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Abstract

We consider the following two definitions of discounting: (i) multiplicative coefficient
in front of the rewards, and (ii) probability that the process has not been stopped if the
stopping time has an exponential distribution independent of the process. Itis well known
that the expected total discounted rewards corresponding to these definitions are the same.
In this note we show that, the variance of the total discounted rewards is smaller for the
first definition than for the second definition.
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1. Introduction

In this note we study two definitions of discounting: (i) multiplicative coefficient in front
of the rewards, and (ii) probability that the process has not been stopped if the stopping time
has an exponential distribution independent of the process. It is well known that the total
discounted rewards corresponding to these definitions have equal expectations. However, as
we will show, the second moment and variance are smaller for the first definition than for the
second definition.

Since its introduction by Markowitz in his Nobel Prize winning paper [5], variance has
played an important role in stochastic optimization. In particular, there is a significant amount
of literature on various optimizations of Markov decision processes (MDPs); see the pioneering
work by Jaquette [4] and Sobel [7]-[9], a survey by White [11], and recent references by Van
Dijk and Sladky [10] and Baykal-Giirsoy and Giirsoy [1].

Our interest in the variance of total discounted rewards is motivated by constrained opti-
mization of continuous-time MDPs. According to [2], optimization policies can be presented in
different forms. In particular, they can be presented in the forms of randomized stationary and
switching stationary policies. The expected total discounted rewards are equal for the corre-
sponding randomized stationary and switching stationary policies [2, Theorem 5.1]. However,
the variances of the total discounted rewards for the policies can be different. In addition, they
may depend on the definition of discounting.
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2. Main result

Let (2, #, P) be a probability space with a filtration ¥;, t € [0, 00), where F; € F; C F
forall0 < s < t < oo. Consider a nondecreasing sequence of stopping times 7,,, n = 1,2, .. ..

Let
Foo = U 7.
t€[0,00)

We consider an ¥;-adapted stochastic process r;, t € [0, 00), and an F7,-adapted stochastic
sequence R,, n = 1,2, .... The process r; can be interpreted as the reward rate at time ¢. In
addition, a lump sum R, is collected at time 7},.

There are two natural ways to define the total discounted rewards. One way is to interpret
discounting as the coefficient in front of the reward rate. In this case, the total discounted

rewards are defined as
o0 o0
J| = / e dt+ ) e R,
0

n=1
where o > 0 is the discount rate.
Another way is to define the total discounted rewards as the total rewards until a stopping
time T that has an exponential distribution with rate «. Let 7 be independent of ¥, and let
P{T > t} = e~ % Then the total discounted reward can be defined as

N(T)

T
J2=/ redt + Z Ry,
0 n=1

where
N() =sup{n: T, <t}, t > 0.

It is well known that

E[J1] = E[ /2], 2.1)

if at least one side of this equation is well defined (a random variable has a well-defined
expectation if either the expectation of its positive part is finite or the expectation of its negative
part is finite).

Indeed,
N(T) 00
EY Ry=) ER,UT =T,
n=1 n=1
o0
= ZEE[Rn YT > T,} | 1,1
n=1
o0

:EZRnE[l{T > Tu} | ‘¢Tn]

n=1

oo
=EY R,P(T =T, | ¥7,)

n=1

o0
=E) Rye ™
n=1
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T 00
E[ r,dt:E[/ r,l{th}dt]
0 0

= /OOE[r, 1{T > t}]dt
0

and

=/meEmTznmz
0

o
:/ E r, P(T > t}dt
0

o0
:E[ e ¥ dr.
0

In particular, (2.1) holds for deterministic functions r and R, and, therefore,
E[J1 | Fx]l =E[)2 | Fxl P-as., (2.2)

if either E[|J1] | Foo] < 00 or E[|J2] | Fool < o0 P-a.s. However, the second moments can
be different. Indeed, we have the following statement.

Theorem 2.1. [f either E[|J1] | Fool < 00 or E[| /2] | Fxol < 00 P-a.s., then
var(J1) < var(J2),
and the equality holds if and only if var(J | Foo) = 0 P-a.s.
Proof. By the total variance formula (see [6, p. 83] or [3, p. 454]), fori =1, 2,
var(J;) = E[var(J; | Foo)] + var(E[J; | Fol)-
Therefore, because of (2.2),
var(E[J1 | Fool) = var(E[J2 | Fo ).

In addition, E[var(J; | £50)] = 0 and E[var(J; | £5)] > 0. Hence, var(J;) — var(Jy) =
El[var(J; | Fx)] = 0, 1.e. var(Jy) < var(Jo).

Example 2.1. Consider a continuous-time Markov chain with two states: 1 and 0, where 0
is an absorbing state. Let state 1 be the initial state. The process spends an exponential time
T1 ~ exp(A) at state 1 and then jumps to state 0. At state 1 the reward rate is 1 and at the jump
epoch there is no lump sum reward. At state O the process collects no rewards. Let the discount
factor be o and let 7' ~ exp(«).

The total discounted rewards under the two definitions are

T 1 TATy
h=/1eﬂ%u=—a—eﬂﬂx b:/a dr =T ATy
0 (24 0

For the first definition,

1 1
var(J1) = — var(e™*) = — (My, (=2a) — (M7, (-))?) = AT )

where My (s) is the moment generating function of arandom variable X . Inparticular, M7, (s) =
AN —s).
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Since T A Tj is an exponential random variable with intensity A + «,

1

H)y=——.
var(J2) Gt

Thus, var(J;) < var(J).

Example 2.2. Consider a discrete-time Markov chain where at each jump the process receives
a lump sum reward of 1. Let the time interval between jumps be 1 unit of time. The discount
factor is & and T ~ exp(«).

The total discounted rewards under the two definitions are respectively

N(T)

e*O[
_— —an __ — _
h=Ye s h= L 1=ND),
n=

Note that Jj is a deterministic number and J is a random variable depending on 7. Thus,
var(J1) = 0 < var(J,). In fact, direct calculation shows that

var(Jy) = ;&2
(I—e™)
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