let W denote the symmetric
group Sn, where n is an arbitrary positive integer, acting on {1, . . . , n}. Then W
is a Coxeter group with Coxeter system (W, S) where S = {s1, . . . , sn−1} and si

is the transposition (i, i + 1) for 1 ≤ i ≤ n − 1. The corresponding Coxeter graph

is
s1
�

s2
� � � �

sn−1
� . Moreover, W has the presentation 〈si : s2

i = 1, (sisi+1)3 =
1 and (sisj)2 = 1 for all i, j ∈ {1, . . . , n − 1} with |i − j| > 1〉.

For each subset J ⊆ S, the subgroup WJ generated by J is called a parabolic
subgroup of W . It has a Coxeter system (WJ, J). Its length function lJ is induced from
l. It has a unique longest element wJ . By tradition, w0 is written for wS.

For each composition λ = (λ1, . . . , λr) of n with r parts, with λi > 0, for 1 ≤ i ≤ r,
there is a standard parabolic subgroup of W whose Coxeter generator set J(λ) is given
by J(λ) = S\{sλ1, sλ1+λ2 , . . . , sλ1+···+λr−1}. The longest element wJ(λ) of WJ(λ) can be
described in two-row form by

wJ(λ) =
(

. . . λ̂i−1 + 1 . . . λ̂i λ̂i + 1 . . . λ̂i+1 . . .

. . . λ̂i . . . λ̂i−1 + 1 λ̂i+1 . . . λ̂i + 1 . . .

)

where λ̂0 = 0, λ̂r = n and λ̂i = λi + λ̂i−1 for i = 1, . . . , r − 1. The conjugate partition
λ′ of λ is defined by λ′

i = ∣∣{j : λj ≥ i}∣∣ for i ≥ 1. We will denote the number of parts of
λ′ by r′. Thus, r = λ′

1 and r′ = max{λi : 1 ≤ i ≤ r}.
We use the notions of λ-diagram, λ-tableaux and associated terminology as in

Dipper and James [2]; see also Fulton [4] and Sagan [15] for the corresponding
terminology when λ is a partition. In particular, a λ-tableau is row standard if it is
increasing on rows, column standard if it is increasing on columns and standard if it is
increasing on both rows and columns. Also, if T is a λ-tableau, we refer to λ as the
shape of T and denote it by sh T .

W acts on the set of λ-tableaux in the obvious way—if w ∈ W , an entry i is replaced
by iw and tw denotes the tableau resulting from the action of w on the tableau t. This
action on λ-tableaux is the action by letter permutations of Dipper and James [2, p. 21].
If x, y ∈ W , we say that x is a prefix of y if y = u1u2 . . . up, where ui ∈ S for i = 1, . . . , p,
p = l(y) and x = u1u2 . . . ur, for some r ≤ p. The prefix relation corresponds to the weak
Bruhat order in [2].

From the general theory of Coxeter groups, every parabolic subgroup WJ of W
has a distinguished set of right coset representatives XJ whose properties are listed in
the next result.

RESULT 2.1. ([7, Proposition 2.1.1 and Lemma 2.2.1]) There is a special set of right
coset representatives XJ associated with each parabolic subgroup WJ . An element of
XJ is the unique element of minimum length in its coset. Moreover, if w = vx where v ∈
WJ and x ∈ XJ , then l(w) = l(v) + l(x). Also, XJ = {w ∈ W : L(w) ⊆ S − J} where
L(w) = {s ∈ S : l(sw) < l(w)} and, if dJ denotes the longest element in XJ , then XJ is
the set of prefixes of dJ .

We construct a special λ-tableau tλ, where tλ is obtained by filling in the λ-diagram
with 1, . . . , n by rows from top to bottom, filling each row from left to right.
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In the case of the symmetric group, Dipper and James [2] characterise XJ(λ) as
follows.

RESULT 2.2. ([2, Lemma 1.1]) XJ(λ) = {w ∈ W : tλw is row standard}.

3. Covers. Let w ∈ W and let ν = (ν1, . . . , νk) be a partition of n into k parts. By
a decreasing cover of type ν for w, we mean a set of k disjoint decreasing subsequences
appearing in the row form of w so that the union of the elements in these subsequences is
{1, . . . , n} and the lengths of the subsequences (from longest to shortest) are ν1, . . . , νk.
Similarly we can define an increasing cover of type ν for w.

A decreasing cover of w is said to be symmetric if, for any i ∈ {1, . . . , n}, i and iw
are in the same subsequence of the cover.

In the terminology of Sagan [15], a decreasing cover of w of type ν is a k-decreasing
subsequence of w involving all elements in {1, . . . , n}. More generally, a k-decreasing
subsequence wI of w is the restriction of w to I ⊆ {1, . . . , n}, where I has a partition
into k disjoint subsets I1, . . . , Ik and wIj is a decreasing subsequence of w for each j.

EXAMPLE 3.1. Let w = [ 7 , 8 , 5 , 9 , 3 , 6 , 1 , 2 , 4 ] ∈ S9. Then, {(7, 5, 3, 1),
(8, 6, 2), (9, 4)} and {(7, 5, 3, 2), (9, 6, 1), (8, 4)} are decreasing covers of type (4, 3, 2)
for w, the first being a symmetric decreasing cover. Also, {(7, 8, 9), (1, 2, 4), (3, 6), (5)}
is an increasing cover of type (3, 3, 2, 1) for w.

We note that only involutions, or the identity, can have symmetric decreasing
covers.

LEMMA 3.2. Let w ∈ W and suppose that w has a symmetric decreasing cover. Then
w2 = 1.

Proof. Let i1, . . . , ir be a subsequence of the symmetric decreasing cover,
and let jk = ikw−1 for k = 1, . . . , r. Then the sequence j1, . . . , jr is increasing and
{i1, . . . , ir} = {j1, . . . , jr}. Hence, ik = jr−k+1 for k = 1, . . . , r. So, ikw2 = ir−k+1w = ik
for k = 1, . . . , r. Since this is true for all subsequences of the cover, iw2 = i for
i = 1, . . . , n. �

We see that the symmetric decreasing covers of an involution are optimal among
all decreasing covers in the sense described in the following theorem.

THEOREM 3.3. Let w ∈ W be an involution which has a k-decreasing subsequence
wI of length l. Then w has a symmetric k′-decreasing subsequence of length at least l for
some k′ ≤ k.

Proof. Let wI be a k-decreasing subsequence of w of length l. Thus, I ⊆ {1, . . . , n},
I has a partition into k disjoint non-empty subsets I1, . . . , Ik and wIj is a decreasing
subsequence of w for each j.

If 1 ≤ j ≤ k, a, b ∈ Ijw and a < b, then bw < aw. So, wIjw is a decreasing
subsequence of w. Hence, wIw is a k-decreasing subsequence of w.

Let I= = {i ∈ I : i = iw}, I< = {i ∈ I : i < iw} and I> = {i ∈ I : i > iw}. Observe
that |Iw<| > |Iw>| if and only if |I<| < |I>|, so we may assume without loss of
generality that |I<| ≥ |I>|.

Let J = {j : 1 ≤ j ≤ k and {i ∈ Ij : i ≤ iw} �= ∅} and let k′ = |J|.
For each j ∈ J, let aj be the maximum element of {i ∈ Ij : i ≤ iw} and let Kj =

Ij ∩ (I< ∪ I=). Then wKj and wKjw are decreasing subsequences of w. Also, if i ∈ Kjw,
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then iw ∈ Kj; so, iw ≤ aj and i ≥ ajw ≥ aj. Hence, Kj ∩ Kjw = {aj} ∩ I=. Moreover, if
we let Lj = Kj ∪ Kjw, then wLj is a symmetric decreasing subsequence of w.

Since the k′ sets Kj, j ∈ J, are pairwise disjoint, so are the k′ sets Kjw, j ∈ J.
Suppose r, s ∈ J, r �= s and let x ∈ Kr. If xw = x, then x ∈ Krw, so x /∈ Ksw. If x <

xw, then again x /∈ Ksw because yw ≤ y for all y ∈ Ksw. Hence
⋃

j∈J Kj is disjoint from⋃
j∈J(Kjw\{aj}). Letting L = ⋃

j∈J Lj, wL is a symmetric k′-decreasing subsequence
of w.

Finally, since L = I< ∪ I= ∪ (I<)w, it follows that |L| = 2|I<| + |I=| ≥ |I<| +
|I=| + |I>| = |I|, as required. �

Recall from [13, Section 3] that, for a partition ν of n, wJ(ν) has a unique decreasing
cover Pν of type ν, and this cover is also symmetric. This statement generalizes easily
to compositions. Thus, for a composition λ of n, wJ(λ) has a unique decreasing cover,
denoted by Pλ, of type λ′′, and this cover is also symmetric. Moreover, we have the
following lemma.

LEMMA 3.4. Let λ be a composition of n and let ν = λ′′. If w ∈ W has a decreasing
cover P of type ν, then P = Pνe for some e ∈ XJ(ν) and there is an element d ∈ XJ(λ) such
that Pλd = Pνe. Moreover, there is an element f ∈ XJ(ν) such that w = f −1wJ(ν)e.

Proof. Let (pi,1, . . . , pi,νi ) and (qi,1, . . . , qi,νi ) be the ith subsequences in Pν and P
respectively, and let ri,j = qi,jw

−1 for all i and j. Define e by pi,j �→ qi,j for all i and j and
f by pi,j �→ ri,νi+1−j for all i and j. Then w = f −1wJ(ν)e. Since e is increasing on each set
{pi,νi , . . . , pi,1}, e ∈ XJ(ν). Since f is increasing on each set {pi,νi , . . . , pi,1}, f ∈ XJ(ν).

Since λ is a rearrangement of ν, the preceding argument gives P = Pλd for some
d ∈ XJ(λ) and w = g−1wJ(λ)d for some g ∈ XJ(λ). �

So, a decreasing cover for an element of W does not determine the pair (λ, d)
uniquely. Note that if (λ, d) and (λ, d ′) correspond to a cover P of type λ′′, then d ′d−1

centralizes wJ(λ). In particular, if ν has parts of the same size, it is possible to find
distinct elements e and e′ with (ν, e) and (ν, e′) corresponding to P.

EXAMPLE 3.5. Let w = [2, 1, 5, 7, 3, 6, 4] and P = {(7, 6, 4), (2, 1), (5, 3)}. We may
take e = [4, 6, 7, 1, 2, 3, 5] and e′ = [4, 6, 7, 3, 5, 1, 2]. Then e, e′ ∈ XJ(ν) and P = Pνe =
Pνe′.

Following [2], we introduce a pre-order � on compositions of n. We write λ � μ,
for any two compositions λ and μ of n, if λ′′ � μ′′ where � denotes the usual partial
order of dominance on partitions. We have a corresponding pre-order � of decreasing
covers of an element w ∈ W . Now suppose that λ and μ are partitions and P and Q
are decreasing covers of w of types λ and μ respectively. We write P � Q if λ � μ.

We recall some details of the Robinson–Schensted correspondence, a bijection of
the set of elements of the symmetric group W to pairs (P,Q), where P and Q are ν-
tableaux for some partition ν of n. See Fulton [4] and Sagan [15] for a good description
of this correspondence. We write the pair of tableaux corresponding to an element
w ∈ W as (P(w),Q(w)) and recall thatQ(w) = P(w−1). We define the shape of w as the
shape of P(w), and denote it by sh w. For example, for a composition λ, sh wJ(λ) = λ′.
We will say that two elements w1, w2 ∈ W are shape equivalent if sh w1 = sh w2 and,
in this case, we will write w1 ∼sh w2. The ∼sh -equivalence classes are the two-sided
Kazhdan–Lusztig cells of W , as described in [11]. (See also [6, Corollary 5.6].)
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For our next result, we need the following theorem of Greene [8]. We refer the
reader to Sagan [15] for a proof.

THEOREM 3.6. (see [15, Theorem 3.5.3]) Let w = [w1, w2, . . . , wn] ∈ W and sh w =
ν. Let ξ0 = 0, and for each k ≥ 1, let ξk be the maximum length of a k-decreasing
subsequence of w. Similarly, let η0 = 0, and for each k ≥ 1, let ηk be the maximum
length of a k-increasing subsequence of w. Let α and β be the compositions defined
by αk = ξk − ξk−1 and βk = ηk − ηk−1 for k ≥ 1, where trailing zeros are ignored. Then
α = ν ′ and β = ν.

We can now relate the type of any increasing or decreasing cover of an element of
W to its shape.

COROLLARY 3.7. Let w ∈ W and sh w = ν. Suppose that w has a decreasing cover
of type λ and an increasing cover of type μ. Then, λ � ν ′ and μ � ν.

Proof. In the notation of Theorem 3.6, for each k ≥ 1,
∑k

i=1 λi ≤ ξk = ∑k
i=1 αi.

Since α = ν ′, we have λ � ν ′. In a similar way, we get μ � ν. �
In [9, 1.4.16], it is shown that the partitions of n form a lattice with respect to the

dominance order. Hence, any set of partitions of n has a supremum and an infimum. It
is clear from Theorem 3.6 that for an element w ∈ W , the conjugate of sh w dominates
the type of every decreasing cover of w and, hence, it dominates the supremum of these
types. Making use of [9, Theorem 1.4.10], we see that each neighbour of (sh w)′, which
is dominated by (sh w)′, fails to dominate the type of at least one decreasing cover of
w. Hence, (sh w)′ is the supremum of the types of the decreasing covers of w.

Combining this result with Theorem 3.3, we obtain the following theorem.

THEOREM 3.8. If w ∈ W is an involution, then sh w is the conjugate of the supremum
(with respect to the usual partial order of dominance on partitions) of the types of the
symmetric decreasing covers of w.

Proof. Let w be an involution and suppose that (sh w)′ = (λ1, . . . , λr). Choose k
such that 1 ≤ k ≤ r. We know from Theorem 3.6 that w has a k-decreasing subsequence
of length λ1 + · · · + λk. Since λ1 + · · · + λk is the length of w’s longest k-decreasing
subsequence(s), it follows from Theorem 3.3 that w has a symmetric k-decreasing
subsequence of length λ1 + · · · + λk. We can easily “complete" this latter symmetric
k-decreasing subsequence of w into a symmetric cover of type (μ1, . . . , μs) for w

where μ1 + · · · + μk = λ1 + · · · + λk. It follows that each neighbour of (sh w)′, which
is dominated by (sh w)′, fails to dominate the type of at least one symmetric decreasing
cover of w. This is enough to complete the proof. �

4. Root subsystems. In this section we study the relation between increasing and
decreasing subsequences of an element of W and certain root subsystems of a root
system � of W .

We may take � = {ei − ej : 1 ≤ i, j ≤ n, i �= j} where {e1 . . . , en} is an orthogonal
basis of an n-dimensional Euclidean space; see Carter [1, Chapter 3]. The Coxeter
generator si corresponds to the reflection in the hyperplane orthogonal to ei − ei+1

through the origin. The Dynkin diagram corresponding to this root system is

e1 − e2
�

e2 − e3
� � � �

en−1 − en
� .
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The subset 
 = {ei − ei+1 : 1 ≤ i ≤ n − 1} of � is a simple (or fundamental) root system
for �; that is, it is a basis for the space generated by � and every element of � or its
negative is a linear combination of 
 with non-negative integers. Thus, � = �+ ∪ �−,
where the set of positive roots �+ is the set of non-negative linear combinations of 
 in
� and the set of negative roots �− is −�+. In our case, �+ = {ei − ej : 1 ≤ i < j ≤ n}.

If � is any simple system of roots in �, we write �� for the subsystem of �

generated by �. In particular, � = �
. We also write �+
� and �−

� for the positive and
negative roots respectively in �� with respect to the simple system �. In particular,
�+ = �+


 and �− = �−

. We denote by W (��) the Weyl group generated by the

reflections associated with the root system �� .
For any element w ∈ W (��), we define N+

� (w) = {α ∈ �+
� : αw ∈ �−

�} and
N�(w) = N+

� (w) ∪ −N+
� (w). We write N+(w) and N(w) for N+


(w) and N
(w)
respectively. The length of w is related to the size of N(w) in the following result;
see Carter [1, Theorem 2.2.2]

RESULT 4.1. If w ∈ W, then 2l(w) = |N(w)|.
In the case of involutions, we have the following elementary lemma.

LEMMA 4.2. If w ∈ W is an involution, then N(w)w = N(w).

Proof. Let ei − ej ∈ N(w) with i < j. Then iw > jw and (iw)w < (jw)w. So,
(ei − ej)w = eiw − ejw ∈ N(w). �

Let λ be a composition of n and let �(λ) denote the simple system of roots
in 
 corresponding to the subset J(λ) of S, the Coxeter generators of W , that is,
�(λ) = {ei − ei+1 : si ∈ J(λ)}. Then N(wJ(λ)) is just the root subsystem ��(λ) of �.

Moreover, |��(λ)| =
∑r

i=1

(
λi

2

)
.

Let d ∈ XJ(λ). The set d−1J(λ)d is a system of Coxeter generators for the group
d−1WJ(λ)d corresponding to the simple system of roots �(λ)d which generates the root
subsystem ��(λ)d = ��(λ)d.

The following result arises from the classification of subsystems of root systems
given by Dynkin [3, Theorems 5.2 and 5.3]

RESULT 4.3. Any subsystem � of � is of the form ��(λ)d for some composition
λ of n and d ∈ XJ(λ). Moreover, � has the simple subsystem �(λ)d which is a subset
of �+. Also, if ��(λ)d = ��(μ)e for compositions λ and μ of n with d ∈ XJ(λ) and
e ∈ XJ(μ), then λ and μ are rearrangements of one another.

Consequently, d−1J(λ)d is a system of Coxeter generators for the subgroup
W (��(λ)d) and d maps every root in ��(λ) ∩ �+ to a root in �+.

EXAMPLE 4.4. Let n = 8 and λ = (3, 1, 4). Then J(λ) = {s1, s2, s5, s6, s7}. Let
d = [1, 2, 4, 5, 3, 6, 7, 8] ∈ XJ(λ). Then �(λ) = {e1 − e2, e2 − e3, e5 − e6, e6 − e7, e7 −
e8} and �(λ)d = {e1 − e2, e2 − e4, e3 − e6, e6 − e7, e7 − e8}.

Consider the involution z = (1, 4)(3, 8)(6, 7) = d−1wJ(λ)d ∈ W (��(λ)d). Observe
that z maps every root in �(λ)d to a root in −�(λ)d and every root in (��(λ)d)+ =
��(λ)d ∩ �+ to a root in (��(λ)d)−. Consequently, z is the longest element of W (��(λ)d)
with respect to the length function determined by its simple generating system
�(λ)d.
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Since the decreasing cover Pλ = {(8, 7, 6, 5), (3, 2, 1), (4)} of wJ(λ) is symmetric and
d is a distinguished right coset representative of WJ(λ), Pλd = {(8, 7, 6, 3), (4, 2, 1), (5)}
is a symmetric decreasing cover of d−1wJ(λ)d.

The following result, which shows that symmetric decreasing covers of an
involution z are in bijective correspondence with root subsystems � of � such that z
is the longest element of W (�) with respect to the length function determined by a
simple generating system of roots in � contained in �+, may be easily established.

LEMMA 4.5. Let z ∈ W be an involution and let d ∈ XJ(λ) where λ denotes a
composition of n. Then statements (i), (ii) and (iii) are equivalent.

(i) Pλd is a symmetric decreasing cover for z.
(ii) z ∈ W (��(λ)d), ��(λ)d ⊆ N(z) and z stabilizes ��(λ)d.

(iii) z = d−1wJ(λ)d.

Let w ∈ W . It is easy to see that Pλd is a decreasing cover for w if and only if,
��(λ)d ⊆ N(w−1). In particular, if w is an involution, we see that there is a bijective
correspondence between decreasing covers of w and root subsystems contained in
N(w) since any root subsystem contains a simple system lying entirely in �+.

As in the case of covers, the dominance pre-order � of compositions induces a
pre-order on subsystems � of � since any such subsystem is of the form ��(λ)d . Note
that if λ1 and λ2 are compositions of n and λ2 is not a rearrangement of λ1, then
��(λ2)d2 �= ��(λ1)d1 .

We illustrate these comments with some examples of realizations of an involution z
as the longest element of a Young subgroup W (�), with respect to a simple generating
system for �, which is contained in �+, for various root subsystems � ⊆ N(z).

EXAMPLE 4.6. Let z1 = (1, 5)(2, 6)(3, 4). Among the realizations of z1, as the longest
element of a subsystem are those given by the subsystems with the following simple
systems contained in �+:

(i)
e1−e5

�

e2−e6
�

e3−e4
�

(ii)
e1−e3

�

e3−e4
�

e4−e5
�

e2−e6
�

(iii)
e1−e5

�

e2−e3
�

e3−e4
�

e4−e6
� .

Note that z1 = [5, 6, 4, 3, 1, 2] and that these simple systems correspond to the
symmetric decreasing covers {(5, 1), (6, 2), (4, 3)}, {(5, 4, 3, 1), (6, 2)} and {(6, 4, 3, 2),
(5, 1)} of z1 of types (2, 2, 2), (4, 2) and (4, 2) respectively. For this example, the
type (4, 2) dominates the types of all the decreasing covers of z1. Hence, (2, 2, 1, 1),
the conjugate of (4, 2), is the shape of the Robinson–Schensted tableau P(z1)
of z1.

EXAMPLE 4.7. Let z2 = (1, 8)(2, 12)(3, 11)(4, 7)(5, 6)(9, 10). Among the realizations
of z2 as the longest element of a subsystem are those given by the subsystems with the
following simple systems contained in �+:
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(i)
e1−e8

�

e2−e12
�

e3−e11
�

e4−e7
�

e5−e6
�

e9−e10
�

(ii)
e1−e8

�

e2−e3
�

e3−e11
�

e11−e12
�

e4−e7
�

e5−e6
�

e9−e10
�

(iii)
e1−e8

�

e2−e3
�

e3−e11
�

e11−e12
�

e4−e5
�

e5−e6
�

e6−e7
�

e9−e10
�

(iv)
e1−e8

�

e2−e3
�

e3−e4
�

e4−e5
�

e5−e6
�

e6−e7
�

e7−e11
�

e11−e12
�

e9−e10
�

(v)
e1−e4

�

e4−e5
�

e5−e6
�

e6−e7
�

e7−e8
�

e2−e3
�

e3−e9
�

e9−e10
�

e10−e11
�

e11−e12.
�

In this example, z2 = [8, 12, 11, 7, 6, 5, 4, 1, 10, 9, 3, 2] and the simple systems (i)–
(v) correspond to the symmetric decreasing covers {(8, 1), (12, 2), (11, 3), (7, 4), (6, 5),
(10, 9)}, {(12, 11, 3, 2), (8, 1), (7, 4), (6, 5), (10, 9)}, {(12, 11, 3, 2), (7, 6, 5, 4), (8, 1),
(10, 9)}, {(12, 11, 7, 6, 5, 4, 3, 2), (8, 1), (10, 9)} and {(8, 7, 6, 5, 4, 1), (12, 11, 10, 9, 3, 2)}
of z2 of types (2, 2, 2, 2, 2, 2), (4, 2, 2, 2, 2), (4, 4, 2, 2), (8, 2, 2) and (6, 6) respectively.
The element z2 has no decreasing cover of a type which dominates the types of all
its decreasing covers. Simple systems (iv), of shape (8,2,2), and (v), of shape (6,6), are
maximal among all simple systems contained in �+ corresponding to realizations of
z2 as their longest element with respect to the pre-order � of subsystems. Observe that
sh z2 = (22, 12), the conjugate of (8,4) which is the supremum of the shapes (8,2,2) and
(6,6). (Compare with Theorem 3.8 and Lemma 4.5.)

REMARK. In the example above, observe that z2 has a decreasing cover of type (7, 4, 1),
namely {(8, 7, 6, 5, 4, 3, 2), (12, 11, 10, 9), (1)}. However, none of the symmetric
decreasing covers of z2 has shape λ with λ � (7, 4, 1). It follows that our hoped-for
extension of Theorem 3.3 to “whenever an involution w has a decreasing cover of type
ν, then w has a symmetric decreasing cover of type λ with λ � ν” is not true.

For the remainder of this section we will look at some consequences in the special
case where an involution has a dominant symmetric decreasing cover. It is easy to
see that any involution in W is conjugate to a parabolic involution, see [14] for a
generalization of this result to arbitrary Coxeter groups. In Corollary 4.10 we compare
various realizations (that satisfy an additional length restriction) of an involution
as a conjugate of a parabolic involution. First we show the following preliminary
result.

LEMMA 4.8. Let λ and μ be compositions of n with λ � μ. Then (i)
∣∣��(λ)

∣∣ ≤ ∣∣��(μ)
∣∣

and (ii)
∣∣WJ(λ)

∣∣ ≤ ∣∣WJ(μ)
∣∣ with equality if and only if λ is a rearrangement of μ.

Proof. If λ is a rearrangement of μ, it is immediate that we have equality in (i)
and (ii). Now suppose that λ is not a rearrangement of μ. Then λ′′ � μ′′ and λ′′ �= μ′′.
Using [9, Theorem 1.4.10], we see that for some k ≥ 1, there is a sequence of partitions
λ′′ = α(0) � α(1) � · · · � α(k) = μ′′ where, for each i = 1, . . . , k, there is a pair of integers
j1 and j2 > j1 such that α

(i)
j1 = α

(i−1)
j1 + 1, α

(i)
j2 = α

(i−1)
j2 − 1, α

(i)
j = α

(i−1)
j for j �= j1, j2,
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and either j1 = j2 − 1 or α
(i−1)
j1 = α

(i−1)
j2 . Hence, l(wJ(α(i))) − l(wJ(α(i−1))) = (α

(i−1)
j1

+1
2

) +(α
(i−1)
j2

−1
2

) − (α
(i−1)
j1
2

) − (α
(i−1)
j2
2

) = α
(i−1)
j1 − α

(i−1)
j2 + 1 ≥ 1. Hence, l(wJ(λ′′)) < l(wJ(μ′′)).

Also, |WJ(α(i)))|/|WJ(α(i−1)))| = (α(i−1)
j1 + 1)/α(i−1)

j2 > 1. Hence, |WJ(λ′′)| <

|WJ(μ′′)|. �
THEOREM 4.9. Let z ∈ W be an involution. Suppose that for some composition λ of

n and some element d ∈ XJ(λ), Pλd is a symmetric decreasing cover for z which dominates
all symmetric decreasing covers for z. If � is a root subsystem contained in N(z), then
(i)

∣∣��(λ)d
∣∣ ≥ |�| and (ii)

∣∣W (��(λ)d)
∣∣ = ∣∣WJ(λ)

∣∣ ≥ |W (�)|. In (i) and (ii), we get
equality if and only if � is of type λ′′.

Proof. From the hypothesis, ��(λ)d ⊆ N(z). Moreover, sh z = λ′ in view of Theorem
3.8. Any subsystem � ⊆ N(z) will be generated by a simple system � in � ∩ �+, Also,
� gives a decreasing cover for z of type ν and ν � λ. The result now follows from
Lemma 4.8. �

COROLLARY 4.10. Let z, λ and d satisfy the hypothesis of Theorem 4.9. Suppose fur-
ther that (i) z = e−1wJ(ν)e for some composition ν of n and e ∈ W for which l(z) = 2l(e) +
l(wJ(ν)) and (ii) l(z) = 2l(d) + l(wJ(λ)). Then ν ′′ � λ′′ and, if ν ′′ �= λ′′, then l(e) > l(d).

Proof. Pνe is a decreasing cover for z of type ν ′′. From the hypothesis, λ′′

dominates the shape of any decreasing cover of z. Hence, ν ′′ � λ′′. Since ��(λ)d

and ��(ν)e are contained in N(z), and since l(d) = 1
4

(|N(z)| − ∣∣��(λ)d
∣∣) and l(e) =

1
4

(|N(z)| − ∣∣��(ν)e
∣∣), the last part of the corollary follows from Theorem 4.9. �

Observe that the involution z in Corollary 4.10 is the longest element of the Young
subgroup d−1WJ(λ)d also with respect to the generating system 
.

5. (λ,μ)-diagrams. We define the notion of a diagram in two stages. First, let
ν = (ν1, . . . , νr) be a partition. Then, the diagram Dν associated with ν is the array
of points {(i, j) : 1 ≤ i ≤ r, 1 ≤ j ≤ νi}. We refer to the elements of this array as the
nodes of the diagram. In pictorial form, the points are listed with first index indicating
the row and second index indicating the column on which the point occurs. The row
index increases from top to bottom and the column index from left to right. A general
diagram D is obtained by permuting the rows and columns of Dν for some ν (that is,
permuting the row indices and permuting the column indices). The ith row of D is the
set of nodes of D with index i. The jth column is defined similarly. If λi is the number of
nodes on the ith row of D and μj is the number of nodes on the jth column of D, then
the compositions λ = (λ1, . . . , λr) and μ = (μ1, . . . , μs) are such that λ′′ = ν = μ′. We
refer to λ and μ as the row composition and the column composition of D respectively,
and we refer to D as a (λ,μ)-diagram. We say that D has shape (λ,μ) and write
sh D = (λ,μ).

EXAMPLE 5.1. The diagram D = {(1, 2), (1, 3), (1, 4), (2, 3), (3, 1), (3, 2), (3, 3),
(3, 4), } is obtained by permuting the rows and columns of D(4,3,1). We picture these
diagrams below.

× × ×
×

× × × ×
× × × ×
× × ×
×

D D(4,3,1)
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The row composition and column composition of D are (3, 1, 4) and (1, 2, 3, 2)
respectively.

Generalizations of the notions of diagram and tableau associated with partitions
similar to our generalizations have already appeared in [10, Section 2]. Some immediate
consequences of the definition of a diagram are contained in the following lemma.

LEMMA 5.2. (i) If, in a diagram D, (i1, j1) and (i2, j2) are nodes with i1 �= i2 and
j1 �= j2, then either (i1, j2) or (i2, j1) is also a node.

(ii) If λ and μ are compositions such that λ′′ = μ′, there is a unique (λ,μ)-diagram.

Proof. For part (i), let (i1, j1) and (i2, j2) be nodes in Dλ′′ with i1 < i2. If j1 > j2,
then (i2, j1) is also a node of Dλ′′ . If j1 < j2, then both (i1, j2) and (i2, j1) are also nodes
of Dλ′′ . For part (ii), it is enough to observe that any permutation of rows and columns
of a (λ,μ)-diagram resulting in Dλ′′ has the same effect on all (λ,μ)-diagrams. �

A (λ,μ)-tableau is a bijection from the (λ,μ)-diagram to {1, . . . , n}. We say that a
(λ,μ)-tableau t has shape (λ,μ) and write sh t = (λ,μ). A (λ,μ)-tableau is row standard
if it is increasing on rows, column standard if it is increasing on columns and standard
if it is increasing on rows and columns.

LEMMA 5.3. A (λ,μ)-tableau t is standard if and only if, for any two nodes (i1, j1)
and (i2, j2) of the corresponding diagram, i1 ≤ i2 and j1 ≤ j2 implies that ti1,j1 ≤ ti2,j2 .

Proof. Suppose that t is a standard tableau. Let (i1, j1) and (i2, j2) be nodes of the
corresponding diagram for which i1 ≤ i2 and j1 ≤ j2. By Lemma 5.2 (i), either (i1, j2)
or (i2, j1) is also a node. In the first case, we obtain ti1,j1 ≤ ti1,j2 ≤ ti2,j2 . In the second
case, we obtain ti1,j1 ≤ ti2,j1 ≤ ti2,j2 . Hence, the condition on the tableau entries holds.

Conversely, a tableau for which the condition holds is clearly both row standard
and column standard. Hence, it is standard. �

W acts on the set of (λ,μ)-tableaux in the obvious way; if w ∈ W , an entry i
is replaced by iw and tw denotes the tableau resulting from the action of w on the
tableau t. This action on (λ,μ)-tableaux is a natural extension of the action by letter
permutations of Dipper and James in [2, p. 21].

We construct a special standard (λ,μ)-tableau tλ,μ, where tλ,μ is obtained by filling
in the (λ,μ)-diagram with 1, . . . , n by rows from top to bottom, filling each row from
left to right.

For any (λ,μ)-tableau t, we define the row reversed (λ,μ)-tableau rev(t) to be
that obtained from t by reversing the entries in its rows, and the row reflected reversal
(λ, μ̇)-tableau refrev(t) to be that obtained from rev(t) by reflecting the entire tableau
rev(t) in a vertical axis. The composition μ̇ is the composition obtained from μ by
reversing its entries.

EXAMPLE 5.4. With λ and μ as in Example 5.1, let t be the (λ,μ)-tableau
1 2 4

5
3 6 7 8

.

Then rev(t) =
4 2 1

5
8 7 6 3

, refrev(t) =
1 2 4

5
3 6 7 8

The following result gives a simple combinatorial technique for identifying
involutions in the same two-sided cell as the standard parabolic involution wJ(λ′′),
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where λ is a composition of n. We already know from a theorem of Schützenberger
[16] that involutions in the same two-sided cell of W are conjugate. The involutions
covered by Theorem 5.5 satisfy an additional length restriction which is not in general
satisfied by all involutions within a two-sided cell of W . Also note that if an involution
satisfies the hypothesis of Theorem 5.5, then it also satisfies the hypothesis of Theorem
4.9 and Corollary 4.10.

THEOREM 5.5. Let t be a standard (λ,μ)-tableau for which rev(t) is column standard.
Let d ∈ W be the element defined by tλ,μd = t and let z = d−1wJ(λ)d. Then sh z = λ′,
z ∼LR wJ(λ) and l(z) = 2l(d) + l(wJ(λ)).

Proof. Note that tz = rev(t), the rows of rev(t) give a decreasing cover of type λ′′

for z and the columns of rev(t) give an increasing cover of type λ′ for z. By Corollary
3.7, λ′′ � (sh z)′ and λ′ � sh z. It follows that sh z = λ′.

We now show that N(z) is the disjoint union of N(d−1), ��(λ)d and N(d−1)z. For
i = 1, . . . , n, let (a(i), b(i)) denote the position of i in the tableau t, where a(i) denotes
the row number of the position and b(i) denotes the column number, and let (a′(i), b′(i))
denote the position of i in the tableau refrev(t). By hypothesis, refrev(t) is a standard
tableau whose row reversal is column standard and tλ,μ̇d = refrev(t).

Let 1 ≤ i < j ≤ n. If a(i) = a(j), then id−1 < jd−1, since td−1 = tλ,μ, and id−1 and
jd−1 are on the same row of tλ,μ. Hence, eid−1 − ejd−1 ∈ ��(λ). So, ei − ej ∈ ��(λ)d.
Since jz < iz, ei − ej ∈ N(z) also. If a(i) > a(j) and b(i) < b(j), then jd−1 < id−1. So,
ei − ej ∈ N(d−1). We will see later that ei − ej ∈ N(z) also in this case. If a(i) < a(j),
b(i) < b(j) and ei − ej ∈ N(z), then a′(iz) < a′(jz), b′(iz) > b′(jz) and jz < iz. Hence,
ejz − eiz ∈ N(d−1). So, ei − ej ∈ N(d−1)z. If a(i) < a(j), b(i) < b(j) and ei − ej �∈ N(z),
then a′(iz) < a′(jz), b′(iz) > b′(jz) and iz < jz. Hence, ejz − eiz �∈ N(d−1). So, ei − ej �∈
N(d−1)z. Finally, if a(i) < a(j) and b(i) ≥ b(j), then a′(iz) < a′(jz) and b′(iz) ≤ b′(jz).
So, iz < jz and ei − ej �∈ N(z). At this point, we have established that N(z) is contained
in ��(λ)d ∪ N(d−1) ∪ N(d−1)z.

Now suppose that ei − ej ∈ N(d−1). Since i < j, jd−1 < id−1. Hence, jd−1 occurs
on the same row of tλ,μ as id−1 but before it, or on an earlier row. Consequently, j occurs
on the same row of t as i but before it, or on an earlier row. Since t is standard, this is
possible only if a(i) > a(j) and b(i) < b(j). By Lemma 5.2, t has an entry at one of the
positions (a(i), b(j)) or (a(j), b(i)). Suppose that it has an entry k at position (a(i), b(j)).
Then i < k and j < k. So, kz < iz and rev(t) has entries jz and kz at positions (a(j), b(j))
and (a(i), b(j)) respectively. Since rev(t) is column standard, jz < kz. Hence, jz < iz. We
get the same result if t has an entry at position (a(j), b(i)). So, ei − ej ∈ N(z). Hence,
N(d−1) ⊆ N(z).

Since N(z)z = N(z), N(d−1)z ⊆ N(z). If ei − ej ∈ N(d−1)z, then eiz − ejz ∈ N(d−1)
and jz < iz. By an earlier argument, now applied to refrev(t) instead of t, a′(jz) > a′(iz)
and b′(jz) < b′(iz). Hence, a(j) > a(i) and b(j) > b(i).

We have now shown that N(z) contains ��(λ)d ∪ N(d−1) ∪ N(d−1)z and by
considering the relative positions of i and j in t for the elements ei − ej ∈ N(z), we
see that the sets ��(λ)d, N(d−1) and N(d−1)z are mutually disjoint.

From Result 4.1, 2l(z) = |N(z)|, 2l(d) = 2l(d−1) = |N(d−1)| and 2l(wJ(λ)) =
|N(wJ(λ))| = |��(λ)|. We conclude that l(z) = 2l(d) + l(wJ(λ)). �

Note that in Example 5.4, N(d−1) = {e3 − e4, e3 − e5, e4 − e3, e5 − e3} and
N(d−1)z = {e1 − e8, e5 − e8, e8 − e1, e8 − e5}.
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6. Computational Results. We determined, using programs in GAP [5] and C, the
involutions which are not accounted for by Theorem 5.5. The partitions corresponding
to cells which contain such involutions for the cases n ≤ 12 are

n = 9: 6.3, 32.2.1.

n = 10: 7.3, 6.3.1, 4.3.2.1, 32.2.12.

n = 11: 8.3, 7.4, 7.3.1, 6.3.2, 6.3.12, 5.3.2.1, 42.2.1, 4.3.22, 4.3.2.12, 32.22.1, 32.2.13.

n = 12: 9.3, 8.4, 8.3.1, 7.4.1, 7.3.2, 7.3.12, 6.32, 6.3.2.1, 6.3.13, 5.4.2.1, 5.3.2.12,
42.22, 42.2.12, 4.3.22.1, 4.3.2.13, 33.2.1, 32.22.12, 32.2.14.

We also determined the involutions z with sh z = λ′, which cannot be written in
the form z = d−1wJ(λ)d for some composition λ with l(z) = 2l(d) + l(wJ(λ)). For each
n, the total number of such involutions is denoted by Nv,n. An investigation carried
out in [12] had already shown that Nv,n = 0 whenever n ≤ 7.

In the following table, we list the total number Nt,n of involutions for 9 ≤ n ≤ 12,
the number of involutions Nb,n not accounted for by Theorem 5.5 and the fraction
Nb,n/Nt,n, together with Nv,n and Nv,n/Nt,n.

n Nt,n Nb,n Nb,n/Nt,n Nv,n Nv,n/Nt,n

9 2620 12 0.00458 4 0.00153
10 9496 58 0.00611 22 0.00232
11 35696 418 0.01171 142 0.00398
12 140152 2234 0.01594 870 0.00621

More detailed information in the form of tables can be obtained from any of
the authors on request. In these tables, for each n, 9 ≤ n ≤ 12, and each partition
λ of n, the column entries give (i) the partition λ; (ii) the number Nt,λ of standard
tableaux whose shape is the partition λ, and this is also the number of involutions
in the corresponding two-sided cell; and (iii) the number Nb,λ of involutions in the
two-sided cell corresponding to λ which are not accounted for by Theorem 5.5.
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