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Summary

Quantitative variation in traits that change with age is important to both evolutionary biologists
and breeders. We present three new methods for estimating the phenotypic and additive genetic
covariance functions of a trait that changes with age, and illustrate them using data on daily
lactation records from British Holstein-Friesian dairy cattle. First, a new technique is developed to
fit a continuous covariance function to a covariance matrix. Secondly, this technique is used to
estimate and correct for a bias that inflates estimates of phenotypic variances. Thirdly, we offer a
numerical method for estimating the eigenvalues and eigenfunctions of covariance functions.
Although the algorithms are moderately complex, they have been implemented in a software
package that is made freely available.

Analysis of lactation shows the advantages of the new methods over earlier ones. Results suggest
that phenotypic variances are inflated by as much as 39 % above the underlying covariance
structure by measurement error and short term environmental effects. Analysis of additive genetic
variation indicates that about 90 % of the additive genetic variation for lactation during the first
10 months is associated with an eigenfunction that corresponds to increased (or decreased)
production at all ages. Genetic tradeoffs between early and late milk yield are seen in the second
eigenfunction, but it accounts for less than 8 % of the additive variance. This illustrates that
selection is expected to increase production throughout lactation.

1. Introduction

An individual's phenotype changes with age. A trait
that changes with age can be represented as a
trajectory, that is, a function of time. Because each
character takes on a value at each of an infinite
number of ages, and its value at each age can be
considered as a distinct trait, such trajectories are
referred to as 'infinite-dimensional' characters.

Many problems of interest to breeders and evol-
utionary biologists involve selection on this type of
trait. The traditional way of analysing the quan-
titative genetics of infinite dimensional traits involves
focusing on the phenotypic values at a small number
of landmark ages, making discrete what is intrinsically
a continuous process. Recently, the methods of
quantitative genetics have been extended to infinite-
dimensional traits to overcome this deficiency

t Corresponding author.

(Kirkpatrick & Heckman, 1989; Kirkpatrick et al.
1990; Kirkpatrick & Lofsvold, 1992; Gomulkiewicz
& Kirkpatrick, 1992).

The infinite-dimensional approach can provide
more accurate estimates of variation in the traits and
improve estimates of their response to natural or
artificial selection as compared to conventional
methods. Improved estimates of phenotypic and
genetic covariances can be realized using the fact that
the measurements are ordered in time. The situation is
analogous to the classical statistical problem of
predicting the value of a dependent variable y as a
function of an independent variable x. A standard
approach is to regress observed values of y onto x.
Then, given a value x*, a prediction for the cor-
responding value y* is determined by the regression
equation. Alternatively, one might use the observed
value of y corresponding to the observed value of x
that is closest to x*. In many situations the regression
prediction will be superior because measurement error
in y makes prediction from a single pair of observed x
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and y unreliable, while the regression approach gains
power by using information from all the observations.

An estimate of the covariance between the values of
a trait at two ages can likewise be improved by using
information about the covariances at other ages. The
classical approach of treating the value at each age as
a discrete trait without regard for its place in the
sequence of ages loses substantial information. In
contrast, the infinite-dimensional approach seeks to
retain this information by using, in effect, a regression
of covariance on age. Given the notoriously large
sampling errors inherent in estimates of covariances,
any gain in the power of estimation is welcome.

This paper extends the recently-developed methods
for the analysis of infinite-dimensional traits and
demonstrates them using data on lactation records
from British Holstein-Friesian dairy cattle. We begin
by briefly reviewing the framework for estimating
covariance functions that was introduced by
Kirkpatrick et al. (1990). We then introduce three new
methods within this framework. The first is a technique
for estimating covariance functions referred to as the
method of asymmetric coefficients. This method is
illustrated with a simple worked example. The second
is a technique for correcting the bias that appears
along the diagonal of an estimated phenotypic
covariance function or matrix. This bias arises because
date-specific measurement errors inflate the pheno-
typic variances (the diagonal elements), but have no
such bias on the phenotypic covariances (the off-
diagonal elements) or any of the additive genetic
parameters. Our strategy here is to use the unbiased
off-diagonal elements to estimate the diagonal ele-
ments. The algorithm is demonstrated using a simple
example. The third method is a numerical approach to
calculate the eigenvalues and eigenfunctions of a
covariance function which is useful to describe the
patterns of variation. After these new methods are
introduced, they are applied to lactation records from
British Holstein-Friesian dairy cattle.

2. Estimating covariance functions

For any trait that changes in time, the phenotype of
an individual at age t can be written x(t). Variation in
the population for this function is characterized by a
covariance function. A covariance function is the
infinite-dimensional analogue of a covariance matrix.
The value of the phenotypic covariance function 3P(tx,
t2) gives the phenotypic covariance between the value
of the trait at ages t1 and t2. The phenotypic variance
at age t1 is written &{tx, /,). Likewise, the additive
genetic covariance structure of a population is
described by the additive genetic covariance function

For any practical application, these covariance
functions are estimated from breeding data. The
approach advocated by Kirkpatrick et al. (1990) starts

with measurements of individuals at each of n ages,
denoted al through an. Standard quantitative-genetic
methods are used to obtain an estimate of the nxn
covariance matrix for the measurements at these ages.

The goal now is to estimate the underlying
covariance function from this matrix. In general, this
is done by interpolating between the values of the
covariance matrix, perhaps smoothing them in order
to damp out the sampling error in the elements of the
matrix. A variety of functions can be used for the
interpolation. The approach we developed earlier is
based on orthogonal functions (Kirkpatrick &
Heckman, 1989; Kirkpatrick et al. 1990), and we will
again use that method here.

We begin by briefly reviewing the approach, which
is referred to as the method of' symmetric coefficients'
in this paper. It starts with the fact that any continuous
covariance function can be represented as a weighted
sum of orthogonal functions. That is, given a set of
functions {0J, ( = 0,1,. . . , that are orthogonal over
the interval [tf^aj, we can write the covariance
function 2P as

(1)
t-OJ-0

where the Cf}s are constants. These constants form a
symmetric matrix, C(j = Cj( (whence the term ' sym-
metric coefficients'), which guarantees that 0> is
symmetric as required by the definition of a covariance
function. The strategy developed by Kirkpatrick et al.
(1990) is to use an estimated covariance matrix P
based on measurements taken at n ages to estimate a
truncated set of the weighting coefficients Cir Our
estimate of the covariance function 3P, based on the
first k orthogonal functions, is then

(2)
(-0 t-0

where k ^n. The statistical problem, then, is to
estimate the matrix of coefficients C so that they can
be substituted into eqn (2) to yield an estimate of the
covariance function. As discussed by Kirkpatrick et
al. (1990), we can obtain a 'full fit', in which k = n,
such that the value of &(tx, t2) exactly equals the
corresponding value of P when tt and t2 equal two of
the ages at which the data were taken. Alternatively,
we can seek a 'reduced fit', in which k < n. Under a
reduced fit, there will generally be discrepancies
between SP and P. The rational for favouring a reduced
fit is that the estimate P includes sampling error, and
we might prefer an estimate $P that smooths out the
fluctuations that these errors introduce.

The methods for both the full and reduced estimates
of a covariance function that were developed earlier
lead to a symmetric coefficient matrix C. In the next
section we introduce a new method that leads to an
asymmetric coefficient matrix, and show its advan-
tages.
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3. The method of asymmetric coefficients

There are three reasons for developing the new method
based on asymmetric coefficients. First, an estimate of
a covariance function based on our earlier method has
continuous first derivatives everywhere. This may be
undesirable along the diagonal of the covariance
function, where we might want to allow for the
possibility of a crease, or discontinuous first derivative.
A discontinuous first derivative along the diagonal is
found in the covariance functions of several simple
stochastic processes, including brownian motion, and
so it seems desirable to allow for this possibility. The
method of asymmetric coefficients makes no as-
sumption about the continuity of first derivatives of
the estimated covariance function along the diagonal.

Secondly, estimates of a covariance function based
on asymmetric coefficients may be somewhat better
behaved than those based on symmetric coefficients.
The reason lies in the fact that estimates using
symmetric coefficients involve the products of higher-
order terms that result in functions that are less
smooth than their asymmetric counterparts. The
coefficient matrix C derived using symmetric coeffi-
cients generally will have all non-zero elements. When
substituted into eqn (2), this produces terms of order
0*-I(A) 'fik-ii^)- With orthogonal polynomials as the
0s, for example, this corresponds to the product of
two (k—\yh order polynomials, which will often
result in a quite 'wiggly' function. By contrast, the
coefficient matrix C derived using asymmetric coeffi-
cients has zeros in all elements Ctj for which i+j ^ k.
Thus the terms of highest order to appear in eqn (2)

Symmetric coefficients

10

o
U

Asymmetric coefficients

Age/,

Fig. 1. Fits using the methods of symmetric coefficients
(top) and asymmetric coefficients (bottom) with the
example of eqn (5) discussed in the text. The solid circles
show the original data points.

are of the same order as <j>k_y- Hence asymmetric
coefficients often lead to smoother estimates.

Thirdly, the asymmetric method can be used to
correct for a bias in the diagonal elements of
phenotypic covariance functions. We discuss this
problem further in a later section ('Extrapolating to
the diagonal').

These attractions of asymmetric coefficients are
mitigated by the fact that some of the techniques
developed earlier under the method of symmetric
coefficients do not carry over to the new method. In
particular, the algebraic technique for estimating the
eigenfunctions and eigenvalues of the covariance
matrix directly from the coefficients cannot be applied
to asymmetric coefficients. It is still possible, however,
to estimate these quantities by numerical methods
using the methods we discuss in a later section
('Analysis of genetic variation').

The method of asymmetric coefficients seeks an
estimate of the covariance function 0* that is of the
form

f-0 j-0

k-l k-\

i-0 3-0

(3)

Unlike the earlier method, there is no requirement
that Ci} = C]( because the form of eqn (3) guarantees
that 0> will be symmetric, so we refer to this as the
method of'asymmetric coefficients'. The data matrix
P contains n(n +1)/2 parameters, and we can estimate
no more than this number of coefficients. We choose
to fit the coefficients Cy with i+j ^ k—\, that is the
lower left half of the matrix C. This choice tends to
result in a smoother estimate than if higher-order
coefficients were fitted, as discussed above.

The strategy we use to fit C is to transform the
problem into a standard least-squares formulation.
By stacking the columns of the data matrix P to form
a vector p, and similarly transforming the coefficient
matrix C into a vector c, the statistical model can be
written:

p = Xc + e, (4)

where p is a vector of observations (the estimated
variances and covariances), A' is a matrix defined by
the values of the orthogonal functions evaluated at
the measured ages, c is a vector of coefficients, and e
is a vector of error terms. Our goal is to solve for the
vector c that minimizes the error vector according to
the weighted sum of squares criterion.

Algorithms for this calculation are described in
Appendix A for the cases of both a full and a reduced
fit. The method has been implemented as a computer
program in a Mathematical notebook (Wolfram,
1991). The program (which also performs other
analyses and displays them graphically) is available
from the senior author.
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To illustrate our approach, consider the problem of
fitting the covariance matrix

60

P =
3 2

2 37'

based on measurements taken at the ages a = (10,
11)T, as shown in Figure 1. We will find the full
estimate of 0>, and so k = n = 2. We choose to use
normalized Legendre polynomials as the orthogonal
functions. The first two of these polynomials are:

= W 2 and tj>l{x) = V(3/2)x (6)

(see Kirkpatrick et al. 1990). Calculation of the
coefficient matrix is described in detail for this example
in Appendix A. It leads to the result

-von)
(7)

Notice that the matrix C is asymmetric, and that
elements below the antidiagonal are zero. These two
properties distinguish the asymmetric coefficient
matrix from the symmetric matrix approach described
by Kirkpatrick et al. (1990).

Substituting these coefficients into eqn (A 14) gives
our estimate of the covariance function:

f o r

for

While the coefficient matrix from which it was
calculated is asymmetric, the covariance function
itself is symmetric (as required by the definition of a
covariance function). Checking, we confirm that the
entries in the original matrix P are recovered when we
substitute tu t2 = 10, 11 into eqn (8). A perfect fit of
the estimated covariance function to the data matrix
results whenever a full fit is calculated.

The method of symmetric coefficients developed
previously (Kirkpatrick et al. 1990) leads to somewhat
different results. Using that method, the coefficient
matrix for a full fit is

C =
0

.0 1/3 (9)

Unlike the coefficient matrix (7), this matrix is
symmetric. (The off-diagonal coefficients are zero in
this example, but that is not generally true.) The
corresponding estimate of the covariance function is

As with the earlier estimate using asymmetric coeffi-
cients, the original data matrix of eqn (5) is recovered
when we substitute tltt2 = 10, 11 into this equation.

The symmetric and asymmetric expressions for &
are quite different. The differences are seen clearly in
Fig. 1. A conspicuous and diagnostic discrepancy is
that symmetric coefficient estimate of & is smooth
along the diagonal while the asymmetric coefficient

estimate is not. The symmetric coefficient estimate
also has more curvature.

4. Extrapolating to the diagonal

Estimates of phenotypic variances for the values of
traits at specific ages are often inflated by factors that
do not affect estimates of the covariances between
ages. One source of this inflation is measurement
error. A second source involves environmental factors
that have effects over periods much shorter than the
between-measurement intervals, such as weather,
health, food quality, and hormonal state. This second
type of factor tends to increased covariances close to
the diagonal of the covariance function. For example,
estimates of the phenotypic correlations of lactation
test day records one day apart were 0-84, declining
only to 0-82 for records five days apart (Pander et al.
1993). Thus we can view the diagonal elements of a
phenotypic covariance matrix or function as being
biased upwards, relative to a smoother underlying
pattern that we expect on biological grounds. The
upward bias appears as a ridge along the diagonal of
estimated phenotypic covariance matrices and co-
variance functions. This bias distorts our picture of
the covariance structure of the trait, and has practical
implications in breeding programs that are based on
age-specific variances.

We would therefore like to correct for the bias. Two
strategies are available. A direct approach would be to
estimate the measurement error directly, for example
through repeated measures. A second, indirect ap-
proach is available when the characters of interest are
age-specific measurements of the same trait through
time. A familiar example is a growth trajectory, in
which the data are measurements of the sizes of each
individual at a series of ages. In this situation the basic
phenotype of interest is a continuous function - the
growth trajectory - that is an infinite-dimensional
trait. Here we show how the phenotypic covariances
for an infinite-dimensional trait can be used to estimate
the variances (that is, the diagonal elements of the
covariance matrix). These estimates are free of
measurement error bias, and may lead to selection
indices with increased efficiency.

Our strategy is as follows. On intuitive grounds, we
expect covariance function for growth processes to be
continuous. (This is a biological rather than math-
ematical argument, since there is nothing in the
definition of a covariance function that requires it to
be continuous.) Using the unbiased estimates for
the phenotypic covariances (that is, SP{tx, t2) where
t1 4= t2), we can extrapolate estimates of the phenotypic
variances (that is, ̂ (t^ tj). The algorithm begins with
an estimated phenotypic covariance matrix of the
sizes of individuals at the n ages av We first estimate
the phenotypic covariance function using only the
n(n —1)/2 unbiased subdiagonal elements of A The
method of asymmetric coefficients described above
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Fig. 2. Fit using the method of extrapolating to the
diagonal using the example discussed in the text. The
solid circles show the original data points; the open
circles are the extrapolated values for the diagonal
elements (the variances).

produces an estimate of the phenotypic covariance
function in terms of a weighted sum of orthogonal
functions. Because the diagonal elements of P were
omitted, this estimated interpolates the values of &{tx,
t2) over the ranges t1e[a2,an] and t2e[a1,an_1], where
t1> t2. Secondly, the coefficients are used to ex-
trapolate the estimated covariance function: the range
of t1 is extended downward from age a2 to ax and the
range of t2 upward from age an_x to an, giving us the
full range tx, t2e[a1,an]. This extrapolation gives us an
unbiased estimate of the diagonal of SP along with the
rest of the covariance function.

A detailed description of the algorithm is given in
Appendix B. It has been implemented in a
Mathematical notebook, which is available from the
senior author. To illustrate, consider the estimated
phenotypic covariance matrix

P = (11)

based on measurements of some character taken at
ages a = (10, 11, 15)T, plotted in Fig. 2. This example
will illustrate how the method naturally accom-
modates uneven intervals between the measured ages.
The variances along the diagonal of P have been
inflated by the biases described earlier, and our aim is
to obtain corrected estimates for them. In this
approach the diagonal elements are not used in the
estimate of the 2P, and so a full fit uses k = n — 1 = 2
orthogonal functions.

Appendix B shows that using the method of
extrapolating to the diagonal, we obtain an estimated
phenotypic covariance function

-17/4 + ^ - ^ / 4 for
- 1 7 / 4 + ^ - ^ / 4 for ^ ;

Evaluating this function at the measured ages (t = 10,
11, 15), we obtain the matrix

P = (13)

The results suggest that the variances shown along the
diagonal of eqn (11) are overestimated by as much as
115% (7 v. 3-25 for the variance at age 10). These
results are illustrated in Fig. 2.

5. Analysis of variation

The covariance function is an important descriptor of
variation in the trajectory of a character that changes
through time, and a substantial amount can be learned
from its analysis. The spectrum, or eigenvalues and
eigenfunctions, of a covariance function is particularly
useful. The leading eigenvalues and eigenfunctions
visualize major patterns of variation, and describe
these patterns with many fewer parameters than the
full covariance function. One important application
involves the additive covariance function. Its leading
eigenfunctions identify the types of evolutionary
changes for which the population has substantial
genetic variation available. Conversely, its spectrum
also shows the types of changes for which there is not
appreciable genetic variation, and therefore which will
occur slowly if at all under selection.

The method of symmetric coefficients was specifi-
cally devised with this objective in mind. Calculations
based on a symmetric coefficient matrix can be used to
obtain estimates of eigenfunctions and eigenvalues
directly (Kirkpatrick & Heckman, 1989; Kirkpatrick
et al. 1990). The method of asymmetric coefficients,
on the other hand, cannot be adapted to these
calculations. We therefore propose an alternative
using a numerical approach.

An estimate of a covariance function based on
asymmetric coefficients can be evaluated on a square
lattice of a moderate to large number of points. These
values form a matrix whose spectrum (eigenvectors
and eigenvalues) can then be calculated by standard
methods. As the number of points on the lattice
increases, the estimates of the eigenvalues will con-
verge on those of the underlying covariance function
(see Kirkpatrick & Heckman, 1989). The points of the
eigenvectors can be interpolated to give estimates of
the corresponding eigenfunctions (within a constant
factor that is a function of the number of points in the
lattice).

This may seem like a rather baroque method of
estimating quantities that could be obtained much
more directly by simply calculating the eigenvalues
and eigenvectors of the original covariance matrix.
The incentive for performing the less direct algorithm
just described is that it is expected to give more
accurate estimates (ICirkpatrick & Heckman, 1989).
The reason for this seems to lie in the fact that simply
calculating the spectrum of the original matrix discards
all information about the ordering in time of the ages
at which the measurements were taken. The methods
for symmetric coefficients developed by Kirkpatrick et
al. (1990) make use of this information; the indirect
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Full fit {k = 10)

Asymmetric Full fit (k = 10) Extrapolated Full fit (k = 9)

Extrapolated Reduced fit (k = 7) Discrepancy Extrapolated (k = 7)
v. data

Fig. 3. Estimates of the phenotypic covariance function for lactation in British Holstein-Friesian dairy cattle. The
original data (top left) show a ridge corresponding to upward biases in the diagonal elements (variances). The full fit
using symmetric coefficients (top right) overfits the data; the plot has been truncated in the vertical dimension. The full
fit with asymmetric coefficients (middle left) is much smoother, but reproduces the inflated diagonal. The extrapolated
full fit (middle right) is poorly behaved along the diagonal. An extrapolated reduced fit with k = 1 (bottom left) is well
behaved everywhere. The discrepancy between this estimate and the original data (bottom right) is substantial along the
diagonal, corresponding to the bias, but very small elsewhere. Variances and covariances are in units of kg2.

algorithm just described for use with asymmetric
coefficients also does so.

6. Analysis of lactation in dairy cattle

We will illustrate the three methods developed above
using lactation records of British Holstein-Friesian
dairy cattle. The data are described in detail by

Pander et al. (1992), and comprise their data set 2.
Briefly, these were records of daily milk yield (' test
day records') of 34029 heifers of known parents. The
first record for each heifer was taken between day 5
and day 35 after the start of lactation, and successive
records at monthly intervals for a total of 10 monthly
records per individual. The data were analysed as if
each measurement was taken at the midpoint of the
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month interval. Additive genetic and phenotypic
parameters were calculated from the sire component
of covariances using restricted maximum likelihood
(REML; see Patterson & Thompson, 1971; Meyer,
1985).

We analysed these data with the methods described
above using Legendre polynomials. When reduced
estimates are computed, the matrix V of the error
covariances between the estimated covariances is
required (Kirkpatrick et al. 1990). Since the REML
program used does not estimate V, we used the
following approximation. The phenotypic and ad-
ditive genetic covariances were viewed as if they had
been estimated using a standard balanced half-sib
breeding design with 700 random sires, each with 10
half-sib offspring. There was a total of 16000 residual
degrees of freedom because daughters of a number of
additional selected sires were used to increase con-
nexions between herds. These sample sizes are a
reasonable approximation to the more complex
pedigree actually used to estimate the genetic para-
meters (see Pander et al. 1992). The V matrix was then
estimated using the formulae in Appendix C of
Kirkpatrick et al. (1990).

(i) Estimating the phenotypic covariance function

The phenotypic covariance matrix is plotted in three
dimensions in Fig. 3 (top left). We begin by calculating
full estimates (k = n = 10) of the phenotypic co-
variance function. The estimates based on symmetric
coefficients and on asymmetric coefficients are com-
pared in Fig. 3. Both show a conspicuous ridge
running along the diagonal, corresponding to the
date-specific measurement error described in the
introduction. A secondary effect of the spike along the
diagonal is to produce a series of parallel harmonic
ridges in the symmetric coefficient estimate. These are
not seen in the original data, but rather reflect side
effects of how the polynomials used to construct SP
accommodate the large elements along the diagonal.
The estimate based on asymmetric coefficients is
substantially smoother, as anticipated for the reasons
discussed earlier, but still captures the diagonal ridge
corresponding to the inflated variance estimates.

The method of extrapolating to the diagonal is used
to eliminate the upward bias in the estimates of the
diagonal of P. The full fit (k = 9 polynomials) gives an
unsatisfactory estimate for & (Fig. 3, middle right).
The extrapolation based on these high-order poly-
nomials causes the estimated covariance function to
take on extremely small values along the diagonal. In
fact, this estimate is not positive semidefinite, and so
does not qualify as a covariance function. The reduced
fit with k = 8 suffers the same problem.

A reduced estimate with k = 1 (Fig. 3, bottom left),
however, shows a covariance function that is both
well-behaved and in keeping with our intuitive

expectation based on the original data. The function
rises smoothly to the diagonal. It fits the off-diagonal
elements of P very well: all of the differences are less
than 2% in magnitude. In contrast, there is a large
discrepancy between the extrapolated estimates of the
diagonal elements of P and those from the original
matrix (Fig. 3, bottom right). The differences are, in
fact, our estimates of the upward biases in the diagonal
elements. They are substantial. Our extrapolated
values differ by as much as 36 % from the values of the
diagonal elements of the original matrix P.

An even simpler estimate of the covariance function
would be one that depended only on the difference
between any pair of ages. Inspection of the data,
however, shows for example that the phenotypic
correlation between the first and second month of
lactation is different from that between the seventh
and eighth (rP = 0-64 v. rp = 0-76, respectively; Pander
et al. 1992 Appendix Table 1), and so this alternative
is not appropriate in this case.

(ii) Estimation and analysis of the additive genetic
covariance function

To illustrate the method of asymmetric coefficients,
we will again use the data of Pander et al. (1992).
Their estimate of the 10x10 additive genetic co-
variance matrix G and our estimates of the continuous
covariance function are shown in Fig. 4. We first
calculated full (k = n = 10) estimates '$ of the co-
variance function using both symmetric and asym-
metric coefficients. Both show severe fluctuations. The
symmetric estimate takes on values that range from
less than — 3 to more than 7 kg2 (Fig. 4, top right)
even though the original matrix elements only span
the range from 1-5 to 3-5 kg2. The asymmetric estimate
is again considerably better behaved, as expected, but
it nevertheless takes on values as small as —0.12 kg2

(Fig. 4, middle left).
We than calculated the symmetric and asymmetric

estimates using reduced fits using k = 9 polynomials
(Fig. 4, middle right and bottom left). Both are far
better behaved than the full estimates. The goodness-
of-fit tests give x2 (10 D.F.) = 36-4 for the symmetric fit
and x2 (10 D.F.) = 30-8 for the asymmetric fits,
indicating that the asymmetric fit is somewhat better.
Both tests, however, show there are statistically
significant discrepancies between the smoothed co-
variance function and the original data. We never-
theless prefer these reduced estimates because they are
smoother and because the discrepancies between them
and the original data matrix are small (less than 7 %
for both the symmetric and asymmetric fits).

We estimated the eigenvalues and eigenfunctions of
# using three different methods for comparison. First,
we analysed the symmetric estimate with the algebraic
method described by Kirkpatrick et al. (1990) using
the reduced estimate with k = 9. Secondly, we carried
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Full fit (k = 10)

Asymmetric Full fit (k = 10) Symmetric Reduced fit (k = 9)

Asymmetric Reduced fit (k = 9) Discrepancy Asymmetric (k = 7)
v. data

Fig. 4. Estimates of the additive genetic covariance function for lactation in British Holstein-Friesian dairy cattle. The
original data are shown at top left. The full fit using symmetric coefficients (top right) overfits the data; the plot has
been truncated in the vertical dimension. The full fit with asymmetric coefficients (middle left) is much smoother, but is
poorly behaved in the off-diagonal corners. Reduced fits with k = 9 using symmetric coefficients (middle right) and
asymmetric coefficients (bottom left) are much smoother. The discrepancy between the reduced asymmetric fit and the
original data (bottom right) is very small everywhere. Variances and covariances are in units of kg2.

out an analysis of the asymmetric estimate again with
k = 9 using the numerical approach outlined above
with a 31 x 31 matrix reconstructed from the estimated
covariance function. Thirdly, we calculated the eigen-
values and eigenvectors of the original matrix G. The

eigenvalues from the last two methods were renorma-
lized to make them comparable to those from the first
method. (The eigenvalues of a covariance function are
denned by an integration rather than a summation.
Eigenvalues calculated by the second and third
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Fig. 5. Estimates of the first and second eigenfunctions
(top and bottom panels, respectively) of additive genetic
variation for lactation in British Holstein-Friesian dairy
cattle. Each panel compares the estimates obtained via
symmetric coefficients, asymmetric coefficients, and the
corresponding eigenvector from the original additive
genetic covariance matrix. Estimates using symmetric and
asymmetric coefficients are reduced fits with k = 9 (see
Fig. 4). Estimates of the corresponding eigenvalues are
shown in the insets; note that estimates of A1 are about
an order of magnitude greater than those for A2.
Eigenvalues are in units of kg2.

methods, in contrast, are defined by a matrix product
that involves a summation whose value depends on
the number of ages sampled. Renormalization
accounts for the number of ages so that eigenvalues
estimated by these different methods can be
compared.)

The results are present in Fig. 5. The first
eigenfunction is positive everywhere, showing that the
principal axis of genetic variation corresponds to
simultaneous increases or decreases in lactation at all
ages. The leading eigenvalue shows that this eigen-
function accounts for about 90% of all additive
genetic variation (A, = 228 and the sum of all
eigenvalues = 254, using the method of asymmetric
coefficients). Thus there appears to be substantial
genetic variation for enhanced milk production
throughout the entire lactation period. A consequence
of practical importance is that there are not strong
tradeoffs between early and late lactation: genetic
improvement at one age will tend to improve all ages.
The second eigenfunction, which accounts for less
than 8% of the genetic variation, shows a tradeoff
between performance before v. after the fourth month
of lactation.

All three methods give similar results in this
example. Our experience with other examples, how-
ever, shows that this is not always so. It is likely that
the agreement between the methods in this case results
from the high precision of the parameter estimates in
this very large data set and the relatively large number
of measured ages. In other applications, we expect the
infinite-dimensional methods will have substantially
greater power than the conventional matrix-based
ones (see Kirkpatrick & Heckman, 1989). Further-
more, the infinite-dimensional methods estimate the
full eigenfunctions rather than a series of points along
them.

7. Discussion

The methods developed here complement those
developed earlier for estimating and analysing the
structure of variation in traits that change with age.
The technique of asymmetric coefficients may lead to
smoother and more accurate estimates of the co-
variance and correlation functions whenever we are
willing to allow there to be a crease (that is, a
discontinuous first derivative) along its diagonal. The
technique of extrapolating to the diagonal allows one
to correct for biases that innate the diagonal elements
of a covariance matrix (the variances). The eigenvalues
and eigenfunctions of covariance functions estimated
by either method can be calculated numerically to
reveal dominant components of variation and trade-
offs.

A question common to all of these methods is how
to decide the appropriate degree of smoothing for the
estimate of the covariance function. Kirkpatrick et al.
(1990) developed a goodness-of-fit test, and suggested
we choose the smoothest function (the one with the
smallest number of orthogonal polynomials) that does
not differ significantly from the original data matrix.
Our analysis of phenotypic variation in lactation
shows that this criterion is not always adequate. The
function that it chooses may not be positive semi-
definite, and therefore not qualify as a covariance
function. Our preference in this case is for a smoother
estimate of the covariance function that is better
behaved (Fig. 3). Although it does differ significantly
from the original data, the discrepancies are small.

An issue related to smoothing involves the positive
definiteness of the covariance functions estimated by
these methods. A covariance function, by definition,
must be positive semidefinite. Estimates of covariance
functions, like estimates of covariance matrices, can
violate this requirement. Even if the matrix on which
it is based is positive semi-definite, there is no certainty
that the covariance function estimated by inter-
polating between the points of the matrix will be. The
problem is illustrated in Fig. 3 by the estimates with
k = 9. One might choose to use positive semi-
definiteness as one of the criteria for choosing among
estimates of the covariance function that differ in the

GRH 64

https://doi.org/10.1017/S0016672300032559 Published online by Cambridge University Press

https://doi.org/10.1017/S0016672300032559


M. Kirkpatrick, W. G. Hill and R. Thompson 66

degree of smoothing. One might expect smoother fits
generally to be less prone to violate positive semi-
definiteness if the original data matrix does not.

Alternative methods for fitting functions might lead
to better-behaved estimates of covariance functions,
for example that are smoother, that conform better to
the data, and that are less likely to violate the
requirement of positive semidefiniteness. Polynomials,
which are the basis for the estimates in this paper, are
very often wiggly and can be poorly behaved when
used for extrapolation. Other methods such as two
dimensional splines are available (Lancaster &
Salkauskas, 1986). They might lead to improved
estimates.

One clear opportunity for alternative methods
involves our method for extrapolating to the diagonal
of the covariance function. The algorithm we de-
veloped produces a covariance function estimate that
has a crease (a discontinuous first derivative) along its
diagonal. Unfortunately, trajectories corresponding
to covariance functions of this sort are not smooth:
they are continuous, but do not have continuous
derivatives (Soong, 1973, chapter 4). We usually
expect on biological grounds that a growth process
will be smooth. We therefore would prefer an estimate
with continuous derivatives everywhere. It may be
possible to extend the approach described here to cure
this weakness in our method. In any event, we suspect
that this extension typically would make only small
changes to the quantitative results. The data analysed
in Section 6 below suggest that further changes in the
variance estimates produced by smoothing the di-
agonal crease will be small relative to the corrections
made by the algorithm presented here.

Lactation in dairy cattle is an excellent candidate
for infinite-dimensional analyses because changes in
rate of production throughout lactation are of interest.
We would like to maximize production over the whole
lactation, and need to be able to predict lactation yield
from a small number of records early in lactation,
both at the phenotypic level so as to make early
culling decisions, and at the genetic level to make early
selection decisions. Previous analyses of lactation
curves and yield prediction (reviewed by Danell, 1990)
have not considered the underlying continuous co-
variance structure of the records. The deviation of an
individual from the population mean at one or two
early ages can be used to estimate its performance at
any later age or set of ages by the standard methods
of part-whole correlation (see, e.g. Falconer, 1989;
VanRaden et al. 1991). Given the economic incentives,
the relatively small amount of additional computation
required by the infinite-dimensional method seems a
small price to pay.

Our results show that allowance for inflation of the
phenotypic variance by measurement error and date-
specific effects (such as illness and weather) needs to
be made in computing the underlying phenotypic
covariance structure. Analyses of daily milk records

have shown that almost all of the increase is associated
with the variance of the daily record, but some
residual effects span a few days. For example, the
phenotypic correlations of records 1, 2, 10 and 30
days apart were 0-84, 0-82, 0-79 and 0-75 in a small
data set (Pander et al. 1993). Test day records used in
the present analysis were approximately 30 d apart,
and the increase in diagonal elements of 30 % or so
(Fig. 3) correspond to these figures. In the repeatability
model commonly used in the analysis of quantitative
traits with multiple records (e.g. Falconer, 1989, chap.
8) it is assumed that &{tx, t2) = rVP for all tl 4= t2, and
that &(t^, tj = VP, where r is the repeatability. In our
analysis we allow for this inflation of the variance but
also for continuous changes in the covariance over the
lactation.

The genetic analysis shows that, although there is
substantial additive genetic variation, about 90% of it
is associated with the first eigenfunction, which is
positive at all ages (Fig. 5). Tradeoffs are seen in the
second eigenfunction, which shows opposite effects on
production before and after the fourth month of
testing. This eigenfunctions, however, accounts for
less than 7% of the genetic variation. The present
analysis therefore formalizes what is known from
examination of the genetic correlation matrix of test
day records, which shows high positive values through-
out (e.g. Pander et al. 1992), that selection on records
from the first few months of production will have little
negative consequences on performance in later lac-
tation. A further development of the methods would
involve defining joint covariance functions of yield of
milk and, for example, of proportion of fat in the first
lactation and (requiring more change in structure) of
milk yield in the first and in later lactations.

Two directions for future work are suggested by
this work. First, covariance functions would be better
fitted assuming that the error structure of the estimated
variances and covariances followed a multivariate
Wishart distribution using likelihood to evaluate the
fit. This approach requires numerical iteration. A
covariance function estimate based on the methods
from this paper (using least squares, assuming
normally-distributed errors) would be a logical initial
point for the iterations.

The ultimate extension would be a method in which
the covariance function is estimated directly from the
original observations, without the intermediate of a
covariance matrix. In the analyses above, measure-
ments records for individuals were grouped into 1-
month categories for analysis. These pooled data were
than analysed to give estimated covariance matrices,
which in turn were analysed by the infinite-
dimensional methods. A more direct approach would
avoid the pooling entirely and instead treat each
record according to the individual's actual age (or
number of days since lactation began). Such a method
might well increase the precision of covariance
function estimates.
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Appendix A

The appendix describes the method of asymmetric
coefficients. Programs for this analysis have been
implemented in a Mathematical notebook that is
available on request from the senior author.

Here we will follow Kirkpatrick et al. (1990) by
fitting orthogonal functions. These functions, denoted
(j). (/ = 0,1,...), are orthogonal over the interval [u,v].
In the examples discussed in the text and below we use
Legendre polynomials, in which case u = — 1 and
v=l.

The method of asymmetric coefficients then pro-
ceeds according to the following seven steps.

(i) Form the vector p by stacking the successive
columns of the lower left diagonal part of the
phenotypic covariance matrix:

p = (Pu, P2l,..., Pnl, P22, P32,..., Pn2,..., Pnn) . (A 1)

(ii) Form the coefficient vector c by stacking the
successive columns of upper left diagonal part of the
matrix C:

C V (A 2)

This contrasts with the method of symmetric coef-
ficients, in which the coefficient vector is formed from
the lower diagonal parts of the columns of C, in the
same way that p is formed according to eqn (A 1).
Note that the subscripts run from 0 to k — \ rather
from 1 to A: in order to conform with the conventional
numbering of the orthogonal functions.

(iii) The estimated phenotypic covariance matrix P
is based on measurements at n ages; these ages form
the age vector a. We use a to calculate the adjusted age
vector a*:

a* = (A3)

/' = 1,2,...,/?. This operation rescales the range of the
measured ages to the range of the orthogonal
functions.

(iv) The next step is to form the matrix X from the
orthogonal functions. The way in which the vectors p
and c are formed makes the notation for specifying
the elements of X somewhat awkward. We begin by
defining four 'index functions', which are integer-
valued functions that generate appropriate subscripts
for the orthogonal functions and the adjusted age
vector. The first two index functions are used to
generate the subscripts for the matrix C as they appear
on the right hand side of (A 2). The index function
I//', A) is based on the sequence

0,1 Ar-1,0,1 A:-2,...,0. (A 4)

The value of I//', Ar) is given by the /th element of
(A 4). For example, 1/5,3) = 1. The function I2(/,Ar)
is based on the sequence

0,0, . . . ,0 ,1,! , . . . , ! , (A 5)

in which there are k 0s, {k — \) Is, etc. The value
of I.,(/, k) is given by the /th element of A 5; thus
I2(6,3) = 2.

The third index function is I3(/, k), and is based on
the sequence

1,2,...,A:, 2,3,...,A:,...,A;. (A 6)

The value of I3(/,A) is given by the /th element of
(A 6). For example, I3(4,3) = 2. The last two index
functions are simply an incremented and decremented
version of I2 and I3:

I4(/,fc) = I2(/,fc) + l, (A 7)

I5O',A:) = I3(y,A:)-l. (A 8)

For all five index functions, the argument / can take
on the values i = \,2,...,k(k +1)/2.

With these definitions in hand, we now calculate the
matrix X:

Xtj = (fit a;H(af <i,n))0i a,ic)(a*(!,«>)' (A 9)

where / = l,2,...,«(n+l)/2 and 7=1,2 , . . . ,
A(A:+l)/2. By way of comparison, the previous
method of symmetric coefficients calls for X to be of
the form

WM), (A io)

where S[s, t] = 1 if s = t and is 0 otherwise.
(v) For a full estimate of dP, we solve for c using the

relation

c = X~ip (Al l )

Alternatively, we may be interested in a reduced
estimate of £P, in which the number of orthogonal
coefficients that are fit is smaller than the number of
observations (A: < n). To do so, we first calculate the
matrix V that is the error covariance matrix cor-
responding to the vector p, details are given in
Kirkpatrick et al. (1990). We than calculate c using
weighted least squares:

c =
"1AT1A'T

(A 12)

(vi) We now form the estimated coefficient matrix
C by unstacking the vector c (that is, performing the
reverse of the operation described by eqn (A 2)).
Using the notation of the index functions, the elements
of C are found by plugging successive values of / into
the relation

^-[i,((. M.I2<(.*» = Ce (A 13)

where / = 1, 2,...,k(k— i)/2; all other elements of C
are 0.

5-2
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(vii) The coefficient matrix generates our estimate
for the covariance function:

!=0 J-0 (A 14)

where

(A 15)

The form of eqn (A 14) guarantees that ̂  is symmetric,
as required by one of the defining criteria of covariance
functions. In the case of a reduced fit (k < n), the
consistency with the original data matrix can be tested
for statistically significant deviation from the data
using the goodness-of-fit test described in Kirkpatrick
et al. (1990, Appendix C).

(i) A worked example

The method will be illustrated by the worked example
presented by the covariance matrix of text eqn (5). We
will use Legendre polynomials for the fit, which are
defined over the interval [ — 1,1], so « = —1 and
v=\.

Following Step (i) above, stack successive columns
of the subdiagonal part of P to form the vector

/> = (3,2,3)T. (A 16)

From Step (ii), the (unknown) vector of coefficients is

c = (Coo, Cw C01)
T. (A 17)

From Step (iii), the adjusted age vector is

«* = ( - l , l ) T . (A 18)

We form the matrix X from the orthogonal functions
as described in Step (iv):

2
V3
2

V3
2

2 )

(A 19)

The orthogonal coefficients for the full fit are
calculated as described in Step (v):

= (6, -V3/3 ,V3/3) T . (A 20)

By unstacking this vector according to Step (vi), we
find the estimated coefficients matrix given by text eqn

(7). Finally, using that result in Step (vii) we arrive
at the estimated covariance function given by text
eqn (8).

Appendix B

The technique of extrapolating to the diagonal makes
use of the asymmetric coefficient fit described in
Appendix A. Programs that run this analysis have
been developed in a Mathematical notebook that is
available from the senior author on request.

As with the earlier methods, we are interested in
fitting the data using k orthogonal functions. But
because we are not using the diagonal elements of P in
the fit, we now require k < n rather than k ^n. The
algorithm proceeds by the following steps.

(i) Form the vector p by stacking the s«6diagonal
parts of the columns of P:

P = ( ^ 2 1 > ^ 3 1 > ••• > " n l > ^ 3 2 ' M 2 > • • ) ' n 2 > ••• > * n , n - V • ( " 1 )

This vector is of length n(n — \)/2.
(ii) Form the coefficient vector c according to eqn

(A 2).
(iii) We calculate two adjusted age vectors a* and

b*.

a* =u +

and

/ =

(v-u)(at+1-a2)

(iv) Form the matrix X:

where

I6(«,n) = ! , ( / , / ! -

(B2fl)

(B2b)

(B3)

(B4)

i = 1,2 n(/i-l)/2, andy= 1,2,...,*(*+1)/2.
(v) As in the previous section, the coefficients are

calculated using eqn (A 11) for a full estimate, or eqn
(A 12) for a reduced estimate. Note, however, that
because only the off-diagonal elements of P are being
used, a full fit implies k = n — \ rather than k = n
polynomials (and likewise a reduced fit implies k <
n — 1). A reduced fit can be tested for consistency with
the original data using the goodness-of-fit test de-
scribed in Kirkpatrick et al. (1990, Appendix C).
When extrapolating to the diagonal, however, the
values along the diagonal are omitted from the test.

(vi) The coefficient matrix C is formed from the
vector c via eqn (A 13).

(vii) Finally, the estimated covariance function is
obtained by substituting C into eqn (A 14) using

{v-u){tx-a2) (B5a)
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and

t* = u +
(v-u)(t2-a1) (B56)

where tx and t2 range over the interval [ai,a2].

(i) A worked example

We will demonstrate the method of extrapolating to
the diagonal using the covariance matrix given in text
eqn (11), based on measurements taken at the ages

a = (10,11,15)T.

(This age vector will illustrate how the infinite-
dimensional method naturally accommodates unequal
spacing of ages.) We will calculate a full estimate of &
(that is k = n — 1 =2), again using Legendre poly-
nomials.

The vectors p, c, a*, and b* are

/> = (3,2,3)T,

and

Steps (iii)-(v) produce the same values for A', c, and C
found in the example of Section 2. Last, we follow
Step (vi) to obtain the estimate of the covariance
function given by text eqn (12).
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