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A note on the smooth blowups of
P(1, 1, 1, k) in torus-invariant subvarieties
Daniel Cavey

Abstract. This papers classifies toric Fano threefolds with singular locus { 1
k (1, 1, 1)} for k ∈ Z≥1

building on the work of Batyrev (1981, Nauk SSSR Ser. Mat. 45, 704–717) and Watanabe–Watanabe
(1982, Tokyo J. Math. 5, 37–48). This is achieved by completing an equivalent problem in the
language of Fano polytopes. Furthermore, we identify birational relationships between entries of the
classification. For a fixed value k ≥ 4, there are exactly two such toric Fano threefolds linked by a
blowup in a torus-invariant line.

1 Introduction

A projective algebraic variety overC is Fano if the anticanonical divisor−KX is ample.
Classifications of Fano varieties is an area of substantial interest in algebraic geometry.
Most famously, del Pezzo classified the smooth Fano varieties in dimension 2, known
as the 10 smooth del Pezzo surfaces. Mori–Mukai completed the classification of
smooth Fano threefolds finding 105 varieties [11].

Restricting the class of varieties in dimension d to toric varieties, that is, varieties
with a suitable embedding of the algebraic torus (C∗)d , allows for a combinatorial
reinterpretation of the problem. The classification of toric d-dimensional Fano vari-
eties is equivalent to the classification of specific d-dimensional lattice polytopes,
known as Fano polytopes, up to a change of basis on the lattice.

A number of classifications of toric Fano varieties exist in the literature. Most
notably Batyrev [1] and Watanabe–Watanabe [14] simultaneously classified smooth
toric Fano threefolds. Batyrev further classified smooth toric Fano fourfolds [2].
Moving into the non-singular situation Kruezer–Skarke [7–9] classify Gorenstein
toric Fano varieties in dimensions 2, 3, and 4. Kasprzyk classifies toric Fano threefolds
with at worst terminal/canonical singularities in [5, 6].

Definition 1.1 Let N ≅ Zn be a lattice. A Fano polytope P ⊂ NR = N ⊗R is a full-
dimensional convex polytope such that 0 ∈ int(P) and all vertices v ∈ V(P) have
primitive coordinates.
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The spanning fan ΣP of a Fano polytope P gives rise to a toric variety XP , leading
to the previously mentioned equivalence for Fano variety classifications. Geometric
properties of the toric variety can be seen at the level of the combinatorics of P. In
particular, one can observe the singularities of XP ; each maximal cone of ΣP describes
a toric singularity on XP .

Definition 1.2 Consider the action of μr , the cyclic group of order r, on C
3 by

ε ⋅ (x , y, z) = (εa x , εb y, εc z),

where ε is an rth root of unity. The germ of the origin of Spec(C[x , y, z]μr) is known
as a quotient singularity 1

r (a, b, c). A cyclic quotient singularity is a quotient singularity
1
r (a, b, c) such that gcd(r, a) = gcd(r, b) = gcd(r, c) = 1.

Cyclic quotient singularities are toric, and the corresponding cone is simplicial. Of
particular interest for this paper are: (i) the simplicial cone whose generating rays form
a basis of the lattice N, which describes a smooth patch C

n ⊂ XP , and is subsequently
known as a smooth cone, and (ii) the cone over conv{(1, 0, 0), (0, 1, 0), (−1,−1,−k)},
considered up to a change of basis, which describes a 1

k (1, 1, 1) singularity and is
subsequently denoted C 1

k (1,1,1).
As mentioned, Batyrev [1] and Watanabe–Watanabe [14] classify smooth toric

Fano threefolds, and further identify any birational relations, that is, blowups or
blowdowns, within this classification. The resulting 18 varieties are outlined in Table 1
and fall into a cascade structure, terminology coined by Reid–Suzuki [12], rooted at
P

3 shown in Figure 1. Here, and indeed throughout the paper, a blue line indicates
a blowup in a smooth point and a red line indicates a blowup in a smooth torus-
invariant line.

Motivated by the above, one may ask how this cascade generalizes if we were
to replace P

3 by P(1, 1, 1, k) for k ≥ 2. To answer this question, we classify the toric
Fano threefolds V with singular locus Sing(V) = { 1

k (1, 1, 1)} using the combinatorial
language introduced.

The cases k = 2 and k = 3 are terminal and canonical, respectively, and so the
classifications are readily available via a quick search of the Graded Ring Database
[13] which includes the results obtained by Kasprzyk [5, 6]. The results are given in
the following propositions.

Theorem 1.1 Let V be a toric Fano threefold, Sing(V) = { 1
2 (1, 1, 1)}. Then V is

isomorphic to one of the 18 varieties in Table 2. Furthermore, these varieties admit the
birational relationships illustrated in Figure 2.

Theorem 1.2 Let V be a toric Fano threefold, Sing(V) = { 1
3(1, 1, 1)}. Then V is

isomorphic to one of the two varieties in Table 3. Furthermore, these two varieties are
related birationally, as illustrated in Figure 3.

The original material of this paper is then to deal with the case k > 3, that is, when
the varieties are no longer canonical.
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Table 1: Smooth toric Fano threefolds V.
Id V(PV) (−KX)3 ρ(X) Model (where applicable)

1.1
1 0 0 −1
0 1 0 −1
0 0 1 −1

64 1 P
3

1.2
1 0 0 −1 0
0 1 0 −1 0
0 0 1 0 −1

54 2 P
2 × P1

1.3
1 0 0 −1 −1
0 1 0 −1 0
0 0 1 −1 0

56 2 P (OP2 ⊕OP2(1))

1.4
1 0 0 −1 −1
0 1 0 −1 −1
0 0 1 −1 0

54 2 P (OP1 ⊕OP1 ⊕OP1)

1.5
1 0 −1 −1 −1
0 0 −1 0 1
0 1 −1 0 0

62 2 P (OP2 ⊕OP2(2))

1.6
1 0 0 −1 0 0
0 1 0 0 −1 0
0 0 1 0 0 −1

48 3 P
1 × P1 × P1

1.7
1 0 0 −1 −1 0
0 1 0 −1 0 0
0 0 1 0 0 −1

48 3 DS8 × P1

1.8
1 0 0 −1 −1 0
0 1 0 −1 −1 0
0 0 1 −1 0 −1

46 3

1.9
1 0 0 −1 −1 −1
0 1 0 −1 −1 0
0 0 1 −1 0 0

50 3 P (ODS8 ⊕ODS8(1))

1.10
1 0 0 −1 −1 1
0 1 0 −1 −1 1
0 0 1 −1 0 0

44 3 P (OP1×P1 ⊕OP1×P1(1,−1))

1.11
1 0 0 −1 −1 −1
0 1 0 −1 0 1
0 0 1 −1 0 0

50 3

1.12
1 0 −1 −1 0 −1
0 1 −1 0 0 0
0 0 0 0 −1 1

52 3 P (OP1×P1 ⊕OP1×P1(1,−1))

1.13
1 0 0 −1 −1 0 0
0 1 0 −1 0 −1 0
0 0 1 0 0 0 −1

42 4 DS7 × P1

1.14
1 0 0 −1 −1 0 1
0 1 0 −1 −1 0 1
0 0 1 −1 0 −1 0

40 4
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Table 1: Continued.
Id V(PV) (−KX)3 ρ(X) Model (where applicable)

1.15
1 0 0 −1 −1 0 −1
0 1 0 −1 0 0 0
0 0 1 0 0 −1 1

44 4

1.16
1 0 0 −1 −1 −1 0
0 1 0 −1 −1 0 −1
0 0 1 −1 0 0 0

46 4

1.17
1 0 0 1 −1 0 0 −1
0 1 0 1 0 −1 0 −1
0 0 1 0 0 0 −1 0

36 5 DS6 × P1

1.18
1 0 0 −1 −1 0 1 1
0 1 0 −1 −1 0 1 1
0 0 1 −1 0 −1 0 1

36 5

Figure 1: Cascade of varieties rooted at P3 .

Theorem 1.3 For k ≥ 4, let V be a toric Fano threefold, Sing(V) = { 1
k (1, 1, 1)}. Then

V is isomorphic to one of the two varieties in Table 4. Furthermore, these two varieties
are related birationally, as illustrated in Figure 4.

In dimension 2, it is shown in [3] that the P2 cascade generalizes in some sense to
the cascade of P(1, 1, k) for k > 1. This does not seem to be the case in the threefold
setting. The majority of the birational relationships between threefolds in the P

3

cascade above, or indeed the P(1, 1, 1, 2) cascade, do not generalize to a birational
relationship on the P(1, 1, 1, k) cascade. One could hypothesize that the majority
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Table 2: Toric Fano threefolds V, Sing(V) = { 1
2 (1, 1, 1)}.

Id V(PV) (−KX)3 ρ(X) Id on GRDB

2.1
1 0 0 −1
0 1 0 −1
0 0 1 −2

125
2 1 7

2.2
1 0 0 −1 −1
0 1 0 −1 −1
0 0 1 −1 −2

101
2 2 44

2.3
1 0 0 −1 −1
0 1 0 −1 0
0 0 1 −2 −1

109
2 2 46

2.4
1 0 −1 −1 −1 2
0 1 −1 0 0 0
0 0 −2 −1 0 1

113
2 3 122

2.5
1 0 −1 −1 −1 1
0 1 −1 0 0 0
0 0 −2 −1 0 1

97
2 3 134

2.6
1 0 0 −1 −1 1
0 1 0 −1 0 0
0 0 1 −2 −1 1

85
2 3 132

2.7
1 0 0 −1 −1 −1
0 1 0 −1 −1 0
0 0 1 −2 −1 −1

93
2 3 137

2.8
1 0 0 −1 −1 0
0 1 0 −1 0 −1
0 0 1 −2 −1 −1

93
2 3 121

2.9
1 0 0 −1 −1 −1
0 1 0 −1 0 0
0 0 1 −2 −1 0

97
2 3 128

2.10
1 0 −1 −1 −1 1 2
0 1 −1 0 0 0 0
0 0 −2 0 −1 1 1

81
2 4 253

2.11
1 0 −1 −1 −1 0 1
0 1 −1 0 0 −1 0
0 0 −2 0 −1 −1 1

85
2 4 283

2.12
1 0 0 −1 −1 −1 1
0 1 0 −1 0 0 0
0 0 1 −2 0 −1 1

73
2 4 262

2.13
1 0 0 −1 −1 0 1
0 1 0 −1 0 −1 0
0 0 1 −2 −1 −1 1

77
2 4 280

2.14
1 0 0 −1 −1 0 −1
0 1 0 −1 0 −1 −1
0 0 1 −2 −1 −1 −1

85
2 4 209
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Table 2: Continued.
Id V(PV) (−KX)3 ρ(X) Id on GRDB

2.15
1 0 0 −1 −1 0 1
0 1 0 −1 0 −1 1
0 0 1 −2 −1 −1 1

77
2 4 170

2.16
1 0 −1 −1 −1 0 1 1
0 1 −1 0 0 −1 0 1
0 0 −2 0 −1 −1 1 1

73
2 5 394

2.17
1 0 0 −1 −1 0 −1 1
0 1 0 −1 0 −1 −1 1
0 0 1 −2 −1 −1 −1 1

69
2 5 352

2.18
1 0 −1 0 1 −1 1 −1 0
0 1 −1 −1 −1 1 2 −2 −3
0 0 −2 0 0 0 2 −2 −2

69
2 6 514

Figure 2: Cascade of varieties rooted at P(1, 1, 1, 2).
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Table 3: Toric Fano threefolds V, Sing(V) = { 1
3 (1, 1, 1)}.

Id V(PV) (−KX)3 ρ(X) Id on GRDB

3.1
1 0 0 −1
0 1 0 −1
0 0 1 −3

72 1 547377

3.2
1 0 0 −1 −1
0 1 0 −1 −1
0 0 1 −3 −2

58 2 544337

Figure 3: Cascade of varieties rooted at P(1, 1, 1, 3).

Table 4: Toric Fano threefolds V, Sing(V) = { 1
k (1, 1, 1)}.

Id V(PV) (−KX)3 ρ(X)

k.1
1 0 0 −1
0 1 0 −1
0 0 1 −k

(k+3)3

k 1

k.2
1 0 0 −1 −1
0 1 0 −1 −1
0 0 1 −k −k + 1

k3+7k2+35k+27
k 2

Figure 4: Cascade of varieties rooted at P(1, 1, 1, k).

of threefolds birationally related to P
3 and P(1, 1, 1, 2) are suitably interesting Fano

threefolds in a fashion analogous to the rich geometry of the low-degree del Pezzo
surfaces. Further it is worth remarking that variety 2.18 is the unique toric Fano
threefold with singular locus { 1

k (1, 1, 1)}which is not a smooth blow up of P(1, 1, 1, k)
for any value of k, and is of particular intrigue.

The method outlined in this paper could be replicated if one wished to classify
toric Fano threefolds whose singular locus consists of any one fixed cyclic quotient
singularity that is of particular interest to the reader.
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2 Proof of Theorem 1.5

Lemma 2.1 Let k > 3. Let P be a Fano polytope. Assume that P has a C 1
k (1,1,1) cone over

conv{(1, 0, 0), (0, 1, 0), (−1,−1,−k)}, and that all other cones of P are smooth. Then
there exists a finite set U(k) such that

V(P)/{(1, 0, 0), (0, 1, 0), (−1,−1,−k)} ⊂ U(k).

Proof We aim to find all lattice points that could be added to the vertex set of P that
would not violate the assumptions on P. Convexity dictates that the plane through
(1, 0, 0), (0, 1, 0), and (−1,−1,−k) defines a closed half-space kx + ky − 3z ≥ k of NR

in which no new vertex can belong.
To sort through the remaining lattice points, we define an algorithm. The algorithm

is based on the fact that P cannot contain interior points or non-vertex boundary
points other than those in C 1

k (1,1,1). For a lattice point p ∉ C 1
k (1,1,1), define Cp to be

the cone based at p, generated by rays laying on the three lines L1 , L2 , L3, where
L1 , L2 , L3 are the lines through p and (1, 0, 0), (0, 1, 0), (−1,−1,−k), respectively, and
where the rays point away from (1, 0, 0), (0, 1, 0), (−1,−1,−k), respectively. It follows
by convexity that p will be a non-vertex lattice point in P if V(P) contains a lattice
point belonging to the polyhedral cone Cp . So to determine all possible vertices, we
perform the following steps:
(i) Define a set A of the lattice points in the open half-space kx + ky − 3z < k.
(ii) Pick a lattice point p ∈ A, and construct the cone Cp described above.
(iii) Remove from A all lattice points in Cp .
(iv) Return to step (ii) and pick a point p ∈ A that has not been chosen before.
(v) Continue repeating until all points of A have been chosen as p.
It remains to check that the algorithm does indeed terminate. It is enough to show that
we can assume A starts off as a finite set. To do this, we use a bound, given by Hensley
[4] and later improved by Lagarias–Ziegler [10], on the volume of a dimension d
polytope with n > 0 interior points:

Vol(P) ≤ d! ⋅ (8d)! ⋅ 15d ⋅22d+1 ⋅n .

Since P is a threedimensional polytope with at least one interior point, namely, the
origin, it follows that the volume is bounded by some R ∈ Z>0.

Consider (x , y, z) ∈ A. Define three lattice polytopes:

T1 ∶=conv{(0, 0, 0), (1, 0, 0), (0, 1, 0), (x , y, z)} .
T2 ∶=conv{(0, 0, 0), (1, 0, 0), (−1,−1,−k), (x , y, z)} .
T3 ∶=conv{(0, 0, 0), (0, 1, 0), (−1,−1,−k), (x , y, z)} .

If there exists P with (x , y, z) ∈ V(P), then Ti ⊂ P,∀i. It follows that the volume of Ti
is bounded by R. Calculate that

Vol(T1) =
�������������

1 0 0
0 1 0
x y z

�������������
= ∣z∣,
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Vol(T2) =
�������������

1 0 0
−1 −1 −k
x y z

�������������
= ∣ky − z∣,

Vol(T3) =
�������������

0 1 0
−1 −1 −k
x y z

�������������
= ∣kx − z∣.

It follows that x , y, z are all bounded and so A is finite. It is worth noting that the
authors of [4, 10] do not claim R to be a sharp bound on the volume. Even if it was
sharp, we do not believe R would subsequently provide a sharp bound on the values
that x , y, z can take. However, it is enough to assume that A can be taken as finite in
the algorithm and proves that the algorithm will indeed terminate. The set U(K) that
is left after running the algorithm is finite. ∎

Indeed, further to Lemma 2.1, running the algorithm determines the set U(K) as

U(k) ∶= U(k)
1 ∪U(k)

2 ∪⋯∪U(k)
10 ,

where:

U(k)
1 ∶= {(−2,−1,−a), (−2,−1,−a + 2), (−2,−1,−a + 4), . . . , (−2,−1, 3)},

U(k)
2 ∶= {(−1,−2,−a), (−1,−2,−a + 2), (−1,−2,−a + 4), . . . , (−2,−1, 3)},

U(k)
3 ∶= {(−1, 0,−b), (−1, 0,−b + 1), (−1, 0,−b + 2), . . . , (−1, 0,−1), (−1, 0, 1)},

U(k)
4 ∶= {(−0,−1,−b), (0,−1,−b + 1), (0,−1,−b + 2), . . . , (0,−1,−1), (0,−1, 1)},

U(k)
5 ∶= {(−1, 1,−c), (−1, 1,−c + 2), (−1, 1,−c + 4), . . . , (−1, 1, k + 3)},

U(k)
6 ∶= {(1,−1,−c), (1,−1,−c + 2), (1,−1,−c + 4), . . . , (1,−1, k + 3)},

U(k)
7 ∶= {(1, 1, d), (1, 1, d + 1), (1, 1, d + 2), . . . , (1, 1, k − 1), (1, 1, k + 1)},

U(k)
8 ∶= {(1, 2, e), (1, 2, e + 2), (1, 2, e + 4), . . . , (1, 2, 2k + 3)},

U(k)
9 ∶= {(2, 1, e), (2, 1, e + 2), (2, 1, e + 4), . . . , (2, 1, 2k + 3)},

U(k)
10 ∶= {

(-5,-4,-13), (-4,-5,-13), (-3,-2,-2k+1), (-2,-3,-2k+1), (-1,-1,-k+1), (-1,2,1),
(0,0,1), (0,1,1), (1,0,1), (1,3,k+1), (2,-1,1), (3,1,k+1), (4,-1,3), (5,1,7) } ,

where:

a ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

4
3 k − 1, if k ≡ 0 (mod 3),
4
3 (k − 1) + 1, if k ≡ 1 (mod 3),
4
3 (k − 2) + 1, if k ≡ 2 (mod 3),

b ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2
3 k − 1, if k ≡ 0 (mod 3),
2
3 (k − 1), if k ≡ 1 (mod 3),
2
3 (k − 2) + 1, if k ≡ 2 (mod 3),
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c ∶=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
3 k + 1, if k ≡ 0 (mod 6),
1
3 (k − 1), if k ≡ 1 (mod 6),
1
3 (k − 2) + 1, if k ≡ 2 (mod 6),
1
3 (k − 3), if k ≡ 3 (mod 6),
1
3 (k − 4) − 1, if k ≡ 4 (mod 6),
1
3 (k − 5), if k ≡ 5 (mod 6),

d ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1
3 k + 1, if k ≡ 0 (mod 3),
1
3 (k − 1) + 1, if k ≡ 1 (mod 3),
1
3 (k − 2) + 1, if k ≡ 2 (mod 3),

e ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2
3 k + 1, if k ≡ 0 (mod 3),
2
3 (k − 1) + 1, if k ≡ 1 (mod 3),
2
3 (k − 2) + 3, if k ≡ 2 (mod 3).

We are now ready to prove Theorem 1.3.

Proof “Theorem 1.5” Consider the Fano polytope P of a toric Fano threefold V,
Sing(V) = { 1

k (1, 1, 1)}. Without loss of generality, assume that the face of P corre-
sponding to the unique singularity is given by conv{(1, 0, 0), (0, 1, 0), (−1,−1,−k)}.
Since all other faces of P must define a smooth cone, it follows from Lemma 2.1 that
V(P) ⊂ U(k).

In particular, there exists a vertex v1 ∈ V(P), v1 ≠ (−1,−1,−k), such that
conv{(1, 0, 0), (0, 1, 0), v1} defines a face of P. This face will define a smooth cone
and it must not determine that 0 ∉ P by convexity. With this in mind define:

L(k)
1 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(x , y, z) ∈ U(k) ∶

													

1 0 0
0 1 0
x y z

													

= 1 and
sign(n ⋅ (−1,−1,−k)) ≠ sign(n ⋅ v),

where n is the inward pointing normal
of conv{(1, 0, 0), (0, 1, 0), (x , y, z)}

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Define v2 ≠ (0, 1, 0) to be the vertex creating a face with (1, 0, 0) and (−1,−1,−k), and
v3 ≠ (1, 0, 0) to be the vertex creating a face with (0, 1, 0) and (−1,−1,−k). Therefore,
consider two further similarly motivated sets of lattice points:

L(k)
2 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(x , y, z) ∈ U(k) ∶

														

1 0 0
−1 −1 −k
x y z

														

= 1 and
sign(n ⋅ (0, 1, 0)) ≠ sign(n ⋅ v),

where n is the inward pointing normal
of conv{(1, 0, 0), (−1,−1,−k), (x , y, z)}

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

,

L(k)
3 ∶=

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

(x , y, z) ∈ U(k) ∶

														

0 1 0
−1 −1 −k
x y z

														

= 1 and
sign(n ⋅ (1, 0, 0)) ≠ sign(n ⋅ v),

where n is the inward pointing normal
of conv{(0, 1, 0), (−1,−1,−k), (x , y, z)}

⎫⎪⎪⎪
⎬
⎪⎪⎪⎭

.

Using the list in the statement of Lemma 2.1, we can calculate L1 , L2 , L3 explicitly:

L(k)
1 = { (−2,−1, 1), (−1,−2, 1), (−1, 0, 1), (−1, 1, 1), (−1, 2, 1), (0,−1, 1)

(0, 0, 1), (0, 1, 1), (1,−1, 1), (1, 0, 1), (2,−1, 1) },
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L(k)
2 = { (−3,−2,−2k + 1), (−2,−1,−k + 1), (−1,−1,−k + 1), (−1, 0, 1), (−1, 1, k + 1),

(0, 0, 1), (1, 0, 1), (1, 1, k + 1), (1, 2, 2k + 1), (2, 1, k + 1), (3, 1, k + 1) },

L(k)
3 = { (−2,−3,−2k + 1), (−1,−2,−k + 1), (−1,−1,−k + 1), (0,−1, 1), (0, 0, 1), (0, 1, 1)

(1,−1, k + 1), (1, 1, k + 1), (1, 2, k + 1), (1, 3, k + 1), (2, 1, 2k + 1) }.

It is worth noting that, while choices for each of the v i must be made, it is not
necessarily true that v i ≠ v j for i ≠ j.

From here, we construct setsV(P)defining the vertices of a suitable Fano polytope:
(i) Iterate through the possibilities for v1.
(ii) Each choice for v1 narrows down the possibilities for v2 and v3 from L(k)

2 and
L(k)

3 , respectively, by convexity.
(iii) Iterating through choices for v2 narrows down the possibilities for v3 from L(k)

3 .
(iv) Lattice points in U(k) which satisfy the three new convexity conditions can be

added to V(P).
In attempting to do this a number of things can go wrong. For example, if there is
a non-vertex lattice point in conv{(1, 0, 0), (0, 1, 0), (−1,−1,−k), v1 , v2}, other than
those in C 1

k (1,1,1), then P would contain this lattice point and would therefore contain
a second singular cone. This could also happen after adding v3 or a vertex from U(k).
Alternatively, convexity requirements from adding v1 and v2 could leave us with no
options for v3, meaning a suitable P cannot exist. Similarly, it could happen that there
a no possibilities in U(k) due to convexity from adding v1 , v2 , v3 and the convex hull
of the current set of vertices has a second singular cone meaning, we cannot complete
to the construction of a suitable polytope P. We demonstrate a sample computation
for a particular choice of v1.

Choose v1 = (−2,−1, 1) ∈ L(k)
1 . It is worth noting that (−2,−1, 1) ∉ L(k)

2 , L(k)
3 and so

is not a suitable choice for v2 or v3. The new face conv{(1, 0, 0), (0, 1, 0), (−2,−1,−1)}
bounds P by the plane x + y + 4z < 1. There are only three points in L(k)

2 satisfying this
bound and so are suitable choices of v2, namely, (−3,−2,−2k + 1), (−2,−1,−k + 1),
and (−1,−1,−k + 1). For (−3,−2,−2k + 1), note that conv{(0, 1, 0), (−2,−1, 1),
(−3,−2,−2k + 1)} contains an interior point and so this is not a suitable choice
for v2. Similarly, conv{(−2,−1,−k + 1), (−2,−1, 1)} contains interior points ruling
out v2 = (−2,−1, 1). Therefore, v2 = (−1,−1,−k + 1). Note that v2 = (−1,−1, k + 1) ∈
L(k)

3 . Suppose initially that v3 ≠ (−1,−1,−k + 1). Adding v2 gave P an additional
bounding plane, x − 2y < 1, along with the preexisting bound x + y + 4z < 1.
No points in L(k)

3 satisfy both these equations and so there would no possible
choice for v3. The only remaining choice for v3 is (−1,−1,−k + 1). The polytope
conv{(1, 0, 0), (0, 1, 0), (−1,−1,−k), (−2,−1, 1), (−1,−1,−k + 1)} has a singular cone
over the face conv{(1, 0, 0), (0, 1, 0), (−1,−1,−k + 1)}, and it is necessary to add
vertices from U(k) to change this. However, we now have three bounding planes
coming from adding v1 , v2, and v3, namely, x + y + 4z < 1, x − 2y < 1, and y − 2x < 1,
respectively, and one can check that no points of U(k) satisfy all three of these bounds.
Therefore, there are no possible polytope constructions here.
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The only suitable Fano polytopes that are constructed through this method are the
two that are listed in the statement of the theorem. It is routine to observe the blow
up relation between the two varieties. ∎
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