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Canonical Toric Fano Threefolds

Alexander M. Kasprzyk

Abstract. An inductive approach to classifying all toric Fano varieties is given. As an application of this

technique, we present a classification of the toric Fano threefolds with at worst canonical singularities.

Up to isomorphism, there are 674,688 such varieties.

1 Introduction

Recall that a normal projective variety X with log terminal singularities such that

the anticanonical divisor −KX is an ample Q-Cartier divisor is said to be Fano. A

nonsingular Fano surface is usually called a del Pezzo surface. Their classification

is well known: P2, P1 × P1, and P2 blown up in at most eight points (in general

position). Of these, the first five are toric. Nonsingular Fano threefolds have also

been classified. There are seventeen families with Picard number one, and eighty-

nine other families ([Isk79b, Isk79a, MU83, Šok79, Cut89, Tak89, MM04]).

A great deal more can be said concerning nonsingular toric Fano varieties ([Wiś02,

FS04]). There are eighteen smooth toric Fano threefolds ([Bat81, Bat91, WW82]),

and 124 smooth toric Fano fourfolds ([Bat99, Sat00]). An inductive algorithm for

classifying the smooth toric Fano n-folds was recently described in [KN07]. This al-

gorithm requires knowledge of the Gorenstein toric Fano (n−1)-folds and, using the

data from [KS00], allowed the classification of the five-folds. Øbro has presented a

different algorithm based on the ingenious notion of special facets; using this method

dimensions six, seven, and eight have now been classified (see [Øbr07]).

In [KMM92] it was shown that the degree (−KX)n of any smooth Fano variety X

of dimension n is bounded, as is the number of deformation types. Similar results

are not known for Fano varieties in general, but the number of isomorphism classes

of toric Fano varieties of fixed dimension and bounded discrepancy is known to be

finite (see [BB92, Bor00]). It thus makes sense to look for complete classifications in

the toric setting beyond the smooth cases.

Gorenstein toric Fano varieties have been classified up to dimension four. There

are 16, 4319, and 473,800,776 isomorphism classes in dimensions two, three, and

four, respectively (see [KS97, KS98, KS00]). These classifications are of particular

interest: Gorenstein toric Fano varieties are used to construct mirror pairs of Calabi-

Yau varieties (see [Bat94, BB96, KS02]).

One can also attempt to classify those toric Fano varieties with at worst terminal

singularities. Every surface of this form is nonsingular, and so the classification re-

duces to the smooth case above. In three dimensions, the author showed in [Kas06a]
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that there are (up to isomorphism) 634 varieties, of which 233 are Q-factorial and

100 are Gorenstein.

All the above classifications are subsets of a more general case: toric Fano va-

rieties with at worst canonical singularities. Here the surface case reduces to the

Gorenstein case. This paper describes an inductive approach to achieving a clas-

sification in higher dimensions. As an application, the classification for threefolds

is calculated. There are 674,688 isomorphism classes. As well as encapsulating the

three-dimensional classifications mentioned above, it is worth observing that 12,190

of the resulting varieties are Q-factorial (of which the Picard number is bounded by

ρ ≤ 7). The classification is available online via the Graded Ring Database ([Bro07])

at http://grdb.lboro.ac.uk/.

The various classifications are summarised in Table 1.

Terminal Canonical
n Smooth Gorenstein Q-factorial Total Gorenstein Q-factorial Total
2 5 5 5 5 16 16 16
3 18 100 233 634 4,319 12,190 674,688
4 124 473,800,776
5 866
6 7,622
7 72,256
8 749,892

Table 1: Known classifications of toric Fano n-folds.

2 Fano Polytopes

A toric variety is a normal variety X that contains an algebraic torus as a dense open

subset, together with an action of the torus on X that extends the natural action of

the torus on itself. For further details see [Oda78, Dan78, Ful93]. We shall briefly

review the properties we need, and in so doing fix our notation.

Let M ∼= Zn be the lattice of characters of the torus, with dual lattice N :=

Hom(M, Z). Every toric variety X of dimension n has an associated fan ∆ in NR :=

N ⊗Z R. The converse also holds; to any fan ∆ there is an associated toric variety

X(∆). Let {ρi}i∈I be the set of rays of ∆. For each i ∈ I there exists a unique prim-

itive lattice element of ρi , which by a traditional abuse of notation we continue to

denote ρi . X is Fano if and only if {ρi}i∈I correspond to the vertices of a convex

polytope in NR (see, for example, [Dan78]).

A normal variety X is Q-factorial if every prime divisor Γ ⊂ X has a positive

integer multiple cΓ that is a Cartier divisor. Once again, for the toric case there exists

a well-known description in terms of the fan. The toric variety X is Q-factorial if and

only if the fan ∆ is simplicial.

We say that a fan ∆ is terminal if each cone σ ∈ ∆ satisfies the following:

(i) The rays ρ1, . . . , ρk of σ are contained in an affine hyperplane H : (u(v) = 1)

for some u ∈ MQ .
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(ii) There are no other elements of the lattice N in the part of σ under or on H (i.e.,

N ∩ σ ∩ (u(v) ≤ 1) = {0, ρ1, . . . , ρk}).

A toric variety X is terminal (i.e., has at worst terminal singularities) if and only

if the fan ∆ is terminal. Relaxing condition (ii) slightly to allow lattice points on H,

one obtains the definition of a canonical fan. X has (at worst) canonical singularities

if and only if the fan ∆ is canonical ([Rei83]).

Definition 2.1 Let P ⊂ NR be a convex lattice polytope containing only the origin

as a strictly interior lattice point (i.e., P◦ ∩ N = {0}). We call such a polytope Fano.

If in addition the only boundary lattice points of P are the vertices (i.e., ∂P ∩ N =

vert P), then we call P a terminal Fano polytope. Otherwise we call P a canonical Fano

polytope.

Clearly there is an equivalence between terminal (resp. canonical) Fano polytopes

and toric Fano varieties with at worst terminal (resp. canonical) singularities. Two

toric Fano n-folds are isomorphic if and only if the corresponding Fano polytopes

are unimodular equivalent, i.e., equivalent up to a linear unimodular transformation

from GL(n, Z).

In [Kas06a] a classification of toric Fano threefolds with at worst terminal sin-

gularities was given. The method employed relied on an approach first outlined

in [BB]. It depends on the polytopal description of a toric Fano variety and can

be summarised in two steps:

(i) classify all the “minimal” polytopes;

(ii) inductively “grow” these minimal polytopes.

Let us explain this algorithm in more detail. First we shall define what we mean

by minimal.

Definition 2.2 Let P be a canonical (resp. terminal) Fano n-tope. We say that P is

minimal if, for all ρ ∈ vert P, the polytope conv(P∩N \{ρ}) obtained by subtracting

ρ from P is not a canonical (resp. terminal) Fano n-tope.

Notice that in the canonical case we are only required to check that the origin is

not contained in the interior of any of the smaller polytopes obtained by subtracting a

vertex. Our use of Fano and minimal will often be relative to some obvious subspace.

Such occurrences should not cause any confusion. This is a common theme when

considering lattice polytopes: for example, when talking about the volume of a face,

one usually means the lattice volume of the face in the appropriate sublattice.

Example 2.3 Let P := conv{±e1,±e2}, where e1 and e2 form a basis for N. P is

the terminal Fano polygon associated with P1 × P1. Let P ′ := conv{±e1} ⊂ P. P ′ is

the one-dimensional terminal Fano polytope associated with P1. Both P and P ′ are

examples of minimal Fano polytopes (in dimensions two and one, respectively).

Given a Fano polytope P, one can enlarge (or “grow”) it to P ′
= conv(P ∪{v}) by

the addition of a lattice point v ∈ N and evaluate whether P ′ is also a Fano polytope.

Clearly, if one starts with the minimal Fano polytopes, one will achieve a complete
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classification using this technique.

The number of possible lattice points that can be added to P to create a Fano

polytope is finite. Assume that P ′ is Fano, and consider the ray passing through the

origin and −v. It will intersect ∂P in a point x on some face F not containing v. Let

S ⊂ vert P ∩ F be of smallest size such that x ∈ conv S; say |S| = d, where d ≤ n is

as small as possible. Then conv(S ∪ {v}) is a d-simplex containing the origin strictly

in its (relative) interior. In other words, conv(S ∪ {v}) is a Fano d-simplex; there are

finitely many of these by, for example, [BB92, Bor00].

Thus we have an algorithm for finding all possible Fano polytopes P ′ that can

be obtained from P. What we require is a classification of the Fano d-simplices, for

d ≤ n (actually it is sufficient to know the possible weights). Such a classification can

be obtained from the techniques in [BB92] (see also [Con02, Kas08]).

What remains to be described is a method for constructing the minimal Fano

polytopes. We shall prove an inductive description of these minimal Fano polytopes

in Proposition 3.2. It shall be seen that an understanding of these minimal Fano

polytopes reduces to an understanding of the Fano d-simplices for all d ≤ n.

Finally, in Section 4, we shall find all minimal canonical Fano 3-topes. A computer

can then be used to establish a complete classification of toric Fano threefolds with

canonical singularities. The resulting classification is summarised in Section 5.

3 Decomposition of Minimal Fano Polytopes

The results in this section should be compared with [KS97]. It should be stressed that

the results ignore the lattice point structure of the Fano polytope; only the property

that the Fano polytope contains the origin in its interior is relevant.

Let x0, . . . , xn ∈ NR
∼= Rn be such that P := conv{x0, . . . , xn} is an n-simplex

with 0 ∈ P◦. To this simplex we associate the complete fan ∆ := ∆(P) given by the

cones over the faces of P, i.e., generated by

σi := cone{x0, . . . , x̂i , . . . , xn} , where i = 0, . . . , n.

x̂i indicates that the vertex xi is omitted. The following lemma is immediate.

Lemma 3.1 With notation as above, let x ∈ NR. Then x ∈ (−σi)
◦ if and only if

P ′ := conv{x0, . . . , x̂i , . . . , xn, x}

is an n-simplex with 0 ∈ P ′◦, and ∆(P ′) is a complete fan.

We are now in a position to prove the main result of this section.

Proposition 3.2 Any minimal canonical (resp. terminal) Fano n-tope P is either a

simplex, or can be written as P = conv(S ∪ P ′) for some S a minimal canonical

(resp. terminal) Fano k-simplex and P ′ a minimal canonical (resp. terminal) Fano

(n − k + r)-tope, where 0 ≤ r < k < n. Moreover, dim( S ∩ P ′) ≤ r, and r equals the

number of common vertices of S and P ′.
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Proof We assume that P is not a simplex. Let x0, . . . , xl be the vertices of P, where

l > n. Without loss of generality we may assume that x0, . . . , xn do not lie in a

hyperplane and that 0 ∈ conv{x0, . . . , xn}.

Minimality of P ensures that 0 /∈ conv{x0, . . . , xn}
◦
. Hence the origin must

lie on some facet, and we may assume (with a possible reordering) that 0 ∈
conv{x0, . . . , xk}

◦
for some k < n. We obtain the k-simplex S := conv{x0, . . . , xk}.

S is minimal and Fano, since P is. If P is terminal, then S must be terminal.

Let P ′ ′ := conv{xk+1, . . . , xl}, so P = conv(S ∪ P ′′). Let Γ be the k-dimensional

subspace of NR containing S. Since the xi are vertices, we have that {x0, . . . , xk} ∩
P ′ ′

= ∅, and since P is minimal, we have that {xk+1, . . . , xl} ∩ Γ = ∅. It must also

be that P ′ ′◦ ∩ Γ 6= ∅, otherwise 0 would lie in a facet of P. Let m := dim(P ′′◦ ∩ Γ).

A dimension count reveals that dim P ′ ′
= n − k + m.

By minimality of P and Lemma 3.1, we have that P ′ ′◦ ∩ Γ ⊂ −σ for some

r-dimensional simplicial cone σ ∈ ∆(S), where k > r ≥ m. Since {0} is the apex of

−σ, we have that either {0} = P ′ ′◦ ∩ Γ or 0 /∈ P ′ ′◦ ∩ Γ. The first case gives us that

P ′ ′ is a minimal Fano (n − k)-tope (which is necessarily terminal if P is terminal),

so by setting P ′
= P ′ ′ we are done. For the second possibility we may assume that

σ = cone{xk−r+1, . . . , xk} and construct the polytope P ′ := conv{xk−r+1, . . . , xl}.

By construction dim P ′
= n − k + r and by Lemma 3.1, we have that 0 ∈ P ′◦. Hence

P ′ is our desired minimal Fano (n − k + r)-tope.

From Proposition 3.2 we may conclude the following two corollaries, which are

well-known results of Steinitz.

Corollary 3.3 Any minimal Fano polytope P has at most 2 dim P vertices.

Corollary 3.4 Let P be a minimal Fano polytope such that |vert P| = 2 dim P. Then

P is centrally symmetric.

For k > 1, no k-simplex is centrally symmetric. Hence Corollary 3.4 is actually an

“if and only if”.

A characterisation of centrally symmetric simplicial reflexive Fano polytopes

is given in [Nil06]. These polytopes can always be embedded in the n-cube

conv{±e1 ± · · · ± en}.

4 Minimal Canonical Fano Threefolds

For the convenience of the reader we begin by summarising the main results of this

section in the following theorem (see also Tables 2 and 4).

Theorem 4.1 There are 26 minimum Fano polytopes in dimension three, up to the

action of GL(3, Z). Of these sixteen are tetrahedra.

We shall begin by describing which of the Fano tetrahedra are minimal. We do

this by restricting the possible weights that may occur.

Definition 4.2 We say that a Fano tetrahedron S has weights (λ0, λ1, λ2, λ3) ∈ Z4
>0

if

λ0x0 + λ1x2 + λ2x2 + λ3x3 = 0,
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(a) (b) (c) (d) (e)

Figure 1: The five Fano triangles with weights (1, 1, 1), (1, 1, 2), (1, 2, 3), (1, 1, 2), and (1, 1, 1)

respectively. Only (a) and (b) are minimal.

where the xi are the vertices of S, labelled in some order.

Weights are unique up to reordering and scalar multiplication. It is useful to nor-

malise them by insisting that λ0 ≤ λ1 ≤ λ2 ≤ λ3 and that gcd{λ0, λ1, λ2, λ3} = 1.

Before we continue, we need to be familiar with the Fano triangles. The Fano poly-

topes are well documented in the literature, more often than not appearing alongside

an original method of proof. Consult, for example, [KS97,Sat00,PRV00,Nil05]. The

triangles are illustrated in Figure 1.

Proposition 4.3 Let P be a minimal Fano tetrahedron. The possible weights for P are

(1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 1, 3), (1, 1, 2, 2), (1, 1, 2, 3),

(1, 1, 2, 4), (1, 1, 3, 4), (1, 1, 3, 5), (1, 1, 4, 6), (1, 2, 3, 5),

(1, 3, 4, 5), (2, 2, 3, 5), (2, 3, 5, 7), (3, 4, 5, 7).

Proof If P is terminal then the possible weights are listed in [Kas06a, Proposi-

tion 1.8]; they are (1, 1, 1, 1), (1, 1, 1, 2), (1, 1, 2, 3), (1, 2, 3, 5), (1, 3, 4, 5), (2, 3, 5, 7),

and (3, 4, 5, 7).

Suppose that P = conv{x0, x1, x2, x3} is not terminal. Minimality dictates that no

edge of P can contain more than one interior lattice point. Let x ∈ ∂P ∩ N \ vert P.

Since the fan ∆ of P is complete, so x ∈ −σ for some cone σ ∈ ∆ of smallest

possible dimension. In particular, dim σ ≤ 2, otherwise P is not minimal, hence

σ 4 cone{x0, x1} without loss of generality. Because of minimality we may suppose

that any non-vertex lattice point in conv{x1, x2, x3} is contained in −cone{x0, x1}.

dim σ = 1: Let x = −x0, where x is in the interior of the face conv{x1, x2, x3}, and

the line segment x1, x is lattice point free. There are two possibilities: either there is a

second non-vertex lattice point in the face, or there is not.

(i) If x is the only non-vertex lattice point in the face, then we may regard

conv{x1, x2, x3} as the Fano triangle (a) in Figure 1, with x playing the role

of the origin. Hence,

1
3
(x1 + x2 + x3) = −x0,

and we obtain weights (1, 1, 1, 3).
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(ii) Suppose that x ′ is a second non-vertex lattice point in conv {x1, x2, x3}. Then

conv{x ′, x0, x1} is a Fano triangle with x on the edge joining x1 and x ′. We may

choose x ′ to be as far from x1 as possible.

(a) x ′ lies on the edge joining x2 and x3: In this case, x ′
= (1/2)(x2 + x3). There

are only two possible Fano triangles: (b) and (c) in Figure 1. The former

gives:

2x0 + x1 + 1
2
(x2 + x3) = 0,

and hence P has weights (1, 1, 2, 4). The latter gives:

3x0 + 2x1 + 1
2
(x2 + x3) = 0,

yielding weights (1, 1, 4, 6).

(b) x ′ does not lie on the edge joining x2 and x3: There are no lattice points on

the line segment between x0 and x ′, hence the Fano triangle conv{x ′, x0, x1}
can only be (b) (observe that (c) is impossible, since there are no lattice

points between x1 and x = −x0), and so x ′
= −2x0 − x1. In particular, x ′

is the only lattice point in the triangle conv{x, x2, x3}, hence

1
3
(x2 + x3 − x0) = −2x0 − x1.

This gives weights (1, 1, 3, 5).

dim σ = 2: We have that σ = conv{x0, x1} and may assume that −x0 and −x1 are

not lattice points in the polytope, otherwise we can reduce to the previous case. Let

us choose x to be as far from x1 as is possible. Furthermore, minimality gives that any

non-vertex lattice point in conv{x1, x2, x3} must be contained in −cone{x0, x1}.

(i) Suppose that x lies on that edge joining x2 and x3. Then x = (1/2)(x2 + x3).

In this case, since the edge joining x0 and x1 contains at most one interior lattice

point, the Fano triangle conv{x, x0, x1} must be equivalent to (a), (b), or (c)

from Figure 1 (note that (d) is impossible, since −x0 or −x1 would be a lattice

point in the polytope). Triangle (a) gives equation x + x0 + x1 = 0, yielding

weights (1, 1, 2, 2). For (b) we obtain 2x+x0 +x1 = 0, giving weights (1, 1, 1, 1).

Finally we consider (c). Notice that −x0 is not in the face by assumption, hence

either x + 2x0 + 3x1 = 0 or 2x + x0 + 3x1 = 0. The second possibility gives us the

lattice points −x1 and x0 + x1 + x on the face conv{x0, x2, x3}, where the second

point is closer to x0 than the first. This contradicts minimality. Hence the only

possibility is (1, 1, 4, 6).

(ii) If x does not lie on the edge joining x2 and x3, then x is, say, in the interior of

conv{x1, x2, x3}, and the only possible Fano triangles for conv{x, x0, x1} are (a),

(b), and (c) (since the edge joining x0 and x must be lattice point free). Triangle

(a) tells us that x is the only non-vertex lattice point in the face conv{x1, x2, x3},

so we obtain
1
3
(x1 + x2 + x3) = −x0 − x1.

This gives weights (1, 1, 3, 4).
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Since −x0 is not in the face, (b) gives us that the face has only one non-vertex

lattice point. Hence:

1
3
(x1 + x2 + x3) = − 1

2
(x0 + x1),

yielding weights (2, 2, 3, 5).

Possibility (c) contradicts the assumption that −x0 and −x1 are not in the poly-

tope.

(1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 1) (1, 1, 1, 2)
0

@

−1 1 0 0

−1 0 1 0

−1 0 0 1

1

A

0

@

−2 2 0 0

−2 1 1 0

−1 0 0 1

1

A

0

@

−5 5 0 0

−3 2 1 0

−2 1 0 1

1

A

0

@

−1 1 0 0

−1 0 1 0

−2 0 0 1

1

A

(1, 1, 1, 3) (1, 1, 2, 2) (1, 1, 2, 3) (1, 1, 2, 4)
0

@

−1 1 0 0

−1 0 1 0

−3 0 0 1

1

A

0

@

−1 1 0 0

−2 0 1 0

−2 0 0 1

1

A

0

@

−1 1 0 0

−2 0 1 0

−3 0 0 1

1

A

0

@

−1 1 0 0

−2 0 1 0

−4 0 0 1

1

A

(1, 1, 3, 4) (1, 1, 3, 5) (1, 1, 4, 6) (1, 2, 3, 5)
0

@

−1 1 0 0

−3 0 1 0

−4 0 0 1

1

A

0

@

−1 1 0 0

−3 0 1 0

−5 0 0 1

1

A

0

@

−1 1 0 0

−4 0 1 0

−6 0 0 1

1

A

0

@

−2 1 0 0

−3 0 1 0

−5 0 0 1

1

A

(1, 3, 4, 5) (2, 2, 3, 5) (2, 3, 5, 7) (3, 4, 5, 7)
0

@

−3 1 0 0

−4 0 1 0

−5 0 0 1

1

A

0

@

−1 1 0 0

−3 0 2 0

−4 0 1 1

1

A

0

@

−3 2 0 0

−4 1 1 0

−5 1 0 1

1

A

0

@

−4 3 0 0

−3 1 1 0

−5 2 0 1

1

A

Table 2: The sixteen minimal canonical Fano tetrahedra.

Knowing the weights, we can find the associated tetrahedra. We shall require the

following result.

Proposition 4.4 ([BB92, Proposition 2]) For any weights (λ0, λ1, . . . , λn) such that

gcd{λ0, λ1, . . . , λn} = 1, let ρ0, ρ1, . . . , ρn ∈ N be the primitive generators for the fan

of P(λ0, λ1, . . . , λn). Then:

(i) λ0ρ0 + λ1ρ1 + . . . + λnρn = 0;

(ii) the ρi generate the lattice N.

Furthermore, if ρ ′

0, ρ
′

1, . . . , ρ
′

n is any set of primitive lattice elements satisfying (i) and

(ii), then there exists a transformation in GL(n, Z) sending ρi to ρ ′

i for i = 0, 1, . . . , n.

Theorem 4.5 There are sixteen minimal Fano tetrahedra whose vertices are listed (up

to the action of GL(3, Z)) in Table 2.

Proof The terminal Fano tetrahedra are listed in [Kas06a, Table 4]. We need only

consider the canonical cases.

From the proof of Proposition 4.3 we can see when the vertices of a minimal tetra-

hedron generate the lattice N. When this is the case, Proposition 4.4 tells us that the

https://doi.org/10.4153/CJM-2010-070-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2010-070-3


Canonical Toric Fano Threefolds 1301

tetrahedron corresponds to weighted projective space. This is the only possibility

for all weights except (1, 1, 1, 1) (in the notation of the proof, we are considering

dim σ = 2, case (i)(b)). This gives a tetrahedron whose vertices generate an in-

dex two sublattice. This corresponds to a fake weighted projective space of index

two; [Con02] describes how to compute the vertices of the tetrahedron.

It should be emphasised that not every Fano tetrahedron is minimal. As men-

tioned in [BB92, p. 278], there are a total of 225 Fano tetrahedra; see the appendix

of [BB] for the complete list. This has been verified by the author using the bounds

described in [Kas08]. There are 104 distinct weights, which are listed in Table 3.

Weights Sum

(1, 1, 1, 1) 4

(1, 1, 1, 2) 5

(1, 1, 1, 3) 6

(1, 1, 2, 2) 6

(1, 1, 2, 3) 7

(1, 1, 2, 4) 8

(1, 2, 2, 3) 8

(1, 1, 3, 4) 9

(1, 2, 3, 3) 9

(1, 1, 3, 5) 10

(1, 2, 2, 5) 10

(1, 2, 3, 4) 10

(1, 2, 3, 5) 11

(1, 1, 4, 6) 12

(1, 2, 3, 6) 12

(1, 2, 4, 5) 12

(1, 3, 4, 4) 12

(2, 2, 3, 5) 12

(2, 3, 3, 4) 12

(1, 3, 4, 5) 13

(1, 2, 4, 7) 14

(2, 2, 3, 7) 14

(2, 3, 4, 5) 14

(1, 2, 5, 7) 15

(1, 3, 4, 7) 15

(1, 3, 5, 6) 15

Weights Sum

(2, 3, 5, 5) 15

(3, 3, 4, 5) 15

(1, 2, 5, 8) 16

(1, 3, 4, 8) 16

(1, 4, 5, 6) 16

(2, 3, 4, 7) 16

(2, 3, 5, 7) 17

(1, 2, 6, 9) 18

(1, 3, 5, 9) 18

(1, 4, 6, 7) 18

(2, 3, 4, 9) 18

(2, 3, 5, 8) 18

(3, 4, 5, 6) 18

(3, 4, 5, 7) 19

(1, 4, 5, 10) 20

(1, 5, 6, 8) 20

(2, 3, 5, 10) 20

(2, 4, 5, 9) 20

(2, 5, 6, 7) 20

(3, 4, 5, 8) 20

(1, 3, 7, 10) 21

(1, 4, 7, 9) 21

(1, 5, 7, 8) 21

(2, 3, 7, 9) 21

(3, 5, 6, 7) 21

(1, 3, 7, 11) 22

Weights Sum

(1, 4, 6, 11) 22

(2, 4, 5, 11) 22

(1, 3, 8, 12) 24

(1, 6, 8, 9) 24

(2, 3, 7, 12) 24

(2, 3, 8, 11) 24

(2, 5, 8, 9) 24

(3, 4, 5, 12) 24

(3, 4, 7, 10) 24

(3, 6, 7, 8) 24

(4, 5, 6, 9) 24

(4, 5, 7, 9) 25

(1, 5, 7, 13) 26

(2, 3, 8, 13) 26

(2, 5, 6, 13) 26

(2, 5, 9, 11) 27

(5, 6, 7, 9) 27

(1, 4, 9, 14) 28

(1, 5, 8, 14) 28

(3, 4, 7, 14) 28

(3, 7, 8, 10) 28

(4, 6, 7, 11) 28

(1, 4, 10, 15) 30

(1, 6, 8, 15) 30

(2, 3, 10, 15) 30

(2, 6, 7, 15) 30

Weights Sum

(3, 4, 10, 13) 30

(4, 5, 6, 15) 30

(4, 7, 9, 10) 30

(5, 6, 8, 11) 30

(2, 5, 9, 16) 32

(4, 5, 7, 16) 32

(3, 5, 11, 14) 33

(5, 8, 9, 11) 33

(3, 4, 10, 17) 34

(4, 6, 7, 17) 34

(1, 5, 12, 18) 36

(3, 4, 11, 18) 36

(3, 7, 8, 18) 36

(7, 8, 9, 12) 36

(3, 5, 11, 19) 38

(5, 6, 8, 19) 38

(5, 7, 8, 20) 40

(1, 6, 14, 21) 42

(2, 5, 14, 21) 42

(3, 4, 14, 21) 42

(4, 5, 13, 22) 44

(5, 8, 9, 22) 44

(3, 5, 16, 24) 48

(7, 8, 10, 25) 50

(4, 5, 18, 27) 54

(5, 6, 22, 33) 66

Table 3: The 104 distinct weights occuring for the 225 Fano tetrahedra.

Proposition 3.2 allows us to calculate the non-simplex minimal Fano 3-topes. As-

sume we have chosen S and P ′ such that k is as small as possible. If k = 1, then

r = 0 and we have that S is the polytope for P1, and P ′ is a minimal Fano polygon

(the minimal Fano polygons are the triangles (a) and (b) in Figure 1 and the polygon

associated with P1 × P1 mentioned in Example 2.3). These possibilities are classified
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in Lemmas 4.8–4.10. The alternative is that k = 2. Since the polygon for P1×P1 con-

tains the polytope for P1, it can be excluded; we need only consider the cases when

r = 1 and P ′ is a minimal Fano triangle. Hence the Fano polytope has five vertices.

These cases will be classified in Lemmas 4.11–4.13. We find that there are exactly ten

non-simplex minimal Fano polytopes in dimension three. The results are collated in

Table 4.

Once the minimal polytopes are known, the following result is immediate.1

Theorem 4.6 Let X be a toric Fano threefold with at worst canonical singulari-

ties. Then (−KX)3 ≤ 72. If (−KX)3
= 72, then X is isomorphic to P(1, 1, 1, 3) or

P(1, 1, 4, 6).

Proof Let PX be the polytope associated with X. There exists a minimal polytope Q

such that Q ⊂ PX , hence P∨

X ⊂ Q∨. Inspection gives vol Q∨ ≤ 12, hence (−KX)3 ≤
3! · 12.

Theorem 4.6 should be compared with the following result, conjectured by Fano

and Iskovskikh and proved by Prokhorov:

Theorem 4.7 ([Pro05]) Let X be a Gorenstein Fano threefold with at worst canonical

singularities. Then (−KX)3 ≤ 72. If (−KX)3
= 72, then X is isomorphic to P(1, 1, 1, 3)

or P(1, 1, 4, 6).

For the following two results minimality ensures that any such Fano polytope

must be at worst terminal; these were classified in [Kas06a, Lemmas 3.4 and 3.5].

Lemma 4.8 The minimal Fano polytopes obtained from adding the points ±x to a

Fano square are equivalent to





1 0 0 −1 0 0

0 1 0 0 −1 0

0 0 1 0 0 −1



 or





1 0 −1 0 1 −1

0 1 0 −1 1 −1

0 0 0 0 2 −2



 .

Lemma 4.9 The minimal Fano polytopes containing a Fano triangle equivalent to

Figure 1(a), along with a pair of points ±x not lying in the plane containing the Fano

triangle, are equivalent to





1 0 0 0 −1

0 1 0 0 −1

0 0 1 −1 0



 or





1 0 −1 1 −1

0 1 −1 2 −2

0 0 0 3 −3



 .

Lemma 4.10 Any minimal Fano polytope containing the minimal Fano triangle

shown in Figure 1(b), along with a pair of points ±x not lying in the same subspace

as the triangle, is equivalent to





1 0 0 0 −2

0 1 0 0 −1

0 0 1 −1 0



 or





1 0 −2 1 −1

0 1 −1 1 −1

0 0 0 2 −2



 .

1My thanks to Professor Victor Batyrev for this observation.
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Proof Arrange matters such that P := conv{e1, e2,−2e1 − e2, x,−x}; x := (a, b, c)
is such that 0 ≤ a, b < c. Clearly a = 0, b = 0, c = 1 is a solution. Let us assume

that c > 1.

Since x 6= e3, we cannot have e3 ∈ P, since removing x would then yield a smaller

canonical Fano polytope with vertex e3, contradicting minimality.

Hence e3 /∈ P and consider the line connecting e3 to the origin. If a ≥ 2b, this line

intersects conv{−e1,−2e1 − e2, x} at the point ke3, where k = c/(a − b + 1). This

tells us that k < 1, thus a − b ≥ c, which contradicts our assumptions.

It must be that a < 2b. The line joining e3 and 0 intersects conv{e1,−2e1 − e2, x}
at the point ke3, where k = c/(3b − a + 1). Hence,

(4.1) 3b − a ≥ c.

As before, −e3 /∈ P. The line joining the origin and−e3 intersects conv{e1, e2,−x}
at the point k(−e3), where k = c/(a + b + 1). Thus we obtain

(4.2) a + b ≥ c.

As before, −e1 − e3 /∈ P. The line connecting the origin with −e1 − e3 intersects

conv{−e1, e2,−x} at the point k(−e1 − e3), where k = c/(c + b − a + 1). Hence

(4.3) b ≥ a.

Finally, let us consider the point −e1 − e2 − e3. This point must lie outside P,

for otherwise conv{e1, e2,−e1 − e2 − e3, x} would be a Fano tetrahedron. We con-

sider the line connecting 0 and this point. If 2b − a > c, then the line intersects

conv{−e1,−2e1 − e2,−x} at the point k(−e1 − e2 − e3), where k = c/(b − a + 1).

But this yields b − a ≥ c, a contradiction. Hence it must be that 2b − a ≤ c, and the

line intersects conv{e1,−2e1 − e2,−x}. This occurs when k = c/(a − 3b + 2c + 1),

and gives us

(4.4) c ≥ 3b − a.

Combining equations (4.1) and (4.4) tells us that c = 3b − a, and by applying

equation (4.2) we see that a ≥ b. Of course equation (4.3) now tells us that a = b,

and so x = (a, a, 2a). This forces a = 1.

Lemma 4.11 The minimal Fano polytopes containing two copies of the Fano triangle

shown in Figure 1(a) are equivalent to





1 0 0 −1 1

0 1 0 −1 1

0 0 −1 0 1



 .

Proof Let us fix the lattice such that P := conv{e1, e2,−e1 − e2, x, y}, where x :=

conv{a + 1, b + 1, c} , y := conv{−a,−b,−c} , and 0 < a + 1 ≤ b + 1 ≤ c. Clearly

a = 0, b = 0, c = 1 is a solution. Assume that c > 1.
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By minimality −e3 lies outside P. The line connecting −e3 with the origin inter-

sects conv{e1, e2, y} at the point −ke3, where k = c/(a + b + 1). We see that

(4.5) c ≤ a + b.

Consider the point e1 + e2 + e3. The line joining this point and the origin intersects

conv{e1, e2, x} at k(e1+e2+e3), where k = c/(2c−(a+1)−(b+1)+1). If e1+e2+e3 /∈ P,

then (a + 1) + (b + 1) ≤ c, contradicting equation (4.5). Hence e1 + e2 + e3 lies on the

boundary of P, and (a + 1) + (b + 1) − 1 = c. But again we find that this contradicts

equation (4.5).

Lemma 4.12 Any minimal Fano polytope containing one copy of each of the two min-

imal Fano triangles (Figure 1(a) and (b)) is equivalent to





1 0 0 −2 −1

0 1 0 −1 0

0 0 1 0 −1



 .

Proof Arrange matters so that P := conv{e1, e2,−2e1 − e2, x, y}. There are two

cases to consider:

(i) x + y + e2 = 0;

(ii) x + y + e1 = 0.

Observe that in case (i), the line joining e1 and −2e1 − e2 intersects span {e2} at

the point −(1/3)e2, whereas the line joining x and y intersects span {e2} at −(1/2)e2.

Hence P \ {−2e1 − e2} is still Fano, which contradicts the minimality of P. Indeed,

this case reduces to those polytopes discussed in Lemma 4.9.

We now address case (ii).

We have that x = (a, b, c) , y = (−a − 1,−b,−c) , and can insist that 0 ≤ a, b <
c. Clearly a = 0, b = 0, c = 1 is a solution, so suppose that c > 1. By minimality

e3 /∈ P.

Note that the point −e1 lies on the line joining e2 and −2e1 − e2, whilst the line

joining x to y intersects the plane span {e1, e2} at −(1/2)e1. Hence this line (without

the end points) is contained strictly in the interior of P.

The point e1+e2+e3 lies outside P, otherwise conv{e1,−2e1 − e2, e1 + e2 + e3, y} is

a Fano tetrahedron contained in P. The line connecting this point to 0 must intersect

conv{e1, e2, x}. This occurs at k(e1 + e2 + e3), where k = c/(2c − a − b + 1). We thus

have

(4.6) a + b ≤ c.

The point −e1 − e3 must lie outside P, otherwise P contains the Fano tetrahedron

conv{e1,−2e1 − e2,−e1 − e3, x}, contradicting the minimality of P. The line orig-

inating at 0 and passing through −e1 − e3 intersects ∂P in either conv{e1, e2, y} or

conv{−e1, e2, y}. The first possibility gives the point of intersection to be k(−e1−e3),

where k = c/(a + b − c + 2), and we have that a + b + 1 ≥ 2c. Combining this with

equation (4.6) yields a contradiction.
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Comments Vertices

5 Vertices
Simplicial
Terminal

0

@

1 0 0 0 −1
0 1 0 0 −1
0 0 1 −1 0

1

A

5 Vertices
Simplicial
Terminal

0

@

1 0 −1 1 −1
0 1 −1 2 −2
0 0 0 3 −3

1

A

5 Vertices
Simplicial

0

@

1 0 0 0 −2
0 1 0 0 −1
0 0 1 −1 0

1

A

5 Vertices
Simplicial

0

@

1 0 −2 1 −1
0 1 −1 1 −1
0 0 0 2 −2

1

A

5 Vertices
Terminal

0

@

1 0 0 −1 1
0 1 0 −1 1
0 0 1 0 −1

1

A

Comments Vertices

5 Vertices
Simplicial

0

@

1 0 0 −2 −1
0 1 0 −1 0
0 0 1 0 −1

1

A

5 Vertices

0

@

1 0 0 −2 −2
0 1 0 −1 0
0 0 1 0 −1

1

A

5 Vertices

0

@

1 0 −2 1 −3
0 1 −1 1 −1
0 0 0 2 −2

1

A

6 Vertices
Simplicial
Terminal

0

@

1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

1

A

6 Vertices
Simplicial
Terminal

0

@

1 0 −1 0 1 −1
0 1 0 −1 1 −1
0 0 0 0 2 −2

1

A

Table 4: The non-simplex three-dimensional minimal Fano polytopes.

Consider the second possibility: the line connecting −e1 − e3 and the origin in-

tersects conv{−e1, e2, y} at the point k(−e1 − e3), where k = c/(c + b − a). We have

that:

(4.7) b ≥ a + 1.

Finally, consider the point e2 + e3. This point must lie outside P. If e2 + e3

were contained in P, then conv{e1, e2 + e3,−2e1 − e2, y} would be a Fano tetrahe-

dron. The line joining the point with the origin intersects conv{e1,−2e1 − e2, x} or

conv{−e1, e2, x}. In the first case the point of intersection is given by k(e2 +e3), where

k = c/(c − a − b + 1). Hence a + b ≤ 0, which is an impossibility (since c 6= 1).

The alternative is that the line intersects conv{−e1, e2, x}. This occurs at the point

k(e2 + e3), where k = c/(a − b + c + 1), and we see that a ≥ b. By considering

equation (4.7) we obtain our final contradiction.

Lemma 4.13 Any minimal Fano polytope containing two copies of the minimal Fano

triangle of type P(1, 1, 2) is equivalent to





1 0 0 −2 −2

0 1 0 −1 0

0 0 1 0 −1



 or





1 0 −2 1 −3

0 1 −1 1 −1

0 0 0 2 −2



 .

Proof Fix the lattice such that P := conv{e1, e2,−2e1 − e2, x, y}. Again there are

two cases to consider. If x + y + 2e2 = 0, then −e2 is contained on the boundary of P.

We already know that −e1 lies on the boundary of P, and hence minimality reduced

us to the case considered in Lemma 4.10. Thus x + y + 2e1 = 0 and x = (a, b, c) , y =

(−a − 2,−b,−c), where 0 ≤ a, b < 0. Clearly a = 0, b = 0, c = 1 is a solution. Let

us assume that c > 1.
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By minimality, −e3 /∈ P. The line joining −e3 to the origin intersects

conv{e1, e2, y} at the point k(−e3), where k = c/(a + b + 3). Hence we conclude

that

(4.8) a + b + 2 ≥ c.

The point e1 + e2 + e3 does not lie in P, otherwise either

conv{e1,−2e1 − e2, e1 + e1 + e3, y}

or

conv{−e1,−2e1 − e2, e1 + e2 + e3, y}

would be a Fano tetrahedron. Consider the line connecting 0 and e1 + e2 + e3. This

line intersects conv{e1, e2, x} at the point k(e1 + e2 + e3), where k = c/(2c−a−b + 1).

In particular,

(4.9) a + b ≤ c.

If e2 + e3 ∈ P, then conv{e1,−2e1 − e2, e2 + e3, y} would be a Fano tetrahe-

dron. This is not permissible. The line connecting e2 + e3 and the origin intersects

conv{−e1, e2, x} at the point k(e2 + e3), where k = c/(a − b + c + 1). We conclude

that

(4.10) a ≥ b.

In particular a 6= 0, since the alternative would force c = 1.

Finally we consider the point −e1 − e3. The line connecting this point with the

origin intersects conv{−e1, e2, y} if a + 2 ≤ c, or conv{e1, e2, y} if a + 2 > c. The first

possibility gives the point of intersection as k(−e1 − e3), where k = c/(b + c − a− 1).

If −e1 − e3 lies on the boundary of P, we see that b = a + 1. This contradicts

equation (4.10). Hence it must be that −e1 − e3 lies outside P. In this case, b ≥ a + 2,

and once again this contradicts equation (4.10). It must be that a + 2 > c, which

implies that a = c − 1. Equation (4.9) forces b ≤ 1, and by applying equation (4.8)

we see that the only possibility is a = 1, b = 1, c = 2.

5 Canonical Toric Fano Threefolds

Using the results of Section 4, a computer classification of all canonical Fano poly-

topes of dimension three is possible. This was a significant undertaking; a month of

computation on a parallel computing system was required. The code, written in C, is

available from the author upon request. It should be emphasised that several known

results exist as sub-classifications, and that the resulting list can be independently

checked using packages such as PALP [KS04]. We summarise the algorithm below.

Algorithm 5.1 For each of the 26 minimal Fano polytopes given in Tables 2 and 4,

perform the following recursive algorithm
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(i) Identify unimodular equivalence: We have been given a canonical Fano polytope

P, and inductively are constructing a set P that will ultimately contain all pos-

sible canonical Fano polytopes, up to unimodular equivalent. Thus for each

Q ∈ P, check whether there exists a transformation in GL(3, Z) sending the

vertices of P bijectively onto the vertices of Q. If P is new, then add it to P and

proceed to step (ii). Obviously invariants of the two polytopes such as their

volume, degree, whether they are both simplicial, etc., can be used to greatly

reduce the number of comparisons required.

(ii) Successively choose new vertices: We have been given a canonical Fano polytope

P and wish to extend P via the addition of a new vertex.

(a) For each vertex v of P such that P ′ := conv (P ∪ {−v}) is a canonical Fano

polytope with −v ∈ vert P ′, recurse on step (i) with P ′.

(b) For each pair of distinct vertices v1 and v2, check which of the following six

sums give a lattice point v ∈ N (cf. Figure 1):

−v1 − v2,
−2v1 − v2, − 1

2
v1 −

1
2
v2,

−2v1 − 3v2, − 1
2
v1 −

3
2
v2, − 1

3
v1 −

2
3
v2.

In each case, if P ′ := conv (P ∪ {v}) is a canonical Fano polytope with

v ∈ vert P ′, then recurse on step (i) with P ′.

(c) For each choice of pair-wise distinct vertices v1, v2, and v3, and for each

weight (λ0, λ1, λ2, λ3) in Table 3, check whether any of the four sums:

−λ1

λ0
v1 −

λ2

λ0
v2 −

λ3

λ0
v3, −λ0

λ1
v1 −

λ2

λ1
v2 −

λ3

λ1
v3,

−λ1

λ2
v1 −

λ0

λ2
v2 −

λ3

λ2
v3, −λ1

λ3
v1 −

λ2

λ3
v2 −

λ0

λ3
v3,

give a lattice point v ∈ N. In each case, if P ′ := conv (P∪{v}) is a canonical

Fano polytope with v ∈ vert P ′, then recurse on step (i) with P ′.

The final classification is available online, in a searchable format, via the Graded

Ring Database at http://grdb.lboro.ac.uk/. The key results are summarised below; for

further details consult the online database.

Theorem 5.2 Up to isomorphism, there exist exactly 674,688 toric Fano threefolds.

Of these, 18 are smooth, 634 have at worst terminal singularities, 4,319 are Gorenstein,

and 12,190 are Q-factorial. Amongst the Q-factorial varieties, the rank of the Picard

group is bounded by ρ ≤ 7; this bound is attained in exactly two cases: once when the

variety is terminal, once when the variety is canonical.

Acknowledgments The author would like to express his gratitude to Dr. G. K. San-

karan for his invaluable explanations and advice. A special acknowledgement is due

to Professor Alexander Borisov for making [BB] available; the current paper was in-

spired by the ideas developed in that unpublished work. Thanks also to Dr. Gavin

Brown and the School of Mathematics at Loughborough University for hosting the

final classification online in a searchable format, to Michael Kerber for assistance with

the web interface, and to an anonymous referee for several useful observations.

https://doi.org/10.4153/CJM-2010-070-3 Published online by Cambridge University Press

http://grdb.lboro.ac.uk/
https://doi.org/10.4153/CJM-2010-070-3


1308 A. M. Kasprzyk

A significant portion of this work was funded by an Engineering and Physical Sci-

ences Research Council (EPSRC) studentship, and forms part of the author’s Ph. D.

thesis ([Kas06b]). The computational resources required for the classification were

funded by an ACEnet Postdoctoral Research Fellowship.

References

[Bat81] V. V. Batyrev, Toric Fano threefolds. Izv. Akad. Nauk SSSR Ser. Mat. 45(1981), no. 4,
704–717, 927.

[Bat91] , On the classification of smooth projective Toric varieties. Tohoku Math. J. 43(1991),
no. 4, 569–585. doi:10.2748/tmj/1178227429

[Bat94] , Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties.
J. Algebraic Geom. 3(1994), no. 3, 493–535.

[Bat99] , On the classification of toric Fano 4-folds. J. Math. Sci. (New York) 94(1999), no. 1,
1021–1050. doi:10.1007/BF02367245

[BB] A. A. Borisov and L. A. Borisov, Three-dimensional toric Fano varieties with terminal
singularities, unpublished, text in Russian, available upon request.

[BB92] , Singular toric Fano three-folds. (Russian) Mat. Sb. 183(1992), no. 2, 134–141,
translation in: Russian Acad. Sci. Sb. Math. 75(1993), no. 1, 277–283.

[BB96] V. V. Batyrev and L. A. Borisov, On Calabi-Yau complete intersections in toric varieties. In:
Higher-dimensional complex varieties (Trento, 1994), de Gruyter, Berlin, 1996, pp. 39–65.

[Bor00] A. A. Borisov, Convex lattice polytopes and cones with few lattice points inside, from a
birational geometry viewpoint. http://arxiv.org/abs/math/0001109

[Bro07] G. Brown, A database of polarized K3 surfaces. Experiment. Math. 16(2007), no. 1, 7–20.
[Con02] H. Conrads, Weighted projective spaces and reflexive simplices. Manuscripta Math.

107(2002), no. 2, 215–227. doi:10.1007/s002290100235

[Cut89] S. D. Cutkosky, On Fano 3-folds. Manuscripta Math. 64(1989), no. 2, 189–204.
doi:10.1007/BF01160118

[Dan78] V. I. Danilov, The geometry of toric varieties. Uspekhi Mat. Nauk 33(1978), no. 2(200),
85–134, 247.

[FS04] O. Fujino and H. Sato, Introduction to the toric Mori theory. Michigan Math. J. 52(2004),
no. 3, 649–665. doi:10.1307/mmj/1100623418

[Ful93] W. Fulton, Introduction to toric varieties. Annals of Mathematics Studies, 131, The William
H. Roever Lectures in Geometry, Princeton University Press, Princeton, NJ, 1993.

[Isk79a] V. A. Iskovskih, Anticanonical models of three-dimensional algebraic varieties. (Russian)
Current problems in mathematics, 12, VINITI, Moscow, 1979, pp. 59–157, 239 (loose
errata).

[Isk79b] , Birational automorphisms of three-dimensional algebraic varieties. (Russian)
Current problems in mathematics, 12, VINITI, Moscow, 1979, pp. 159–236, 239 (loose
errata).

[Kas06a] A. M. Kasprzyk, Toric Fano three-folds with terminal singularities. Tohoku Math. J. (2)
58(2006), no. 1, 101–121. doi:10.2748/tmj/1145390208

[Kas06b] , Toric Fano varieties and convex polytopes, Ph.D. thesis, University of Bath (2006),
available from http://hdl.handle.net/10247/458

[Kas08] , Bounds on fake weighted projective space. Kodai Math. J. 32(2009), no. 2, 197–208.
doi:10.2996/kmj/1245982903

[KMM92] J. Kollár, Y. Miyaoka, and S. Mori, Rational connectedness and boundedness of Fano
manifolds. J. Differential Geom. 36(1992), no. 3, 765–779.

[KN07] M. Kreuzer and B. Nill, Classification of toric Fano 5-folds. Adv. Geom. 9(2009), no. 1,
85–97. doi:10.1515/ADVGEOM.2009.005

[KS97] M. Kreuzer and H. Skarke, On the classification of reflexive polyhedra. Comm. Math. Phys.
185(1997), no. 2, 495–508. doi:10.1007/s002200050100

[KS98] , Classification of reflexive polyhedra in three dimensions. Adv. Theor. Math. Phys.
2(1998), no. 4, 853–871.

[KS00] , Complete classification of reflexive polyhedra in four dimensions. Adv. Theor. Math.
Phys. 4(2000), no. 6, 1209–1230.

[KS02] , Reflexive polyhedra, weights and toric Calabi-Yau fibrations. Rev. Math. Phys.
14(2002), no. 4, 343–374. doi:10.1142/S0129055X0200120X

https://doi.org/10.4153/CJM-2010-070-3 Published online by Cambridge University Press

http://dx.doi.org/10.2748/tmj/1178227429
http://dx.doi.org/10.1007/BF02367245
http://dx.doi.org/10.1007/s002290100235
http://dx.doi.org/10.1007/BF01160118
http://dx.doi.org/10.1307/mmj/1100623418
http://dx.doi.org/10.2748/tmj/1145390208
http://dx.doi.org/10.2996/kmj/1245982903
http://dx.doi.org/10.1515/ADVGEOM.2009.005
http://dx.doi.org/10.1007/s002200050100
http://dx.doi.org/10.1142/S0129055X0200120X
https://doi.org/10.4153/CJM-2010-070-3


Canonical Toric Fano Threefolds 1309

[KS04] , PALP, a package for analyzing lattice polytopes with applications to toric geometry.
Computer Phys. Comm. 157(2004), no. 1, 87–106. doi:10.1016/S0010-4655(03)00491-0

[MM04] S. Mori and S. Mukai, Extremal rays and Fano 3-folds. In: The Fano Conference, Univ.
Torino, Turin, 2004, pp. 37–50.

[MU83] S. Mukai and H. Umemura, Minimal rational threefolds. In: Algebraic geometry
(Tokyo/Kyoto, 1982), Lecture Notes in Math., 1016, Springer, Berlin, 1983, pp. 490–518.

[Nil05] B. Nill, Gorenstein toric Fano varieties. Manuscripta Math. 116(2005), no. 2, 183–210.
doi:10.1007/s00229-004-0532-3

[Nil06] , Classification of pseudo-symmetric simplicial reflexive polytopes. In: Algebraic and
geometric combinatorics, Contemp. Math., 423, American Mathematical Society,
Providence, RI, 2006, pp. 269–282.

[Øbr07] Mikkel Øbro, An algorithm for the classification of smooth Fano polytopes.
http://arxiv.org/abs/0704.0049.

[Oda78] T. Oda, Torus embeddings and applications, Tata Institute of Fundamental Research
Lectures on Mathematics and Physics, 57, Springer-Verlag, Berlin-New York, 1978.

[Pro05] Yu. G. Prokhorov, The degree of Fano threefolds with canonical Gorenstein singularities.
(Russian) Mat. Sb. 196(2005), no. 1, 81–122.

[PRV00] B. Poonen and F. Rodriguez-Villegas, Lattice polygons and the number 12. Amer. Math.
Monthly 107(2000), no. 3, 238–250. doi:10.2307/2589316

[Rei83] M. Reid, Minimal models of canonical 3-folds. In: Algebraic varieties and analytic varieties,
Adv. Stud. Pure Math., 1, North-Holland, Amsterdam, 1983, pp. 131–180.

[Sat00] Hiroshi Sato, Toward the classification of higher-dimensional toric Fano varieties, Tohoku
Math. J. (2) 52 (2000), no. 3, 383–413. doi:10.2748/tmj/1178207820
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